INTERNATIONAL ISO/IEC
STANDARD 10967-2

First edition
2001-08-15

Information technology — Language
independent arithmetic —

Part 2:
Elementary numerical functions

Technologies de l'information=— Arithmétique de langage ind§pendant —

Partie 2: Fonctions numériques élémentaires

Reference number
ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 — All rights reserved

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Contents
Foreword e e viii
Introductiono ix
1 Scope
1.1 Inclusions e 1
1.2 Exclusions e e 2
2 Conformity 2
3 Normrativereferences 3
4 Symbols and definitions 4
4l Symbols e 4
4.1.1 Setsandintervals. o0 AT 4
4.1.2 Operators and relations O~ 4
4.1.3 Mathematical functions L 00NN L 5
4.1.4 Exceptional values Cy. ...)
4.1.5 Datatypes LN 6
4P Definitions of terms o LU oo 7
5 Specifications for integer and floating point operations 10
5./l Basic integer operations S0 oL Lo .10
5.1.1 The integer result and wrap helper funetions10
5.1.2 Integer maximum and minimum N\ oL .11
5.1.3 Imteger diminish Ry oo oo .11
5.1.4 Integer power and arithmetiesshift12
5.1.5 Imteger squareroot\o Lo .12
5.1.6 Divisibility testso .12
5.1.7 Integer division (with floor, round, or ceiling) and remainder 13
5.1.8 Greatest commony divisor and least common positive multiple13
5.1.9 Support operations for extended integer range 14
5P Basic floating point'operationso . 15
5.2.1 The rounding and floating point result helper functions15
5.2.2 Floatihg point maximum and minimum17
5.2.3 Floating point diminish L oo .18
5.2.4 HFloor, round, and ceiling oo oo .19
5.2.7 YRemainder after division with round to integer20
5.2:6* Square root and reciprocal square root20
5:2.7 Multiplication to higher precision floating point datatype20
5-2-8 Support-operationsfor extended Hoating point precision ———— 1 . 21
5.3 Elementary transcendental floating point operations 22
5.3.1 Maximum error requirementso 22
5.3.2 Sign requirements 23
5.3.3 Monotonicity requirements Lo 23
5.3.4 The result* helper function 23
5.3.5 Hypotenuse e 24
5.3.6 Operations for exponentiations and logarithms 24

iii

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

iv

© ISO/IEC 2001 — All rights reserved

5.3.6.1 Integer power of argument base 24
5.3.6.2 Natural exponentiation 25
5.3.6.3 Natural exponentiation, minusone 26
5.3.6.4 Exponentiation of 2 o Lo 27
5.3.6.5 Exponentiation of 10 27
5.3.6.6 Exponentiation of argument base. 28
5.3.6.7 Exponentiation of one plus the argument base, minus one 29
5.3.6.8 Natural logarithm, 29
5.3.6.9 Natural logarithm of one plus the argument 30
5.3.6.10 2-logarithm 30
h 3611 10-logarithm 31
5.3.6.12 Argument base logarithm0 31
5.3.6.13 Argument base logarithm of one plus each argument . . . (. 32
5.3.7 Introduction to operations for trigonometric elementary functionsgq.." . . 32
5.3.8 Operations for radian trigonometric elementary functions . . A %" . . . 33
5.3.8.1 Radian angle normalisation O™ 34
5.3.82 Radiansine L 00NN o 35
5.3.8.3 Radiancosine0y . 35
5.3.8.4 Radiantangent. 884 36
5.3.8.5 Radian cotangent). 0oL 36
5.3.8.6 Radiansecant N& ... 37
5.3.8.7 Radian cosecant Oo 37
5.3.8.8 Radian cosine with sine . . . X 38
5.3.8.9 Radian arcsine QY. .. 00 oL, 38
5.3.8.10 Radian arc cosine &%o 38
5.3.8.11 Radian arc tangent . . N7o Lo 39
5.3.8.12 Radian arc cotangentCy". 40
5.3.8.13 Radian arcsecantsyo 41
5.3.8.14 Radian arc coseednt Lo 41
5.3.8.15 Radian angle~from Cartesian co-ordinates 42
5.3.9 Operations for triggnometrics with given angular unit 43
5.3.9.1 Argument angular-unit angle normalisation 43
5.3.9.2 Argument angular-unit sineo 44
5.3.9.3 Argument angular-unit cosine 45
5.3.9.4._Argument angular-unit tangent 45
5.3.9.5~ Argument angular-unit cotangent 46
53.9:6 Argument angular-unit secant 47
53.9.7 Argument angular-unit cosecant L. 47
5.3.9.8 Argument angular-unit cosine with sine 48
5.3.9.9 Argument angular-unit arc sine 48
53910 Alg)uuwut aug,ulou—uul'b alt (_,Ubillb' 48
5.3.9.11 Argument angular-unit arc tangent 49
5.3.9.12 Argument angular-unit arc cotangent 50
5.3.9.13 Argument angular-unit arc secant o1
5.3.9.14 Argument angular-unit arc cosecant 51
5.3.9.15 Argument angular-unit angle from Cartesian co-ordinates 52
5.3.10 Operations for angular-unit conversions 53
5.3.10.1 Converting radian angle to argument angular-unit angle 53

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.10.2 Converting argument angular-unit angle to radian angle 54

5.3.10.3 Converting argument angular-unit angle to (another) argument
angular-unit angle L0000 55
5.3.11 Operations for hyperbolic elementary functions 56
5.3.11.1 Hyperbolicsine.o 56
5.3.11.2 Hyperbolic cosine oo 56
5.3.11.3 Hyperbolic tangent 57
5.3.11.4 Hyperbolic cotangent, 58
5.3.11.5 Hyperbolic secant 58
5.3.11.6 Hyperbolic cosecant 59
53117 Inverse hyperhalic sine . 59
5.3.11.8 Inverse hyperbolic cosine"0 . 60
5.3.11.9 Inverse hyperbolic tangent (" . 60
5.3.11.10 Inverse hyperbolic cotangent 60
5.3.11.11 Inverse hyperbolic secant A% 61
5.3.11.12 Inverse hyperbolic cosecant O™ 61
5.4 Operations for conversion between numeric datatypes\ 62
5.4.1 Integer to integer conversions ,(Cs 63
5.4.2 Floating point to integer conversions &¥/4 63
5.4.3 Integer to floating point conversions (). 64
5.4.4 Floating point to floating point conversions , N\, 64
5.4.5 Floating point to fixed point conversions . ¢y 65
5.4.6 Fixed point to floating point conversions{ 66
5.p Numerals as operations in a programming langtage67
5.5.1 Numerals for integer datatypes . o oo . 67
5.5.2 Numerals for floating point datatypes 68
6 Notification 68
6.l Continuation values 69
7 Rlelationship with language“standards 69
8 Documentation requirements 70
Annex A (normative)sPartial conformity 73
Al1l Maximum errer relaxation73
Al2 Extra accuracy requirements relaxation oL Lo 74
Al3 Relatiénships to other operations relaxation 74
Al4 Very~close-to-axis angular normalisation relaxation 74
Al5 Part 1 requirements relaxation o .75
AnnexB—(informmative) Ratiomate 77
B.1 Scope 7
B.1.1 Inclusions e e 77
B.1.2 Exclusions 78
B.2 Conformity 78
B.2.1 Validation 79
B.3 Normative references 79
B.4 Symbols and definitions L Lo oo 79

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

vi

B.5

B.6

B.7
B.8

B.4.1 Symbols 79
B.4.1.1 Setsandintervals 79
B.4.1.2 Operators and relationso 80
B.4.1.3 Mathematical functions 0L L. 80
B.4.1.4 Exceptional values 80
B.4.1.5 Datatypes 81

B.4.2 Definitions of terms 81

Specifications for the numerical functions 81

B.5.1 Basic integer operations 82
B.5.1.1 The integer result and wrap helper functions 82
Bh12 Tnfpgm‘ maximum and minimum 82
B.5.1.3 Imteger diminish0 82
B.5.1.4 Integer power and arithmetic shift (37 83
B.5.1.5 Integer squareroot~ Y. . 83
B.5.1.6 Divisibility testso 00 AT L 83
B.5.1.7 Integer division (with floor, round, or ceiling) and reypainder . . 83
B.5.1.8 Greatest common divisor and least common positive multiple . . 84
B.5.1.9 Support operations for extended integer rangeg ; 84

B.5.2 Basic floating point operations a4 ... L. 84
B.5.2.1 The rounding and floating point result Helper functions 86
B.5.2.2 Floating point maximum and minimum~. 86
B.5.2.3 Floating point diminish O 86
B.5.2.4 Floor, round, and ceiling . . .~ 86
B.5.2.5 Remainder after division and¥odnd to integer 87
B.5.2.6 Square root and reciprocalsquare root 87
B.5.2.7 Multiplication to higher precision floating point datatype 88
B.5.2.8 Support operations for'éxtended floating point precision 88

B.5.3 Elementary transcendental floating point operations 89
B.5.3.1 Maximum error\feéquirements 89
B.5.3.2 Sign requirements Lo 90
B.5.3.3 Monotoni¢ity requirements 90
B.5.3.4 The result® helper function 90
B.5.3.5 Hypotenuse L 91
B.5.3.6 Qperations for exponentiations and logarithms 91
B.5.3.7._Introduction to operations for trigonometric elementary functions| 93
B.5.8.87 Operations for radian trigonometric elementary functions 94
B:5:3.9 Operations for trigonometrics with given angular unit 96
B.5.3.10 Operations for angular-unit conversions 97
B.5.3.11 Operations for hyperbolic elementary functions 98

B:54 Operations for conversion between numeric datatypes 98

B:)S }Julllb‘idlb as> OpPCIL dLiUllb 111 A plUgldllllllillg lauguagc 99
B.5.5.1 Numerals for integer datatypes 99
B.5.5.2 Numerals for floating point datatypes 99

Notification e e 100

B.6.1 Continuation values o 100

Relationship with language standards 101

Documentation requirements L. L Lo Lo 101

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

Annex C (informative) Example bindings for specific languages

C
C
C
C
C
C
C
C
C
C

C
C
C
Ann

Ann

A Ada Lo e
2 BASIC . . . e
B e
A CH e e e e
D o Fortran . .. L e
.6 Haskell e
JToJava Lo e e e e e e
B Common Lisp o . o e
9 ISLASD . o o
10 Modula-2

11 Pascal and Extended Pascal0
12PL/T . oo
13SML oo

bx D (informative) Bibliography

bx E (informative) Possible changes to part 1

ISO/IEC 10967-2:2001(E)

vii

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialized system for worldwide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Direc-

tives, 11<ut 3-

In the field of information technology, ISO and IEC have established a joint technical comniittee,
ISO/THC JTC 1. Draft International Standards adopted by the joint technical cgmumittge are
circulated to national bodies for voting. Publication as an International Standard requires approval
by at lgast 75 % of the national bodies casting a vote.

Att¢ntion is drawn to the possibility that some of the elements of this part of ISO/TEC 10967
may b¢ the subject of patent rights. ISO and IEC shall not be held responsible for identifying
any or jall such patent rights.

Intepnational Standard ISO/TEC 10967-2 was prepared by Joint Téchnical Committee ISQ/TEC
JTC 1,|Information technology, Subcommittee SC 22, Programgning languages, their environnents
and sy$tem software interfaces.

ISOYIEC 10967 consists of the following parts, under the general title Information technology
— Lanjguage independent arithmetic:
—Part 1: Integer and floating point arithmetre
— Part 2: Elementary numerical functions
— Part 3: Complex integer and floatingpoint arithmetic and complex elementary numjerical
functions

Additignal parts will specify other arithmetic datatypes or arithmetic operations.

Anrfex A forms a normative:part of this part of ISO/IEC 10967. Annexes B to E afe for
information only.

viii

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Introduction

The aims

Portability is a key issue for scientific and numerical software in today’s heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems, and the source
code may be ported between several programming languages. Part 1 of ISO/IEC 10967 specifies
the basic properties of integer and floating point types that can be relied upon in writing portable
software.

Programmers writing programs that perform a significant amount of numeric processing have
often|not been certain how a program will perform when run under a given language pr¢cessor.
Progtamming language standards have traditionally been somewhat weak in the areavef fumeric
procgssing, seldom providing an adequate specification of the properties of arithmetic datatypes,
parti¢ularly floating point numbers. Often they do not even require much in the way of dofumen-
tatiof of the actual arithmetic operations by a conforming language processor

It Jis the intent of this part to help to redress these shortcomings, by setting out precisq defini-
tions|of elementary numerical functions, and requirements for documéntation.

It |is not claimed that this part will ensure complete certainty \of¥arithmetic behaviour in all
circunstances; the complexity of numeric software and the difficulties of analysing and proving
algorlthms are too great for that to be attempted. Rather, this International Standard will provide
a firnier basis than hitherto for attempting such analysis:

Tlhe aims for this part, part 2 of ISO/IEC 10967, areextensions of the aims for part 1: tq ensure
adeqiiate accuracy for numerical computation, prédictability, notification on the produgtion of
excetional results, and compatibility with programming language standards.

The |content

The dontent of this part is based on partsl, and extends part 1’s specifications to specificatjons for
opergtions approximating real eleméntary functions, operations often required (usually yithout
a detpiled specification) by the standards for programming languages widely used for sgientific
softwhre. This part also proyides specifications for conversions between the “internal” vilues of
an atffithmetic datatype, and & very close approximation in, e.g., the decimal radix. It dpes not
cover|the further transformation to decimal string format, which is usually provided by language
standards. This part-also includes specifications for a number of other functions deemed| useful,
even fhough they may not be stipulated by programming language standards.

Tlhe numerical functions covered by this part are computer approximations to mathematical
functjons of*ene or more real arguments. Accuracy versus performance requirements oft¢n vary
with the application at hand. This is recognised by recommending that implementors suppoft more
than [one/library of these numerical functions. Various documentation and (program avhilable)
parameters requirements are specified to assist programmers in the selection of the library best
suited to the application at hand.

The benefits

Adoption and proper use of this part can lead to the following benefits.

Language standards will be able to define their arithmetic semantics more precisely without
preventing the efficient implementation of their language on a wide range of machine architectures.

ix

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

Programs will be able to determine (at run time) the crucial numeric properties of the imple-
mentation. They will be able to reject unsuitable implementations, and (possibly) to correctly
characterize the accuracy of their own results. Programs will be able to detect (and possibly
correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program
is likely to execute satisfactorily on their platform. This can be done by comparing the documented
requirements of the program against the documented properties of the platform.

Finglly, end users of numeric application packages will be able to rely on the correct exedution
of thosp packages. That is, for correctly programmed algorithms, the results are reliable if and
only if there is no notification.

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

INTERNATIONAL STANDARD® 80/1EC 2001

ISO/IEC 10967-2:2001(E)

Information technology —
Language independent arithmetic —

Part 2: Elementary numerical functions

1

This
real €
langu

A implementor may choose any combination of hardware andsséftware support to m

speci
does

T
to t
facilif

1.1

The

Tlis part provides specifications for numerical functions for which all operand value

integ
curre

Also
presc

Tlis part covers mest numerical functions required by the ISO/IEC standards for A

Basid
speci

2)
b)

Scope

part of ISO/IEC 10967 defines the properties of numerical approximations for many
lementary numerical functions available in standard libraries for a _tariety of progra
ages in common use for mathematical and numerical applications.

ications of this part. It is the computing environment, as seén)by the programmer /us
br does not conform to the specifications.

e term implementation (of this part) denotes the total computing environment pq
s part, including hardware, language processors; subroutine libraries, exception h
ies, other software, and documentation.

Inclusions

pecifications of part 1 are includedchy reference in this part.

br or floating point datatypes satisfying the requirements of part 1. Boundaries for
nce of exceptions and thexmaximum error allowed are prescribed for each specified op¢
the result produced by-giving a special value operand, such as an infinity, or a I
ribed for each specified floating point operation.

[16], C [17],2C++ [18], Fortran [22], ISLisp [24], Pascal [27], and PL/I [29]. In par
ications afé-provided for:

Some_additional integer operations.

r of the
imming

ecet the
br, that

rtinent
hndling

are of
the oc-
bration.
NalN, is

la [11],
ticular,

Séme additional non-transcendental floating point operations, including maximum a1|1d min-

c)

. m
TIITUIITUPTI alTOILS.

Exponentiations, logarithms, and hyperbolics.

d) Trigonometrics, both in radians and for argument-given angular unit with degrees as a

special case.

This part also provides specifications for:

1. Scope

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

e) Conversions between integer and floating point datatypes (possibly with different radices)
conforming to the requirements of part 1, and the conversion operations used, for example,
in text input and output of integer and floating point numbers.

f) The results produced by an included floating point operation when one or more argument
values are IEC 60559 special values.

g) Program-visible parameters that characterise certain aspects of the operations.

1.2 Exclusions

This p
a) N

1
b) A
S

= e £
A R . e W B

o
S—
oul—|

q

Furt

; -1 (el i c
't PIOVIUCS 11U SPCCIIICAUIOILS 101

umerical functions whose operands are of more than one datatype (with one excep
his part neither requires nor excludes the presence of such “mixed operand” bperati

n interval datatype, or the operations on such data. This part neither reqdires nor ex
ich data or operations.

fixed point datatype, or the operations on such data. This part* neither requird
kcludes such data or operations.

rational datatype, or the operations on such data. This pattneither requires nor exd
ich data or operations.

omplex, matrix, statistical, or symbolic operations./This part neither requires nor exq
ich data or operations.

he properties of arithmetic datatypes that arenot related to the numerical process
b the representation of values on physical media.

he properties of integer and floating point datatypes that properly belong in progran
nguage standards or other specifications. Examples include

1) the syntax of numerals andcexpressions in the programming language,

numerals by any spgcific programming language or library,

) the precedence of operators in the programming language,

) the presence ‘or)absence of automatic datatype coercions,

5) the rules for assignment, parameter passing, and returning value,
)

the getfsequences of applying an operation to values of improper datatype, or to 1
tialised data.

hermore, this part does not provide specifications for how the operations should be i

tion).
b11S.

ludes
S nor
ludes
ludes

such

ming

2) the syntax used for parsed (input) or generated (output) character string forms for

hnini-

mple-

mente

P hich ologoritbanc on +0 ba ocnd £o0 1 a oo

1ora anarationc
O W It o s O oo ar O oo oSt TOT i C—var 1ot O pPtTatIoTtss

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by refer-
ence and further defined in other International Standards; specifically in programming language
standards and in binding standards.

Confo

rmity

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

A binding standard specifies the correspondence between one or more of the parameters and
operations specified in this part and the concrete language syntax of some programming language.
More generally, a binding standard specifies the correspondence between certain parameters and
operations and the elements of some arbitrary computing entity. A language standard that ex-
plicitly provides such binding information can serve as a binding standard.

When a binding standard for a language exists, an implementation shall be said to conform to
this part if and only if it conforms to the binding standard. In case of conflict between a binding
standard and this part, the specification of the binding standard takes precedence.

When a binding standard covers only a subset of the operations specified in this part, an im-
plementation remains free to conform to this part with respect to other operations, independently
of that binding standard.

Whhen no binding standard for a language and some operations specified in this part| exists,
an injplementation conforms to this part if and only if it provides one or more-operatiops that
together satisfy all the requirements of clauses 5 through 8 that are relevant to those operations.
The implementation shall then document the binding.

Conformity to this part is always with respect to a specified set of datatypes and operations.
Confrmity to this part implies conformity to part 1 for the integer and floating point dafatypes
used.

Am implementation is free to provide operations that do nof-¢onform to this part, or that are
beyond the scope of this part. The implementation shall net ‘claim or imply conformity|to this
part with respect to such operations.

A1 implementation is permitted to have modes ofepération that do not conform to this part.
A conforming implementation shall specify how to, select the modes of operation that|ensure
conformity. However, a mode of operation that cenforms to this part should be the default mode
of oppration.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. Sge annex C for suggested language bindings.

—_

2 A complete binding for thislpart will include (explicitly or by reference) a binding for part
as well, which in turnahay’include (explicitly or by reference) a binding for TEC 60559
well.

wn

3 This part does net\require a particular set of operations to be provided. It is not possible
to conform to. this part without specifying to which datatypes and set of operations (arjd
modes of gpération) conformity is claimed.

3 [Normative references

The n”nvvihg normative documents contain prnviqinnc urhiph7 fhrnngh reference in this text’

constitute provisions of this part of ISO/IEC 10967. For dated references, subsequent amendments
to, or revisions of, any of these publications do not apply. However, parties to agreements based
on this part of ISO/IEC 10967 are encouraged to investigate the possibility of applying the most
recent editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred to applies. Members of ISO and IEC maintain registers
of currently valid International Standards.

3. Normative references 3

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.

ISO/TEC 10967-1:1994, Information technology — Language independent arithmetic —
Part 1: Integer and floating point arithmetic.

NOTE - See also annex E.

4 Symbols and definitions

4.1 Symbols

4.1.1 | Sets and intervals

In this part, Z denotes the set of mathematical integers, R denotes the set of classical réal nunpbers,
and C dlenotes the set of complex numbers over R. Note that Z C R C C.

The| conventional notation for set definition and manipulation is used.
In this part, the following notation for intervals is used

, z] designates the interval {y € R | z <y < z},
, z| designates the interval {y € R | x <y < z},
¢, 2| designates the interval {y € R | x <y < z}, and
, z[designates the interval {y € R | x <y < z}.

—_—

NOTE - The notation using a round bracket for.an ‘epen end of an interval is not used, for
the risk of confusion with the notation for pairs.

4.1.2 | Operators and relations

All prefix and infix operators have their conventional (exact) mathematical meaning. In partjcular

this paft uses
- and < for logical implication and equivalence
, — /s |zl, |z, [z], and’round(z) on reals
- ffor multiplication en'reals
, <, >, and > between reals
and # between‘real as well as special values
ax on nom=emipty upwardly closed sets of reals
:Iin on nonrempty downwardly closed sets of reals
U, N, X5€, &, C, C, €, #, and = with sets

for the Cartesian product of sets
for o Tmappingbetweerrsets
| for the divides relation between integers

For z € R, the notation |z] designates the largest integer not greater than x:
lx]€eZ and z—-1<|z| <z
the notation [z] designates the smallest integer not less than x:

[z]€Z and zxz<[z]<z+1

s

Symbols and definitions

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

and the notation round(x) designates the integer closest to x:

round(z) € Z and 2 — 0.5 <round(z) < z+ 0.5

where in case x is exactly half-way between two integers, the even integer is the result.

ISO/IEC 10967-2:2001(E)

The divides relation (|) on integers tests whether an integer ¢ divides an integer j exactly:

ilj & (i#0andi-n=j for somen € 2)
NOTE - i|j is true exactly when j/i is defined and j/i € Z).

4.1.3 Mathematical functions

This

elemd
Hand

the Napierian base)

M
princ

VT 4

is thd

x
e®, z¥, \/z, In, log,
sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, argcsc,
sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arc¢oth, arcsech, arccsc

pal value, so as to make the inverses into functions, is dene/in the conventional wa;

(givigg a sign symmetric function), or a positive return/value (giving a function that is con

over

at 0)

4.1.4

The ¢

Tlhree new eXceptional values, overflow, invalid, and infinitary, are introduced in t

repla
used

vero). In this part, arccot refers to the sign sytametric inverse function (with a bra
and arccotc refers to the continuous inverse function.

arccosh(x) > 0, arcsech(z) > 0,
arcsin(x) € [—m/2, /2], arccos(z) € [0
arccot(z) € |—m/2, /2], arccotc(z)&]

7], arctan(x) € |—m/2,7/2],
0, [, arcsec(x) € [0, 7], arcesc(z) € [—7/2, 7/

NOTE - e =2.71828.... e is not-in any floating point datatype conforming to part 1, unle
added as a special value, which is usually not done.

Exceptional values

xceptional value/underflow is used in this part as it is in part 1.

ing three)other exceptional values used in part 1. invalid and infinitary are in t
instead of the undefined of part 1. overflow is used instead of the integer_ov

and

eating_overflow of part 1. Bindings may still distinguish between integer_overfl¢

part specifies properties for a number of operations numerically approximating som¢ of the
ntary functions. The following ideal mathematical functions are defined in chapter 4 of the
book of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [47] (e is

.

hny of the inverses above are multi-valued. The selection ‘Of\which value to retuln, the

. E.g.,

[0,00] when = € [0,00[. The only one over which there-is some difference of convientions
arccot function. Conventions there vary for negative arguments; either a negative value

tinuous
hch cut

T
—

BS

f[is part

is part
erflow
bw and

floatimg_overiiow.

One new exceptional value, absolute_precision_underflow, is introduced in this part with
no correspondence in part 1. The exceptional value absolute_precision_underflow is used when
the given floating point angle value argument is so big that even a highly accurate result from a
trigonometric operation is questionable, due to the fact that the density of floating point values

has d

4.1.3

ecreased significantly at these big angle values.

Mathematical functions

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

For the exceptional values, a continuation value may be given in parenthesis after the excep-
tional value.

4.1.5

Datatypes

The datatype Boolean consists of the two values true and false.

N

OTE 1 — Mathematical relations are true or false (or undefined, if an operand is undefined).

In contrast, true and false are values in Boolean.

For pairs, define:

fot((x,y)) =

[V2)

Squ
values.

[S], wh
N

e
a

Inte
value s

floating
shall, f

7)1}, ajnd have a value for the parameter eminp such that eming < —pp — 1.

N
3

The

These 1
are inc

N

nd((z,9)) =y
wre brackets are used to write finite sequences of values. [] is the sequence centaini

ere S is a set, denotes the set of finite sequences, where each value in@jsequence is i

OTE 2 — Tt is always clear from context, in the text of this part, if [X] i5*a sequence of one
ement, or the set of sequences with values from X. It is also clear frem ¢ontext if [z, z2] is
sequence of two values or an interval.

ber datatypes and floating point datatypes are defined in¢part 1. Let I be the non-s;
bt for an integer datatype conforming to part 1. Let E be the non-special value set
point datatype conforming to part 1. Floating peint’ datatypes that conform to
r use with this part, have a value for the parameter) pr such that pp > 2-max{1, [log

OTES
This implies that fminNg < 0.5 - epsilonrdrr in this part, rather than just fminNp <
epsilong.

These extra requirements, which do:ét limit the use of any existing floating point datatype,
are made 1) so that angles in radians are not too degenerate within the first two cycles,
plus and minus, when represented in F', and 2) in order to be able to avoid the underflow
notification in specifications-fer the expmip and Inlpr operations.

F should also be such that pr > 2 + [log,,. (1000)], to allow for a not too coarse angle
resolution anywhereyin the interval [—big_angle_rp, big_angle_rg]. See clause 5.3.8.

0, 400, —oopgNalN, and sNalN.

Falues aresot part of the set I or the set F', but if iec_559r has the value true, these Y
uded jin the floating point datatype corresponding to F.

OTE.6 — This part uses the above five special values for compatibility with IEC 60559. In

p

following symbolsrepresent special values defined in IEC 60559 and used in this par

[s], is the sequence of one value, s. [s1, s3], is the sequence of two values, §j) and th¢n s,
etc. The colon operator is used to prepend a value to a sequence: x : [x1, ..., Ty \= [T, T1, ..

ecial
for a
art 1
(2

TF

ralues

hrtietilar, the symbol —0 (in bold) is not the application of (mathematical) unary — to the

value 0, and is a value logically distinct from 0.

The specifications cover the results to be returned by an operation if given one or more of the
TEC 60559 special values —0, 400, —00, or NaNs as input values. These specifications apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a —0 result or continuation value, the actual result or continuation value shall be
0. If an implementation is not capable of representing a prescribed result or continuation value

Symbols and defin

1ttons

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

of the TEC 60559 special values +00, —o00, or gNalN, the actual result or continuation value is
binding or implementation defined.

The following symbols used in this part are defined in part 1:

Integer parameters:

bounded;, maxint;, and minintj.
Integer helper function:

wrapy.
Integer operations:

negr, addy, suby, and muly.
Floating point parameters:

rF, PR, eming, emaxrp, denormp, and iec_559p.
Derived floating point constants:

fmax g, fming, fminNg, fminDg, and epsilon p.
Floating point rounding constant:

rnd_errorg.

Floating point value sets related to F":
F*, FD, and FN.
Floating point helper functions:
er, resultp, and rndp.
Floating point operations:
negr, addr, subp, mulp, divp, and ulpp.

4.2 | Definitions of terms

For the purposes of this part, the following definitions apply:

accufracy: The closeness between the trug'mathematical result and a computed result.

aritimetic datatype: A datatype whose non-special values are members of Z, R, or C,

NOTE 1 - This partsdpecifies requirements for integer and floating point datatypgs.
Complex numbers areset covered by this part, but will be included in a subsequent part
of ISO/IEC 10967 [3)¢

contjnuation value: At¢omputational value used as the result of an arithmetic operation when
an exception oc¢curs. Continuation values are intended to be used in subsequent arifhmetic
processing.. Ascontinuation value can be a (in the datatype representable) value in R or an
IEC 60559special value. (Contrast with exceptional value. See clause 6.1 of part 1.

dendrmalisation loss: A larger than normal rounding error caused by the fact that subnormal
values have less than full precision. (See clause 5.2 of part 1 for a full definition.)

error: (1) The difference between a computed value and the correct value. (Used in phrases like
“rounding error” or “error bound”.)

(2) A synonym for ezception in phrases like “error message” or “error output”. Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable finite numeric result from finite
arguments. This might arise because no such finite result exists mathematically (infinitary

4.2 Definitions of terms 7

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

(e.g. at a pole), invalid (e.g. when the true result is in C but not in R), or because the math-
ematical result cannot, or might not, be representable with sufficient accuracy (underflow,
overflow) or viability (absolute_precision_underflow).

NOTE 2 — The term exception is here not used to designate certain methods of handling
notifications that fall under the category ‘change of control flow’. Such methods of noti-
fication handling will be referred to as “[programming language name| exception”, when
referred to, particularly in annex C.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the
occurrence of an exception. Exceptional values are not used in subsequent arithmetic pro-
cessing. (See clause 5 of part 1.)

NOTES

3 Exceptional values are used as part of the defining formalism only. With regpéct’ td
this part, they do not represent values of any of the datatypes described. There is nd
requirement that they be represented or stored in the computing system,

4 Exceptional values are not to be confused with the NaNs and infinities defined i
IEC 60559. Contrast this definition with that of continuation value(@bove.

helper| function: A function used solely to aid in the expression of a fequirement. Helper|func-
tlons are not visible to the programmer, and are not required to be‘part of an implementftion.
However, some implementation defined helper functions are tequired to be documentdd.

implerentation (of this part): The total arithmetic enviroriment presented to a prograrhmer,
cluding hardware, language processors, exception Handling facilities, subroutine libyaries,
ofher software, and documentation pertinent to thispart.

e

literalf A syntactic entity, that does not have any, preper sub-entity that is an expression, denot-
img a constant value.

monotlonic approximation: An approximation helper function A : ... x S x ... — R, where the
opher arguments are kept constant, @nd where S C R, is a monotonic approximation of a
predetermined mathematical function f : R — R if, for every a € S and b € S, where ¢ < b,

a) f is monotonic non-decréasing on [a, b] implies h(...,a,...) < h(...,b,...),
b) f is monotonic non{inereasing on [a, b] implies h(...,a,...) = h(...,b,...).

monotlonic non-decreasing: A function f : R — R is monotonic non-decreasing on 4 real
nterval [a, b] if fof every z and y such that a < z < y < b, f(z) and f(y) are well-d¢fined

hd f(x) < f(y):

monofonic non<increasing: A function f : R — R is monotonic non-increasing on 4 real
pterval fa;b] if for every x and y such that a < x <y < b, f(z) and f(y) are well-d¢fined
hd, f(2) = f(y)-

13 d. T 1 £ o 0 43 It 4 L4+l o4 ida i+l 1 13 1
normartsea—reHoir-Zero-varteS-ora roating POttty peT—tirat proviat Tttt precistotrar OWed

by that type. (See Fy in clause 5.2 of part 1 for a full definition.)

i

L=

notification: The process by which a program (or that program’s end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a notification.
(See clause 6 of part 1 for details.)

numeral: A numeric literal. It may denote a value in Z or R, —0, an infinity, or a NaN.

8 Symbols and definitions

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

numerical function: A computer routine or other mechanism for the approximate evaluation of
a mathematical function.

operation: A function directly available to the programmer, as opposed to helper functions or
theoretical mathematical functions.

pole: A mathematical function f has a pole at xg if xq is finite, f is defined, finite, monotone,
and continuous in at least one side of the neighbourhood of xp, and lim f(z) is infinite.
T—xQ

precision: The number of digits in the fraction of a floating point number. (See clause 5.2 of
part 1.)

rounding—Theactof computing @ Tepresemntabie fiat Tesutt for am operation thatisTioss to the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see clause 5.2 of part 1).

rounding function: Any function rnd : R — X (where X is a given discrete and“unlimited sub-
set of R) that maps each element of X to itself, and is monotonic nondéoreasing. Fqrmally,
if x and y are in R,

reX=rndx)=c
x <y = rnd(z) <rndy)

Thus, if u is between two adjacent values in X, rnd(u) selécts one of those adjacent|values.

round to nearest: The property of a rounding function rnd that when v € R is betw¢en two
adjacent values in X, rnd(u) selects the one nearest u. If the adjacent values are equidistant
from w, either may be chosen deterministically,but so that rnd(—u) = —rnd(u).

round toward minus infinity: The property 6f‘a rounding function rnd that when u|e R is
between two adjacent values in X, rnd(w)’selects the one less than w.

round toward plus infinity: The property of a rounding function rnd that when u g R is
between two adjacent values in X\,*rnd(u) selects the one greater than w.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform to
the standard and from which no deviation is permitted. (Quoted from the directives [1].)

shoulld: A verbal form used to indicate that among several possibilities one is recommended as
particularly suitabley without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [[].)

signature (of a function or operation): A summary of information about an operation qr func-
tion. Arsignature includes the function or operation name; a subset of allowed argument
values:to the operation; and a superset of results from the function or operation (influding
exceptional values if any), if the argument is in the subset of argument values giver} in the

aienature Approvimation helner finections mav he nndefined for come aronment o ues
SISt S pPpPT v ToT—ToT T—rorrro oo et =4 o S ST O O e S oS e—ver .

The signature addy : I x I — I U {overflow} states that the operation named add; shall
accept any pair of values in I as input, and when given such input shall return either a
single value in I as its output or the exceptional value overflow possibly accompanied by a
continuation value.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will

4.2 Definitions of terms 9

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

actually be returned for some argument(s).

© ISO/IEC 2001 — All rights reserved

An operation given an argument outside the

stipulated argument domain may produce a result outside the stipulated result range.

subnormal: The non-zero values of a floating point type F' that provide less than the full precision
allowed by that type. (See Fp in clause 5.2 of part 1 for a full definition. In part 1 and
IEC 60559 this concept is called denormal.)

ulp: The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp

of a normalised value z (in F'), with exponent ¢, precision pr, and radix rp, is r5

t—pr

the ulp of a subnormal or zero value is fminDp. (See clause 5.2 of part 1.)

, and

5 S

This cl
datatyy
cases 1
and to
(_007 T
several
values.

The
values,
that m|
never r
that, fa
below.

5.1 1

Clause
datatyq
Iis
datatyq
may d
other t
N

1
nj

pecifications for integer and floating point operations

puse specifies a number of helper functions and operations for integer and’ floating
es. Each operation is given a signature and is further specified by a numbBer of cases.
ay refer to other operations (specified in this part or in part 1), to mathematical func
helper functions (specified in this part or in part 1). They also uSe special abstract y
oo, —0, gNalN, sNalN). For each datatype, two of these abstract values may repi
actual values each: qNalN and sNalN. Finally, the specifications may refer to excep

signatures in the specifications in this clause specify ‘only all non-special values as
and indicate as output values a superset of all non=special, special, and exceptional ¥
Ay result from these (non-special) input valuesi{ Exceptional and special values tha
bsult from non-special input values are not inchided in the signatures given. Also, signs
r example, include IEC 60559 special values as arguments are not given in the specific
This does not exclude such signatures*from being valid for these operations.

Basic integer operations

5.1 of part 1 specifies integer~datatypes and a number of operations on values of an iy
e. In this clause some additional operations on values of an integer datatype are spe

the set of non-specidl . values, I C Z, for an integer datatype conforming to part 1. Iy
es conforming td part 1 often do not contain any NaN or infinity values, even though
so. Therefore-this clause has no specifications for such values as arguments or r

han as continnuation values.

OTE <—(Bor some integer operations, infinitary notifications may occur. For infinitary

btifications, an infinitary continuation value is recommended. For bounded integer datatypes,
azints or minint; may be used as replacement continuation values as appropriate, if infini-

t

point

These

tions,
ralues
esent
ional

input
ralues
t can
tures
tions

iteger
ified.

iteger
they
psults

rwvalues are not available in the datatyvpe. For unbounded integer datatypes, however, no

mazint; and minint; in I are defined, and infinitary values should be used.

5.1.1

The integer result and wrap helper functions

The result; helper function:

resulty : Z — I U {overflow}

10

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

resultr(x) ==z ifeel
= overflow ifreZanda gl

The wrapy helper function:
wrapy : Z2 — 1

wrapr(z) =z ifxel
=1z — (n- (maxint; — minint; + 1))
ifreZandax &1
where n € Z is chosen such that the result is in I.
NOTES

1 n=[(z—minint;)/(mazint; — minint; + 1)| it x € Z and bounded; = true; or equivalently
n = [(z — mazintr)/(mazint; — minint; + 1)] if z € Z and bounded; = true.

2 For some wrapping basic arithmetic operations this n is computed by the ‘_ov’ dperations
in clause 5.1.9.

3 The wrapy helper function is also used in part 1.

5.1.2 Integer maximum and minimum

maxry: I xIT—1T

maxy(x,y) = max{z,y} ifr,yel

ming: I x T — 1T

ming(x,y) = min{z, y} ifwo,yel

max_seqr : [I] — I U {infinitary}

maz-seq([21; ..., Tn])
= infinitary(—o0) ifn=20
= max{xy,.xw@,} ifn>1and {x1,....,2,} C 1

min_seqy : [I] — I U {infinitary}

min_$€QI([$1, "'7xn])
=)infinitary(+o00) ifn=0
= min{xy,...,x,} ifn>1and {x1,....,2,} C 1

5.1.3 Integer diminish

ditpr - I x I — I U {overflow}

dimy(z,y) = result;(max{0,z —y}) if z,y € I

NOTE - dimy cannot be implemented as maz (0, subs(x,y)) for bounded integer types, since
this latter expression has other overflow properties.

5.1.2 Integer maximum and minimum

11

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

5.1.4 Integer power and arithmetic shift

5.1.5

5.1.6

12

powery : I x I — I U{overflow, infinitary, invalid}

powery(z,y) = resulty(z¥)
=1
= invalid(1)
= infinitary(+o00)
= invalid(0)

shift2; - I x I — I'U {overflow}

ifr,yeland (y>0or|z|]=1)
ifrelandx#0and y =0
ifr=0and y=0
ifr=0andyelandy<0
ifz,yelandz ¢ {-1,0,1} and y <O

wn

ift2(z,y) = result;(|x - 2Y])

hift10; - I x I — I U {overflow}
ift10;(z,y) = resultr(|x - 10Y])

V2]

v

Integer square root

sgrtr : I — I U{invalid}
sprtr(r) = V]
= invalid(gNaN)
Divisibility tests
djvidesy : I x I — Boolean
djvidesy(xz,y) = true
= false
NOTES
1| divides(0,0) = false, sincé.0"does not divide anything, not even 0.
2
give notifications fofta zero second argument.
epeny : I — Beoléan
epeny(x) = true
= false

odds” I — Boolean

dividesy cannot be implerented as, e.g., eqr (0, mod;(y, z)), since the remainder functions

ife,yel

ife,yel

ifx el and z =0
fzel andw<0

if z,y € I and x|y
if x,y € I and not x|y

if x € I and 2|x
if x € I and not 2|z

odd(x) = true
= false

if x € I and not 2|z
if x € I and 2|z

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.1.7 Integer division (with floor, round, or ceiling) and remainder

quoty : I x I — I U {overflow, infinitary, invalid}

quot(z,y) =result;(|x/y]) ifx,yelandy+#0
= infinitary(+o00) ifrelandz>0andy=0
= invalid(gNaN) ifr=0andy=0
= infinitary(—o0) ifrelandz <0andy=0
NOTE - quot;(minint;,—1), for a bounded signed integer datatype where minint; =

—maxint; — 1, is the only case where this operation will overflow.

mody : I x I — I'U {invalid}

mody(z,y) =z—(lz/y]-v) ifr,yelandy#0
= invalid(qNaN) ifrelandy=0

ratior : I x I — I U {overflow, infinitary, invalid}

ratior(x,y) = resultr(round(z/y)) ifz,ye€landy#0
= infinitary(+o00) ifxelandz>0andy=0
= invalid(gNaNN) if v =0 and y=-0
= infinitary(—oo) ifrelandz<0andy=0

residuey : I x I — I U {overflow, invalid}

residuer(x,y) = result;(x — (round(x/y) -))
fzr,yelandy#0
= invalid(gNaN) ifrelandy=0

groupy : I x I — I U {overflow infinitary, invalid}

groupr(x,y) = resultr([x}y]) ifz,yelandy#0
= infinitary(+o00) ifrelando>0andy=0
= invalid(gNaN) ifr=0andy=0
= infinitary(—o0) ifrelandz <0andy=0

pady : I x I —\PU {invalid}

padl(xay) :([m/?ﬂy)—gﬁ 1fx,y€[andy7é0
= invalid(gqNaN) ifrelandy=0

5.1.8 \Greatest common divisor and least common positive multiple

gedr 2 I x I — I U {overflow, infinitary}

gedr(x,y) = result;(max{v € Z | v|z and v|y})
if z,y € I and (z # 0 or y # 0)
= infinitary(+o00) ifr=0andy=0

lemp: I x I — IU{overflow}

5.1.7 Integer division (with floor, round, or ceiling) and remainder

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

lemp(z,y) = result;(min{v € Z | z|v and y|v and v > 0})
ifx,yeland x #0 and y # 0
=0 ifr,yeland (x=0o0ry=0)

ged_seqr : [I] — I U {overflow, infinitary}

ged_seqr([z1, ..., zn])
= resulty(max{v € Z | v|z; forall i € {1,...,n}})
if {z1,...,2n} C I and {z1,...,zn} € {0}
= infinitary(+o00) if {z1,...,z,} C {0}

o~

m_seqr : [I] — I U{overflow}

o~

m_seqr([z1, ..., Tn))
= resulty(min{v € Z | z;Jv for all i € {1,...,n} and v > 0¥)
if {x1,....,z,} C T and 0 & {x1,.2\, 2}
=0 if {x1,...,x,} CT and 0 € {£957., 2, }

NOTE - These specifications imply: ged_seq;([]) = infinitary(4o0)and' lecm_seq;([]) = 1.

5.1.9 | Support operations for extended integer range

These pperations can be used to implement extended rénge integer datatypes, including un-
bounddqd integer datatypes.

afdd_wrapy : I x I — 1
afld_wrapr(z,y) = wrapr(z +y) ite,yel
afld_ovy : I x I — {—1,0,1}
afdd_ovr(z,y) = ((z+y)=addwrapr(z,y))/(mazint; — minint; + 1)
if x,y € I and bounded; = true
=0 if x,y € I and bounded; = false
spb_wrapy : I x F<='1
spbwrapr(xayh= wrapr(z — y) ifx,yel
spb_ovpd x I — {—1,0,1}
splblovr(z,y) = ((z —y) — sub_wrapr(x,y))/(mazint; — minint; + 1)
;7= amdt bounded =true
=0 if x,y € I and bounded; = false
mul_wrapy : I x I — 1
mul_wrapr(z,y) = wrapr(z - y) ifx,yel

14 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.2

mul_ovy : I x I — T

mul_ovr(z,y) = ((z-y) — mul_wrapr(z,y))/(mazint; — minint; + 1)
if x,y € I and bounded; = true
=0 if z,y € I and bounded; = false

ISO/IEC 10967-2:2001(E)

NOTE - The add_ovr and sub_ovy will only return —1 (for negative overflow), 0 (no overflow),

and 1 (for positive overflow).

Basic floating point operations

Claus

floatipg point datatype. In this clause some additional operations on values of a'fleatin|
datatlype are specified.

F

Floatiing point datatypes conforming to part 1 often do contain <0y infinity, and NaN
Ther¢fore, in this clause there are specifications for such values &s)arguments.

5.2.1

Floatfing point rounding helper functions (F™* is defifted in part 1):

Tle floating point helper function

is thd

is thd

is thg
the h
the s
that

re

For t

NOTE - Further operations on values of a floating point datatype, for elexdéntary floatir
point numerical functions, are specified in clause 5.3.

The rounding and floating point result helper’/functions

downp : R — F*

upp : R — F*

nearestp : R — F*

hndling of ties is implementation defined, but must be sign symmetric. If iec_559F 3

he result hastan even last digit.

resulty: R x (R — F*) — F U {underflow, overflow }

he Overflow cases it is defined as:

resultp(x, nearesty) = overflow(+00) if x € R and nearestp(z) > fmazrp
resultp(x, nearesty) = overflow(—oo) if z € R and nearestp(x) < —fmazrp
resultp(z, upr) = overflow(+00) if x € R and upp(x) > fmazp
resultp(z, upr) = overflow(—fmazp) if x € R and upp(x) < —fmazp
resultp(z,downp) = overflow(fmazy) if x € R and downp(x) > fmazp
resultp(x,downp) = overflow(—o0) if z € R and downp(x) < —fmazp

5.2 Basic floating point operations

e 5.2 of part 1 specifies floating point datatypes and a number of operations on\valfies of a
o point

is the non-special value set, F' C R, for a floating point datatype conforming to [part 1.

values.

rounding function that rounds towatds negative infinity. The floating point helper flinction

rounding function that rounds towards positive infinity. The floating point helper flinction

rounding function that rounds to nearest. nearestr is partially implementation dlefined:
= true,
bmantics of neg@restp is completely defined by IEC 60559: in this case ties are roufded so

sultp isashelper function that is partially implementation defined. resulty has a signature:

15

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

For other cases and for any rounding function rnd in (R — F™*), the following shall apply:

resultp(x,rnd) = x
= rnd(x)

ifz=0
if x € R and fminNp < |z| and |rnd(z)| < fmazp

= rnd(z) or underflow(c)

if x € R and |z| < fminNp and |rnd(z)| = fminNp
and rnd has no denormalisation loss at x

= rnd(z) or underflow(c)

if x € R and denormp = true and
|rnd(z)| < fminNg and x # 0
and rnd has no denormalisation loss at =

—urderflow(t)

where
¢ = rnd(z)
c=-0
c=0
c=-0

Otirerwise

when denormp = true and (rnd(x) # 0 or|z > 0),
when denormp = true and rnd(x)’= 0 andl z < 0,
when denormp = false and @S 0,
when denormp = false and.x < 0

An implementation is allowed to choose between rnd(z) and underflow(rnd(x)) in the fegion
betweeh 0 and fminNp. However, a subnormal value without an unhdérflow notification cfn be

chosen [only if denormp = true and no denormalisation loss occurs.at x.

NOTES

Define the no_resultr, no_result2r, and@o_result3r helper functions:

no_resultp : F — {invalid}
o_resullp(z) = invalid(gNaN)
= qNalN
= inyalid(qNaN)

o_result2p : F' X F — {invalid}

S

o0_result 2p(xy)
= invalid(gqNaN)
= qNaN

A\ N P, N

1| This differs from the specification of resultr as given/in part 1 in the following respects:
1) the continuation values on overflow and underflow) are given directly here, and 2) all
instances of denormalisation loss must be accompanied with an underflow notification.

denormp = false implies tec_559r = false, and iec_559r = true implies denormp = true.

3| If iec_559r = true, then subnormal or zer@results that have no denormalisation loss do
not result in an underflow notification, if‘the notification is by recording of indicators.

if x € FU{—00,—0,+00}
if is a quiet NaN
if x is a signalling NaN

if z,y € FU{—00,—0,400}
if at least one of z and y is a quiet NaN ard
neither a signalling NaN

M i A | T\
— HIVAIIU{{INAlN]

no_result3p : F x F' x F' — {invalid}
no_result3r(z,y, 2)

= invalid(qNaN)

= qNaN

+L M M 11. NI NL M M 11, w N
I LIS A4 SISHAIIES INAIN UL 15 d SISHAIILIIE 1 a.

if z,y,2 € FU{—00,—0,400}
if at least one of z, y, and z is a quiet NaN and
neither is a signalling NaN

16 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO

/IEC 2001 — All rights reserved

= invalid(gNaN)

ISO/IEC 10967-2:2001(E)

if at least one of x, y, or z is a signalling

NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

NOTE 4 — The handling of other special values, if available, is left unspecified by this part.

5.2.2 Floating point maximum and minimum

The appropriate return value of the maximum and minimum operations given a quiet NalN
(qINalN) as one of the input values depends on the circumstances for each point of use. Sometimes

qNal
Ther
here,
usage

marp F X F — F

= max{z,y}

= +o00

=Yy

-0

=Yy

400

x

=-0

x

no_result2p (z,y)

mazp(z,y)

ming : F X F — F

= min{z, y}
=y

=—0

=y

=200

Il
8

no_result2p(x,y)

N is the appropriate result, sometimes the non-NalN argument is the appropriate
bfore, two variants each of the floating point maximum and minimum operationscare s
and the programmer can decide which one is appropriate to use at each parti¢ular j
, assuming both variants are included in the binding.

ifx,ye F

if x = 400 and y € AU {—00,—0}
ifzx=—0and y &k and y > 0

if x = —0 andA({y€ F and y < 0) or y =
if £ =—o00 andy € F U {+00,—0}

if y = +o00'and =z € F'U {+00,—-0}
ify=—0andze Fandz >0
ify=%—-0and x € Fand x <0
if'y=—o0 and x € F'U {—00,—0}
otherwise

ifx,ye F

if x =400 and y € F'U {—00,—0}
ifr=—0andye Fandy >0
ifr=—-0and ((y € Fand y <0) ory =
if x = —o00 and y € F'U {+00,—0}

if y =400 and z € F'U {+00,—0}
ify=—0andz e Fandz >0
ify=—0and x € Fand x <0

if y=—o0 and z € FFU {—00,—0}
otherwise

result.
becified
lace of

5.2.2

mmaxp : F X F — F

mmaxp(z,y) = marp(z,y) if x,y € FU{+400,—0,—00}
=z if x € FU{400,—0,—00} and y is a quiet NaN
=y if y € FU{+400,—0,—00} and z is a quiet NaN

no_result2p (z,y)

mming : Fx F — F

Floating point mazrimum and minimum

otherwise

17

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.2.3

18

mming(z,y)

= minp(x,y) if x,y € FU{+400,—0,—00}

= if v € FU{4+00,—0,—00} and y is a quiet NaN
=y if y e FU{+400,—0,—00} and z is a quiet NaN
= no_result2p(x,y) otherwise

max_seqr : [F| — F U {infinitary}

max_seqp([T1, ..., Tn])

:[in_seqp : [F] — F U {infinitary}

in_seqr (1, ..., xn)])

:[ma:x_seqp : [F] — F U {infinitary}

max_seqr([T1, ..., Tn))

:[min_seqF : [F] — F U {infinitary}

min_seqr([x1, 7$n])

= infinitary(—o0) itn=0
=1 if n =1 and 27 is not a NaN
= maxp(max_seqp([x1,...,Tn-1]), Tn)
itfn>2
= no_resultp(x1) otherwise

= infinitary(+o00) ifn=0
= if n =1 and 7 is not,a NalN
= ming(min_seqr([z1, ..., Tn—1]), Tn)
ifn>2
= no_resultp(x1) otherwise

= infinitary(—o0) itn=0
=2 i¥n =1 and x1 is not a NaN
= mmax p(mmax_seqx([z1, ..., Tn-1]), Tn)
ifn>2
= no_resultp(x1) otherwise

=Ainfinitary(+o0) ifn=0
=T if n =1 and 7 is not a NalN
= mming(mmin_seqr([T1, ..., Tn-1]), Tn)
ifn>2
= no_resultp(x1) otherwise

TOocto T

Rloatine noint -diminish
=+ IS T

dimp : F x F — F U {underflow, overflow}

= resultp(max{0,z — y)},rndr)

ifx,ye F
=-0 ifr=—-0and y=0
= dimp(0,y) ifr=—-0andye€ FU{-00,—-0,400} and y # 0
= dimp(z,0) ify=—-0and z € FU{—00,+00}

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

= 400
=0
=0
= +o00

= no_result2p(x,y)

NOTE - dimp cannot be implemented by max g(—0, subp(z,y)), since this latter expression

has other overflow properties.

5.2.4 Floor, round, and ceiling

ISO/IEC 10967-2:2001(E)

if x =400 and y € FFU {—o0}
if x=—00 and y € F'U {+00}
ify=4ocoand z € F
ify=—o0cand z € F
otherwise

floorp : F — F
floor p(x) = |z]
=2z
= no_resultp(x)

floor_restp : F — F

=0
= no_resultp(x)

roundingr : F — F U {-0}
roundingp(x) = round(x)

= -0

=2z

= no_resultp(x)

rounding_restp : F — F

rounding_restp(z)
= g —round(x)
=0
= no_resultp(x)

ceilingfg H)F — F U {—0}

floor_restp(z) = resultp(x — |z]|,rndp)

ifxeF
if x € {—00,—0,+00}
otherwise

ifzxeF
ifz =-0
otherwise

if € F and (x > 0 or round(z) # 0)
itz € F and x < 0 and round(z) =0
if z € {—00,—0,+400}

otherwise

NOTE - roundp is a different operation specified in part 1.

ifxeF
ifz =-0
otherwise

ceilingr(x) = [z] if € Fand (x >0 or [z] #0)
=-0 ifre Fandx <0and [z] =0
=z it xe{—00,—0,400¢

= no_resultp(x)

cetling restp : F — F

5.2.4 Floor, round, and ceiling

otherwise

19

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

ceiling restp(x)
= resultp(z — [z]|,rndp) if x € F
=0 ifx=-0
= no_resultp(x) otherwise

5.2.5 Remainder after division with round to integer

residuer : F' x F' — F U {—0,underflow, invalid}

residuep(z,y) = resultp(x — (round(z/y) - y), nearestr)
ifx,y € F and y # 0 and
(zx 2 0or x — (round(z/y) - y) # 0)

=-0 ifx,y € F and y # 0 and
x <0 and x — (round(x/y) - y) =0
=-0 ift =—0and y € FU{—00,400}land y A0
=z ifx € Fand y € {—00,400}
= no_result2r(x,y) otherwise

5.2.6 | Square root and reciprocal square root

syrtp : F — F U {invalid}

syrtp(x) = nearestp(\/x) ifre Fandz>0
=z if v € {05400}
= no_resultp(x) otherwise

rec_sqrip : F — F U {infinitary, invalid }

rec_sqrip(x) =rndp(1/y/x) ifre Fandz >0
= infinitary(+o00) if x € {—0,0}
= no_resultg (x) otherwise

5.2.7 | Multiplication to higher precision floating point datatype

For thq following operafion, F’ is a floating point datatype conforming to part 1, where rg|= rp
and ppl > pr.

ulp_ p&oF x F — F'U{—0,underflow, overflow}

ulpstr (x,y) = mulp (convertp_ pi(z), convertp_p (y))
OTES

1 convertp_ s is specified in clause 5.4.4.

2 F’ has the same radix as, but higher precision than F. If the precision is sufficiently
much higher, rounding can be avoided. If also eming is sufficiently smaller than eming,

underflow can be avoided, and if emaxp is sufficiently greater than emax g, overflow can
be avoided.

20 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.2.8 Support operations for extended floating point precision

These operations are useful when keeping guard digits or implementing extra precision floating
point datatypes. The resulting datatypes, e.g. so-called doubled precision, do not necessarily
conform to part 1.

add_lop : F x F'— F U {underflow}

add_lop(xz,y) =resultp((x +y) —rndp(x +y),rndr)
ifrx,ye F
=-0 ifx=-0andye FU{—00,—0,+00}
=—0 iT7 € FU{—00,Fo0] and § = —0
=y if z =400 and y € FU {400}
=y ifr=—oc0andy € FU{—o0}
=z if x € F and y € {—00,+00}
= no_result2r(z,y) otherwise

sublop : F' x F — F U {underflow}
sublop(z,y) = addlop(x,negp(y))

NOTE 1 — If rnd_styler = nearest, then, in the absence ofmotifications, add_lor and sub_ldg
return exact results.

mul_lop : F x F — F U{underflow, overflow}

mullop(xz,y) = resultp((z-y) — rndp(23Y), rndr)
ifx,ye F
= mul_lor(0,y) ifx=—-0andy € FU{—00,—0,4+00}
= mul_lop(z,0) if v € FU{—00,400} and y = —0
= mulp(z,y) if x € {—o00,+00} and y € F U {—00,+0q}
= mulp(z,y) if x € F and y € {—00,+00}
= no_result2r (x,y) otherwise

NOTE 2 - In the absence of notifications, mul_log returns an exact result.

div_restp : B XF — F U {underflow, invalid }
div_restr(r;y) = resultp(x — (y - rndp(z/y)), rndr)

ifr,ye F
= div_restp(0,y) ifx=—0and y € FU{—00,—0,4+00}
=x if € Fand y € {—00,400}
=z if x € {—00,+00} and y € F
= no_result2r(z,y) otherwise

sqrt_restp : F' — F'U {underflow, invalid }

sqrt_restp(x) = resultp(xr — (sqrip(x) - sqrtp(z)), rndr)
fzeFandz >0
=-0 ifz =-0

5.2.8 Support operations for extended floating point precision 21

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

=400 if x =400
= no_resultp(x) otherwise

NOTE 3 — sqrt_restp(x) is exact when there is no underflow.

5.3 Elementary transcendental floating point operations

© ISO/IEC 2001 — All rights reserved

The specifications for each of the floating point transcendental operations and the floating point
conversion operations (clause 5.4) use an approximation helper function. The approximation
helper functions are ideally identical to the true mathematical functions. However, that would

imply
operati
0.5 ulp
To exp|
elemen
helper

corresp
approx|

5.3.1

The ap
mum e
COMpOs
ters als
results
shall h
see thg
confory]

Why

maxr_e

Z.

ons that are not always exact). This part does not require that the maximum errox is
for the operations specified in clause 5.3, but allows the maximum error to be(@ bit b
ress this, the approximation helper functions need not be identical to the mathem
bary transcendental functions, but are allowed to be approximate. The approxin
functions shall be defined for the elements of its given argumentcsignature when

mation helper functions apply only where the approximation helper functions are de

Maximum error requirements

proximation helper functions for the individual opé€rations in these subclauses have
ror parameters that describe the maximum relative error, in ulps, of the helper fur
ed with nearestp, for non-subnormal and noh-zero results. The maximum error pa
O describe the maximum absolute error, in Wps, for —fminNg, fminNg, subnormal, o

hve a value that is > 0.5. For the maXimum value for the maximum error param
specification of each of the maxiinm error parameters. See also Annex A, on p
hity. The relevant maximum error*parameters shall be made available to programs.

bn the maximum error for\an™ approximation helper function hp, approximating
ror_opr, then for all argumnents x, ... € F' x ... the following equation shall hold:

| fas..) — nearestp(hp(z,...))| < maz_error_opp - r;F(f(I""))_pF

OTES

Partially\conforming implementations may have greater values for maximum error param-
eterssthan stipulated below. See annex A.

Formost positive (and not too small) return values ¢, the true result is thus claimed to be in

maximum error for the corresponding operation ot U.o ulp (1.e., the minimum valjie for

only
igger.
atical
ation
e the

onding mathematical function is also defined, unless otherwise noted™ The requiremeints on

fined.

maxi-
ction

ame-

Zero

and underflow continuation values if dewormp = true. All maximum error paranpeters

cters,
artial

fiis

the interval [t — (max error opp-ulpp()) ++ (mar error opp -ulpp(i)] But if the retuirn
value is exactly 7% for some not too small n € Z, then the true result is claimed to be in
the interval [t — (mazx_error_opp - ulpp(t)/rr),t + (max_error_opp - ulpp(t))]. Similarly for
negative return values.

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should have
the value 0.5, the minimum value.

22

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.2 Sign requirements

ISO/IEC 10967-2:2001(E)

For this part, the approximation helper functions shall be zero exactly at the points where the

approximated mathematical function is exactly zero.

For this part, at points where the ap-

proximation helper functions are not zero, they shall have the same sign as the approximated
mathematical function at that point. For the radian trigonometric helper functions, these zero
and sign requirements are imposed only for arguments, x, such that |z| < big_angle_rp (see clause
5.3.8).

NOTE - For the operations, the continuation value after an underflow may be zero (including
negative zero) as given by result} (see below), even though the approximation helper function
is not zero at that point. Such zero results are required to be accompanied by an underflow

5.3.3

For t
mathl

5.3.4

The

simplified compared to resultp congeriiing underflow: resulty always underflows for n|

arguy
not nl
resul
arguy
impli
inste

See the individual specifications.

Monotonicity requirements

ematical function it is approximating, except:

5.3.8).

The argument angular unit trigonometric and argument angular unit inverse trigon
approximating helper functions, as well as the aiigular unit conversion helper functi

The result* helper function

resulty, helper function is similar,.§0 the resultp helper function (see clause 5.2.1)

7> might not be exact. Té return underflow or not, for a tiny result, based upon an
nent would be misleading. For the operations specified using result}. where the speci

d explicitly aveided.

resulti R x (R — F*) — F U {underflow, overflow}

notification. When appropriate, zero may also be returned for IEC 60559 infinities arguments.

his part, each approximation helper function shall be a monotonié approximation| to the

For the radian trigonometric approximation helper functions;thé monotonic approxjmation
requirement is imposed only for arguments, z, such that_|x| < big_anglerp (seq clause

bmetric
ns, are

excepted from the monotonic approximation.xequirement for the angular unit argunhent(s).

but is
bn-Zero

hents that have an absolute value less than fminNg — (fminDp/rr), whereas resulfr does
pcessarily underflow in that.¢ase. This difference from resultp is made since the argunent to

inexact
fication

bs that there can never be any denormalisation loss for certain tiny results, underflow is

restulty(xz,rnd) = underflow(c) if z € R and denormp = true and
|rnd(z)| < fminNp and x # 0
= resultp(z,rnd) otherwise
where
¢ =rnd(zx) when rnd(z) # 0 or z > 0,
c=-0 when rnd(z) =0 and z < 0
5.3.2 Sign requirements

23

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.5 Hypotenuse

There shall be a maximum error parameter for the hypotr operation:
max_error_hypotp € F
The max_error_hypotr parameter shall have a value that is < 1.
The hypot}. approximation helper function:
hypoty, : FF x FF — R
hypoty,(x,y) returns a close approximation to \/Wy2 in R, with maximum error max_error_hypot r.

Further requirements on the hypott approximation helper function are:

poti.(x,y) = hypot}.(y, x) ifx,ye F
poty.(—x,y) = hypot}.(x,y) ifx,ye F
pott.(x,y) = max{|z|, |y|} ifex,ye F
poth(x,y) < |z| + |y ife,ye F
poty(z,y) > 1 ifz,ye Fand /22 +92 > 1
poty(z,y) < 1 ifz,y € F and /22 + 92 K1

The| hypot p operation:
Ipot r: Fx F — FU/{underflow, overflow}

potp(x,y) = resulty,(hypot}.(x,y), nearestr)
if x,y &K
= hypotr(0,y) if v =40 and y € F U {—00,—0,400}
= hypotp(z,0) if y=—0 and z € F U {—00,+00}
= +00 if € {—00,+00} and y € FU{—00,+00}
= 400 if y € {—o00,400} and z € F
= no_result2p(z,y) otherwise

5.3.6 | Operations for exponentiations and logarithms

There ghall be two maximum érter parameters for approximate exponentiations and logarithms:

:Iax_error_exp}w eF
ax_error_powerg € F

The mqx_error_expr parameter shall have a value that is < 1.5-rnd_errorp. The mazx_error_powerp
paramgter shall have' a value that is < 2 - rnd_errorg.

5.3.6.1 JInteger power of argument base

The power, ; approximation helper function:
powerp ' x I — R
power;i’ ;(z,y) returns a close approximation to ¥ in R, with maximum error max_error_powerp.

Further requirements on the powery, ; approximation helper function are:

24 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

[(x,y)
I(xal)
I(SC,O)
0)
y)

powe
powe
powe

I
=8

* ’T?* “’1?* ’T?*

A

powery,

(z, fminDg /2
powery /(z, powerpl(x,y)
powerFJ(:E, y) = —powerFJ(—m, Y)

ISO/IEC 10967-2:2001(E)

ifreZNFandy € I and (|| =1o0ry > 0)
ifreF

ifre Fandx #0

ifz € Fand x> 0and y € I and 2¥ < fminDp/3
ifr € Fand x <0 and y € I and 2|y

if € F and z < 0 and y € I and not 2|y

The relationship to other powerg;, helper functions for any powerpp operations in the same

library shall be:

powery; (z,y) = powers (z,y)

ifre FandyelInl

Thb POWCTFET uy\u.uu‘\’uu;x.

=0

=-0

= infinitary(4+00)
= infinitary(—oo)
= infinitary(+00)
=0

= no_resultp(x)

NOTES

powerpr : F x I — F U {underflow, overflow, infinitary}

powerpr(x,y) = result}(powery;(x,y), nearesty)

1 powerpy(wyy) will overflow approximately when z¥ > fmazp, i.e., if x > 1, approximately
when y>\og, (fmaz), and if 0 < z < 1, approximately when y < log, (fmaz ;) (which i
then @megative). It will not overflow when z = 0 or when = = 1.

2 powery (in clause 5.1.4) does not allow most negative exponents (unless || = 1) since the
exact result then is not in Z unless |z| = 1. powerp (in clause 5.3.6.6) does not allow anjy

ifre Fandz#0andyel

if t = —o0 and y € I and.y> 0 and 2|y
if xt =—o00 and y € I,and y > 0 and not P
if t = —0 and y € {/and y > 0 and 2|y
if t = —0 and y&\ and y > 0 and not 2|y
ifr=0and y©f and y >0

if r =+4o0and y € I and y >0

~

Y

if z &¥+00,—0,0,400} and y =0

i\ = —oo and y € I and y < 0 and 2|y
if xt =—o00 and y € I and y < 0 and not P
ifr=—0and y € [and y < 0 and 2|y
ifxt =—0and y € I and y < 0 and not 2|y
ifr=0andyelandy<0

ifr=4occandyeland y <0

Y

otherwise

wn

nngaﬁvn bases since the (ovgnf\ result is not in R unless the avpnnmnf is i-nfngmr- power

takes care of this latter case, where all exponents are ensured to be integers that have not
arisen from implicit floating point rounding.

5.3.6.2 Natural exponentiation

The exp}. approximation helper function:

expy : FF— R

5.3.6 Operations for exponentiations and logarithms 25

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

expj.(x) returns a close approximation to e” in R, with maximum error maz_error_expp.

Further requirements on the exp}. approximation helper function are:
expp(l) =e
expy(z) =1 if x € F and expj.(x) # e” and
In(1 — (epsilonp/(2-7F))) < z and
z < In(1 + (epsilong/2))
expp(x) < fminDp /2 if x € F and < In(fminDp) — 3
The expr operation:
eb}lt« . F FL}I rulldclﬂUVV7UVCLﬂUVV}
efepr(x) = resulty(expy(x), nearesty)
ifexeF
=1 ifx=-0
= 400 if z = 400
= no_resultp(x) otherwise
NOTES
1| exprp(l) = nearestp(e).
2| expr(z) will overflow approximately when = > In(fmaz).
5.3.6.3 Natural exponentiation, minus one
The expml17, approximation helper function:

)

expml;

Furt

DD

o)

The
library

o)

The|

rpmlp: F'— R
(x) returns a close approximation toje™— 1 in R, with maximum error maz_error_¢
her requirements on the expmIy,_approximation helper function are:

pm1y(l) =e—1

pmlp(x) = if x € F and ezpmlij(x) # e” — 1 and
—epsilong /rp < x < 0.5 - epsilonp /TR
pmlp(x) = —1 if x € F and ezpmlij(x) # e* — 1 and
z < In(epsilonp /(3 - rF))
relationship to\the exp?. approximation helper function for the expr operation in the

shall be:
pm1 (%)< expl(x) iteeF

expiniy operation:

€

rpwilp . F — F'U {overflow}

expmlp(x) = resulty,(expmlj(x), nearestr)
if x € F and |x| > fminNp
=2z if x € F and |x| < fminNp
=-0 ife=-0
=400 if z =400
=-1 if r =—o00
= no_resultp(x) otherwise

26

© ISO/IEC 2001 — All rights reserved

IPF.

same

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

NOTES

1 underflow is explicitly avoided. Part 1 requires that fminNp < epsilonp. This part
requires that fminNp < 0.5 - epsilong/rp, so that underflow can be avoided here.

expmlp(1) = nearestp(e — 1).

expm1p(x) will overflow approximately when x > In(fmaz).

5.3.6.4 Exponentiation of 2

The exp2j;. approximation helper function:
explp F — R

exp2}(x) returns a close approximation to 2% in R, with maximum error maz_error_eapy.

Fyrther requirements on the exp2; approximation helper function are:
exp2p(x) =1 if z € F and exp2j.(x) # 2* and
logs(1 — (epsilong /(2 - rF))) < = and
x < logy(1 + (epsilong¥2))
exp2p(x) = 2° ifee FNZ and 2 ¢F
exp2p(x) < fminDp /2 if x € F and x < logg(fminDp) — 3
The exp2r operation:

exp2r : F — F U {underflow, overflow}

exp2p(x) = result},(exp2y(x), nearestr)
if x &
=1 ifa=-0
= +o00 if\ = 400
=0 if x = —00
= no_resultp(x) otherwise

NOTE - exp2r(z) will overflow approximately when = > log,(fmaz).

5.3.6.5 Exponentiation of\10

The ¢xp10y approximation helper function:
explOn : F — R

expli.(r) returns a close approximation to 10* in R, with maximum error max_error_egpp.

F
Fyrther requirements on the expl0;. approximation helper function are:
explOf(z) =1 if x € F and exp10}:(x) # 10” and

logo(1 — (epsilong/(2-rF))) < x and
x < logio(1 + (epstlonp/2))
expl0p(x) = 10" if € FNZ and 10 € F
expl0j:(z) < fminDp /2 if x € F and x < log,o(fminDp) — 3

The exp10 operation:
expl0p : F — F U {underflow, overflow}

5.3.6 Operations for exponentiations and logarithms 27

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

expl0p(x) = resulty,(expl05(z), nearestr)
iteeF
=1 ifx=-0
= 400 if z =400
=0 if z =—o00
= no_resultp(x) otherwise

NOTE - expl10p(x) will overflow approximately when x > log,,(fmaz).

5.3.6.6 Exponentiation of argument base

© ISO/IEC 2001 — All rights reserved

The po
p

powery
The po
Furt

p
p
p
p

The
the san

s

The|

p
p

wery, approximation helper function:
werp : F'x F'— R
(z,y) returns a close approximation to z¥ in R, with maximum error maZx ‘error_poery.
ery helper function need be defined only for first arguments that are greater than {.
her requirements on the powery approximation helper function are:
pwergy(1,y) =1 ifyeF
werp(x,0) =1 ifre Fandz>p0
pwerys(x,1) = x itz € F and 2. 540
wers(z,y) < fminDp /2 ifx € Fand %> 0 and y € F and 2Y < fmjinDr/3
relationship to the powery,; approximation helper-functions for any powerpr operatigns in
he library shall be:
bwery(x,y) = powerg, ;(z,y) ifoeFande>0andyeINF
power operation:
werp : F' x F — F U {underflow, overflow, infinitary, invalid }
pwerp(x,y) = result}(poweri(xy), nearesty)
ifreFandx>0and y € F
= powerp (0,4 ifr=—-0andye FU{—00,—0,+00}
= powerF(x;0) ify=—-0and z € FU{—00,+00}
= 400 if £ =400 and ((y € F and y > 0) or y = $00)
=400 ifxe Fand x > 1 and y = 400
=0 ifre Fand 0 <x <1andy=+400
=0 ifr=0andye Fandy>0
= infinitary(+o00) ifr=0andye Fandy<0
=400 ifre Fand0<z<1andy=—o0
=0 ifxre Fand x > 1 and y = —00
=0 it T =Fo0oand ((y& I and gy < 0U) of § = —00)
= no_result2p(x,y) otherwise

NOTE - powerp(x,y) will overflow approximately when z¥ > fmazp, i.e., if x > 1, approxi-
mately when y > log, (fmaz), and if 0 < x < 1, approximately when y < log, (fmaz) (which
is a negative number). It will not overflow when = = 0 or when z = 1.

28

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.6.7 Exponentiation of one plus the argument base, minus one

The powerIpmly. approximation helper function:

powerlpmly : F X FF— R

ISO/IEC 10967-2:2001(E)

powerlpmlij:(z,y) returns a close approximation to (1 4+ z)¥ — 1 in R, with maximum error
mazx_error_powerr. The powerlpmlr helper function need be defined only for first arguments
that are greater than or equal to —1.

Further requirements on the poweripmly. approximation helper function are:

poweripmij(z,y) = (1+x)¥ —1 ifr,ye FNZandz > —1andy >0
pnfmpfr’11n'm7;‘(fr' =2 drltrcE anda —1
powerlpmlji(—1,y) = —1 ifye Fand y >0

poweripmlj(z,y) = —1 ifxe Fand x > —1and y € F and

powerlpmlj(z,y) # (1 + z)¥ ~1¥and
(14 x)¥ < epsilong/(3 - rg)

The relationship to the powery. approximation helper function for the pewery operation in the

same

Tle poweripmly operation:

library shall be:
powerlpmlj(z,y) < powers(1+ z,y) ifz,1+xz€ Fand&@>—-1landy e F

NOTE 1 - powerlpmlp(z,y) ~y-In(l+z)ifx € Fand z > —1@nd y € F and |y-In(1+x)|
epsilong [rp.

powerlpmly : F X F — F U {—0,underflow, overflow, infinitary, invalid }

powerlpmlp(z,y)
= result},(poweripml j(ziq); nearesty)

ifre Fandax>—-1landz#0and y € ¥ and y # 0

= mulp(z,y) if x € {-0,0} and y € F and y # 0
= mulp(z,y) if y€ {—0,0} and z € F and = > —1
= +o00 if x =400 and ((y € F and y > 0) or y 5 +00)
=400 ifx e Fand x >0 and y = 400
=-1 ifre Fand -1 <z <0and y =400
=-1 ifr=—-1landye Fandy >0
= infinitary(+o00) ifr=-1landye Fand y <0
=+00 ifre Fand -1 <z <0and y=—o00
= —1 ifxe Fand x >0 and y = —o0
=-1 if x =400 and ((y € F and y < 0) or y 5 —00)
= no_result2r(z,y) otherwise
NOTE 2 pnqnpfr-1pm 1r (fr' y) will overflow apprnvima‘rnh when (1 =+ fr')y fmn'rr) e lif
x > 0, approximately when y > log,, ,(fmazg), and if —1 < 2 < 0, approximately when
y <logy, . (fmazy). It will not overflow when z € {—1,0}.
5.3.6.8 Natural logarithm
The In}. approximation helper function:
Iny, : FU{e} = R
5.3.6 Operations for exponentiations and logarithms 29

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

In}:(x) returns a close approximation to In(z) in R, with maximum error maz_error_expr.

A further requirement on the In}. approximation helper function is:
Inp(e) =1

The Inp operation:
Inp : F — F U {infinitary, invalid}

Inp(x) = result},(In}(x), nearesty)
ifzre Fandz >0
= infinitary(—o0) if x € {-0,0}
= 400 if z =400
= no_resultg(x) otherwise

5.3.6.9 Natural logarithm of one plus the argument

The Infp} approximation helper function:
pilpy : FU{e—1} =R

In1p%(f) returns a close approximation to In(1 + z) in R, with maximum/error max_error_

Furfher requirements on the Inip} approximation helper functjon are:
Ipipp(e—1) =1

[

Ipp(z) == if x € F andclplpy(x) # In(1 + x) and
—0.5 .épsilonp/rrp < x < epsilonp /TR

PLDF.

same

The|relationship to the In}. approximation helper function for the Ing operation in the
library|shall be:
ipp(x) > Inj(x) iz e Fandz>0
The| In1py operation:
ZIJpF : F — F U {infinitary, invalid}
nlpp(z) = result};(In1pyp{z), nearestr)
if v € Fand x > —1 and |z| > fminNp
=z if z € F and |z| < fminNp
=—-0 ife=-0
=infinitary(—oo) ife=-1
=00 if z = 400
= no_resultp(x) otherwise
NOTE s=~underflow is explicitly avoided. Part 1 requires that fminNp < epsilong. This
pprtsreguires that fminNg < 0.5 - epsilong /T g, so that underflow can be avoided here.
5.3.6.10 2-logarithm
The log2r approximation helper function:
log2; : F — R

log25-(x) returns a close approximation to logy(z) in R, with maximum error maz_error_expr.

A further requirement on the log2; approximation helper function is:

30

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

log2p:(x) = logs(x)
The log2r operation:
log2p : F — F U {infinitary, invalid }

ISO/IEC 10967-2:2001(E)

if x € F and logy(z) € Z

log2p () = result},(log2p(x), nearestr)
ifre Fandz >0
= infinitary(—o0) if x € {-0,0}
=400 if x =400
= no_resultp(x) otherwise
5.3.6- 11— 1o-togarithmr
The log10; approximation helper function:
log10p : F — R
log10f:(x) returns a close approximation to log;y(z) in R, with maximum errey 'max_errof_expr.
A [further requirement on the log!0y approximation helper function is:
log105(x) = logyg(z) if x € F and log(z)\& Z
The log10r operation:
log10 : F — F U {infinitary, invalid }
log10p(x) = result},(log10p(z), nearestr)
if x edand x >0
= infinitary(—oo) if € {—0,0}
= 400 if = 400
= no_resultp(x) otherwise
5.3.6.12 Argument base logarithnt
The lJogbase}. approximation helper fanction:
logbaser. : ' x F' — R
logbafset; (x, y) returns a close approximation to log, (y) in R, with maximum error maz_err¢r_powerr.
A [further requirement-on the logbase}, approximation helper function is:
logbasey.(xz,z)\ = 1 ifre Fandz>0and z # 1
The logbaseg) operation:
logbasep F x F' — F U {—0, infinitary, invalid }
logbaser(z,y) = resulty,(logbasey(x,y), nearestr)
ifreFande>0andax#1landye€ Fandy >0

= logbaser(0,y)

if x=-0andye FU{—00,—0,+00}
= logbasep(x,0)

ify=—-0and z € FU{—00,+00}

= infinitary(4+00) ifr=1landye Fandy>1

= infinitary(—oo) ifr=1landye Fand 0 <y <1
=0 ifr=4occandye€ Fandy > 1
=400 ifre Fand 1<z andy=400

5.3.6 Operations for exponentiations and logarithms 31

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

= —00 ifre Fand 0 < x <1 and y =400
=-0 fr=0andye Fandy >1

=0 fr=0andye Fand 0 <y <1
= infinitary(+o00) ifreFand0<z<landy=0
= infinitary(—oo) ifreFandl<zandy=0
=-0 ifr=4occandye Fand 0 <y <1
= no_result2p(x,y) otherwise

5.3.6.13 Argument base logarithm of one plus each argument

The loq
l

logbase
mazx_e

A fy

o~

The|
[

o~

baselplp} approximation helper function:

gbaselplpy : F x F — R

[plpp(r,y) returns a close approximation to log(. (1 +y) in R, with\maximum
rOor_powerp.

rther requirements on logbaselp1p} approximation helper functionhs:
gbaselplpy(x,z) =1 ifxe Fand x > —1and’x # 0
logbaselplp . operation:

gbaselplpp : F x F — F U {—0,underflow, infinitary)invalid }

gbaselplpp(w,y)
= result};(logbaselplpy(z,y), neafesty)
ifx €¥ and z > —1 and x # 0 and
y e Fandy>—-1and y#0

= divp(y,x) if, x € {—0,0} and
(e Fandy > —1and y #0) or y = H
= divp(y,x) if y € {—0,0} and

((x € Fand x > —1) or x = 400)

=0 ifr=4occandye€ Fandy >0

= 400 ifxe Fand 0 < z and y = 400

= —00 ifre Fand -1 <z <0and y=+400
==0 ifr=—-landye Fandy >0

=0 fr=—-landye Fand -1 <y <0
= infinitary(+o00) ifre Fand -1<z<0andy= -1
= infinitary(—o0) ifre Fand0<zandy= -1

=-0 ifr=4occandye€ Fand -1 <y <0
= no_result2p(x,y) otherwise

5.3.7

Introduction to operations for trigonometric elementary functions

© ISO/IEC 2001 — All rights reserved

error

Two different operations for each of sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot,
arccotc, arcsec, and arccsc are specified. One version for radians and one version where the
angular unit is given as a parameter.

For

32

use in the specifications below, define the following mathematical functions:

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

rad : R — R
azis_rad : R — {(1,0),(0,1),(—=1,0),(0,-1)} x R
arc: RXR—=R

The rad, angular value normalisation, function is defined by

rad(x) =z —round(z/(2 7)) 27
The axis_rad function is defined by
axis_rad(x) = ((1,0), arcsin(sin(z))) if cos(z) = 1/v/2

=
= ((0,1),arcsin(cos(x))) if sin(z) > 1/v/2
= ((—1,0), arcsin(sin(z))) if cos(z) < —1/v/2

— \\07 —1)7dlbbillkbub\ubj>)if bill\ub) —1/\/2

Tle arc, angle, function is defined by

arc(z,y) = —arccos(z/\/ 22 +y?) ify <0
= arccos(z/\/22 +y?) ify>=0

5.3.8 Operations for radian trigonometric elementary functions

Ther¢ shall be one radian big-angle parameter:
big_anglerp € F

It shquld have the following default value:

big_angle_rp = rl[?F/ﬂ

A binding or implementation can include a method fo change the value of the radian big-angle
paraipeter. This method should only allow the value of this parameter to be set to a value |greater
than 2 - 7 and such that ulpp(big_angle_rr) <@/1000.
NOTE - Part 1 requires only that pp >2;vbut see also A.5.2.0.2 in part 1. This part requirgs
that pp > 2-max{1, [log, (2-m)]}, in.order to allow at least the first two cycles (plus and minug)

to be in the interval [—big_angle_rgybig_angle_rp|. In order to allow ulpp(big-angle_rr)
/1000, pr > 2 + [log, , (1000)]sghbuld hold.

Fgr use in the approximationChelper function’s signatures, define
F*>™ = (FU{n-7/4,n7/6 | n€ Z})N|[-big.angle_rr,big_angle rr)
Tlhere shall be three maximum error parameters for radian trigonometric operations:

max_error_radme F
maxr_errorssing € F
maxr_error_tang € F

The ax_error_radyp parameter shall have a value that is 0.5 (ulp). The maz_error_sinp garame-

ter silall’ have a value that is < 1.5-rnd_errorp. The max_error_tang parameter shall havela value
that Is 2. ’l"’nfl_ﬂ/)‘”)"f)’)"F If the hi'nr“ng standard Y‘pqnir‘pq that the 'rnn'r'_po"rrw‘_rnﬂl—v pnvameter

has the value 0.5, that parameter need not be made available for programs.

5.3.8 Operations for radian trigonometric elementary functions 33

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.1 Radian angle normalisation

The rad}, approximation helper function:

rady : F' 2T LR
radj,(x) returns a close approximation to rad(z) in R, if || < big-angle_rp, with maximum error
max_error_radg.

The axis_rady. approximation helper function:

azisrady : F*™ — {(1,0),(0,1),(-1,0),(0,-1)} x R
axis_rady(z) returns a close approximation to azis_rad(x), if |x| < big_angle_rp, with maximum
error NfUT eTToT Tady for the second part of the Tesut—The approximation consists of tit the
second [part of the result (the offset from the indicated axis) is approximate. The first (parf (the
nearest] axis indication) shall be exact if |z| < big-angle_rp.
NOTE 1 - With the maximum error 0.5 ulp, these helper functions are not really|needed.
However, Annex A allows for partial conformity, such that the maximum errorcfox these two
hplper functions may be greater than 0.5 ulp.

Furfher requirements on the rady and awxis_rady approximation helper functions are:
ndy(z) = x if v € F?™ and |2| <%
nd(azis_radi.(x)) = radj.(x) if v € F?7 and fst(gwis_radi(z)) = (1,0)

The| radgr operation:

w3

ndp @ F — F U {underflow, absolute_precision_underflow}

r
rudp(x) = result};(rad}(x), nearesty)
if & F and |z| > fminNp and |z| < big-angle_rp
=z if{x'e€ F and |z| < fminNp) or z = —0

= absolute_precision underflow(qNaN)
if x € F and |x| > big_angle_rp
= no_resultp(x) otherwise
The|axis_radr operation:
vis_radp : F— ({(1,0)¢(0y1), (—1,0),(0,—1)} x F) U {absolute_precision_underflow}

a
afris-radp(x) = (fst(axisrady(x)), resulty,(snd(axis_rady(x)), nearestr))
if x € F and |z| > fminNp and |z| < big-angle_rp
= ((1,0),x) if (x € F and |z| < fminNp) or x = —0
= absolute_precision_underflow((gNaN, gNaN), gNaN)
if x € F and |x| > big_angle_rp
= ((gNaN, gNaN), gNaN)
if zis a quiet NaN
= invalid((gNaN, gNaN), gNaN)
otherwise
NOTE 2 - radp is simpler, easier to use, but less accurate than axis_radp. The latter may

still not be sufficient for implementing the radian trigonometric operations to less than the
maximum error stated by the parameters.

34 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.8.

2 Radian sine

The sin}, approximation helper function:

sinj(x

m"‘F:FQ'7T — R

max_error_sing.

Fu

The sing operation:

5.3.8.

The

*
COSp
max]

Fy

rther requirements on the sin}. approximation helper function are:
sinp(n-2-m+7/6) =1/2 ifne Zand n-2 -7+ 7/6] < big_angle
sinp(n-2-m4+m/2) =1 ifne Zand |n-2 -7+ 7/2| < big_.angle
ﬂj:(n 2.t 5. W/ﬁ\—'l/‘) iFﬂC?nnH!n.‘).r—&-R.w/ﬁ! hfi.r]nﬂu
sinj(x) = if v € F?™ and sin’(z) # sin(x) and
|z| < /3 - epsilonp /1
sinj(—x) = —sinj(z) if v € F?™

sinp : F'— F U {underflow, absolute_precision_underflow }

sing(x) = result}(sinj(x), nearesty)
if x € F and fminNg< |z| and |z| < big-
= radp(x) otherwise
NOTE - underflow is here explicitly avoided for subnotinal arguments, but the operatid

may underflow for other arguments.

3 Radian cosine

0sT, approximation helper function:

08t F2™ 5 R
x) returns a close approximatipn to cos(x) in R if |z| < big_angle_rp, with maximu
error_sing.

rther requirements on theicos}, approximation helper function are:
cosj(n-2-m) =1 ifne Z and |n-2- 7| < big-angle_rp
cosp(n-2-m+7/3)=1/2 ifne Zand|n-2 -7+ 7/3| < big_angle.
cosp(n-2-mH2"w/3) =—-1/2 ifne Zand |n-2-7+4+2-7/3| < big_ang
cosp(n - 2) = —1 ifne Zand |n-2 -7+ 7| < big_angle_rg
cos}}(w) if x € F?™ and cos’(z) # cos(x) and
|z| < \/epsilong/rF
cosip(-x) = cos(x) if v € F27

ISO/IEC 10967-2:2001(E)

) returns a close approximation to sin(z) in R if |z| < big_angle_rp, with maximum error

-Tr

rp

lerp

nglerp

[error

3

F
le_rp

I hereoe oparation .
He-€E65F ¥

5.3.8

croTOTiT

cosp : F'— F U {underflow, absolute_precision_underflow }

cosp(x) = result},(cos},(x), nearestr)
1f x € F and |x| < big_angle_rp
= radp(x) otherwise
Operations for radian trigonometric elementary functions

35

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.4 Radian tangent

The tan}, approximation helper function:

tank. : F*™ = R
tany,(z) returns a close approximation to tan(z) in R if || < big_angle_rp, with maximum error
max_error_tang.

Further requirements on the tan}. approximation helper function are:

tanp(n-2-m4+w/4) =1 ifne Zand |n-2- -7+ n/4] < big-angle_rp
tanp(n-2-m4+3-7/4) = -1 ifne Zand |n-2 -7+ 3-7/4| < big_anglerp
t ﬂj: (fr) —_ if e F27 and fn'nl': (fr-\ £ ’rgn(fr'\ and

|z| < \/epsilong/rE
teni,(—x) = —tani,(x) if v € F27
NOTE 1 — tan has a smallest period of 7, but the above expresses a period of 2 - 7,)which is

ore in line with the other operations. The desired points of extra accuracy are.still covered.

=

The|tanr operation:

t¢np : F' — F U {underflow, overflow, absolute_precision_underflow}

tgnp(x) = result};(tan},(z), nearestr)
if x € F and fminNg < |z| and |z| < big-angle_rp
= radp(x) otherwise

NOTE 2 — underflow is explicitly avoided for subnorimab arguments, but the operation may
underflow for other arguments.

5.3.8.§ Radian cotangent

The co} approximation helper function:
cpth F*™ - R

cot}(x) returns a close approximationto cot(z) in R if |z| < big_angle_rp, with maximum|error
max_efror_tang.

Furfher requirements on the cot}. approximation helper function are:
Dt (n-2-m+m/dN=1 ifne Zand |n-2 -7+ 7/4| < big_angle_r
tp(n-2-74+3.1/4) = -1 ifne Zand |n-2 -7+ 3-7/4| < big_angl¢_rg
bt (—x) = <coth(x) if x € F27
OTE —(cot has a smallest period of w, but the above expresses a period of 2 - 7, which is
ore indiné with the other operations. The desired points of extra accuracy are still covered.

]

5 > QO o 9

Thel| cdtpoperation:

cotp : ' — F U {undertlow, overilow, infinitary, absolute_precision_undertiow ;

cotp(x) = result};(cot},(z), nearestr)
if v € Fand z # 0 and |z| < big_angle_rp
= infinitary(+o00) ifx=0
= infinitary(—o0) ifz=-0
= radp(x) otherwise

36 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.8.6 Radian secant

The secy, approximation helper function:

sech : F?™ R

ISO/IEC 10967-2:2001(E)

secj(x) returns a close approximation to sec(z) in R if |z| < big_angle_rp, with maximum error
max_error_tang.

Further requirements on the secy. approximation helper function are:

secp(n-2-m) =1 ifne Zand |n-2- 7| < big-angle_rp
secp(n-2-m+7/3) =2 ifne Zand |n-2 -7+ 7/3| < big-angle_rp
Qpp’;(ﬂ ‘).w—l—‘).ﬁ'//?\——f) ifnec Z and !ﬂ.‘).ﬂr—&-‘).fn’/?! h'ig ”“UZG_TF
secp(n-2-m+m) =—1 ifne Zand |n-2 -7+ 7| < big_angle!rd
secp(r) =1 if x € F?™ and sech(x) # sec(z) and

|x| < +/epsilonp
secp(—x) = secy(x) if z € F27

The secr operation:

5.3.8
The

*
CSCF
max]

Fy

secp : F'— F U {overflow, absolute_precision_underflow}

secp(x) = result},(secy(x), nearestr)
if x € F and |z|(Qbig-angle_rp
=1 ifx =-0
=radp(x) otherwise

.7 Radian cosecant

scy. approximation helper function:
cscp t F 2T LR

x) returns a close approximation t@csc(x) in R if |z| < big_angle_rp, with maximu
error_tang.

rther requirements on the ¢gcj. approximation helper function are:

1l error

cscp(n-2-m+7/6) =2 ifne Zand |n-2 -7+ 7/6| < big.anglelrp
cscp(n-2-m+m/2) =1 ifne Zand |n-2 -7+ 7/2| < big.anglelrp
cscqp(n -2 m+ 5-0f6) = 2 ifneZand n-2-7+5-7/6| < big_angle_rp
cscp(—x) = —€5¢%5(x) if v € F?7
The cscr operation:
cscp : L 3 F U {overflow, infinitary, absolute_precision_underflow }
csch () = result},(cscp(x), nearestr)
if z € F and = # 0 and |z| < big_angle_rf

= Infinitary(+4o00) itx=0

= infinitary(—oo) if x =—-0

= radp(x) otherwise
Operations for radian trigonometric elementary functions 37

5.3.8

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.8.8 Radian cosine with sine

cossing : ' — (F x F) U {underflow, absolute_precision_underflow}
cossing(x) = (cosp(z), sinp(x))

NOTES

1 If there is an absolute_precision_underflow notification, then both result parts suffer
from the absolute_precision_underflow and the continuation values for both parts are
qNaN. Similarly for NaN and infinitary arguments.

2 If there is an underflow notification, only one of the result parts suffer from the underflow,
and the other part has an absolute value greater than fminNg

© ISO/IEC 2001 — All rights reserved

5.3.8.9 Radian arc sine

The arfsiny, approximation helper function:

arcsinj

afcsing : F' — R

Furfher requirements on the arcsin}. approximation helper functiefivare:

afcsing,(1/2) = w/6

afesini,(1) = m/2

afcsing,(z) = x if x € F and“dresin.(x) # arcsin(x) and
2] <42 - epsilong [rF

afcsiny,(—x) = —arcsiny.(x) ifr el

#

The|arcsin}. range limitation helper function (for z € F):

csin}ié (x) = max{upp(—n/2), min{aresing.(z), downp(n/2)}}

=)

The| arcsing operation:

afcsing : F'— F U {invalid}
afrcsing(x) = result}, (arcsinﬁf(x), nearestr)
if x € F and fminNp < |z| <1
=z if (x € F and |z| < fminNp) or x = —0
= fosresultp(x) otherwise

NOTE - underflow is explicitly avoided.

5.3.8.10 Radian arc cosine

() returns a close approximation to arcsin(x) in R, with maximym error max_error.

SINp.

The ar r‘ncjﬁ approximation helper fuinction:

arccosy : ' — R

arccos,(x) returns a close approximation to arccos(z) in R, with maximum error max_error_sing.

38

Further requirements on the arccosy, approximation helper function are:

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The arccos}, range limitation helper function (for x € F):
arccosff () = min{arccos}(z), downp(m)}
The arccosp operation:

arccosp : F' — F U {invalid}

arccosp(x) = result’,(arccos™(z). nearesty)
ifxe Fand|z|] <1
= arccosp(0) ife=-0
= no_resultp(x) otherwise

5.3.8.11 Radian arc tangent

The ¢rctany, approximation helper function:

arctany : F' — R

arctan’y,(z) returns a close approximation to arctan(z) in R, with-maximum error maz_errq

Fyrther requirements on the arctany. approximation helper function are:

arctan,(1) = /4

arctanj.(x) = x if '€ F' and arctanj,(z) # arctan(z) and
x| < \/1.5 - epsilong/rp
arctany,(x) = m/2 if x € F' and arctanj,(x) # arctan(z) and
x > 3-rp/epsilong
arctany,(—xz) = —arctany,(z) ifeeF
The arctcm}iE range limitation helper function (for z € F):

arctanﬁ () = max{upp(—m)2), min{arctan},(x), downp(7/2)}}

The arctang operation:

arctanp : F — F

arctanp () = result*F(arctanﬁ(:E), nearestp)
if x € F and fminNp < |z|
=z if (x € F and |z| < fminNp) or z = —0
= upp(—7/2) if x = —o00
= downp(m/2) if z =400
= no_resultp(x) otherwise

r_tang.

NOTES

1 arctanp(x) ~ arcp(l,x). (arcp is specified in subclause 5.3.8.15 below.)

2 underflow is explicitly avoided.

5.3.8 Operations for radian trigonometric elementary functions

39

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.12 Radian arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)
arccotc.

The arccot}. approximation helper function:
arccotp : F'— R
arccot},(x) returns a close approximation to arccot(z) in R, with maximum error max_error_tang.

The arccotcy, approximation helper function:

afceotty T — R

arccotd;.(x) returns a close approximation to arccotc(z) in R, with maximum error maz€rrof_tang.
Furfher requirements on the arccot} and arccotcy, approximation helper functiensvare:

rccoty, (1) = /4

afccoty,(0) = m/2

=)

afccoty,(—x) = —arccot,(x) ifre Fandx #0

afccotcy,(x) = arccoty,(x) ifreFandz >0

afccotcy,(—1) =3 -7 /4

afccotcy(z) =7 if x € F and grecotcy;(x) # arccotc(x) and

x < =3, re)epsilonp

The arccot}iE and arccotc}’ié range limitation helper functions (for z € F'):

ccotﬁ(x) = max{upp(—n/2), min{arccoty,(z)ydownp(mw/2)}}
rccotcﬁf(w) = min{arccotcy,(z), downp(m)}

S 9

The|arccotr operation:

afccotp : F'— F U {underflow}

afccotp(x) = result}(arccotﬁf(x),nearestp)
ifxeF
= upp(+m/2) ifx=-0
=-0 if x =—00
=0 if x =400
=-no_resultp(x) otherwise
NOTES
1| arccotplnegr(z)) = negr(arccot p(x)).
2| Duesesthe range limitation, arccotr(0) need not equal arccoter(0).

The| af.ecotcr operation:

arccotcy : I'— I'U {undertlow }

arccotcp(x) = result}; (cw“ccotcl[tE (x))
ifeeF
= nearestp(n/2) ife=-0
= downp () if z =—o00
=0 if x = +o00
= no_resultp(x) otherwise

40 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

NOTE 3 - arccotcp(z) = arcp(z,1). (arcp is specified in subclause 5.3.8.15 below.)

5.3.8.13 Radian arc secant

The arcsecy. approximation helper function:
arcsecp : F'— R
arcsecj(x) returns a close approximation to arcsec(x) in R, with maximum error max_error_tang.

Further requirements on the arcsecy approximation helper function are:

arcsecy,(2) =7/3

arcsecy(—2) =2-7/3

arcsecF(1) =

arcsecy,(x) <7r/2 ifze Fandz >0

arcsecp(x) > m/2 ifz € Fandx <0

arcsecp.(x) = m/2 if x € F and arcsecy;(x) #arcsec(z) and

|x| >3- rp/epsilong

The arcsec}% range limitation helper function (for z € F'):
arcsecﬁ (z) = min{aresecy,(z), downp(m/2)}
fxz>1
= max{upp(7/2), min{arcsecy(x); downp(m)}}
if x <1

The arcsecr operation:

arcsecp : F'— F U {invalid}

arcsecp(x) = result}(arcsecfﬁ (x)snearestr)
ifx € Fand 1 < |z
= upp(m/2) if 2 = —o00
= downp(m /2) if 2 =400
= no_resuttp(x) otherwise

5.3.8.14 Radian arc_cosecant

The ¢recescy, approximiation helper function:
arcescp A= R
arccdcy,(z) returns a close approximation to arccsc(x) in R, with maximum error maz_errof_tang.

Fyrther tequirements on the arccscy. approximation helper function are:

e Y — = /6
trreesei{ =16
arcescy (1) = /2
arcesc(—x) = —arcescy(x) ifeeF
The arccsc}iE range limitation helper function (for z € F):

arccscﬁf () = max{upp(—n/2), min{arcescy.(x), downp(n/2)}}

The arccscg operation:

arccscp : F'— F U {underflow, invalid }

5.3.8 Operations for radian trigonometric elementary functions 41

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

arcescp(x) = resulty; (arccsclf (z),nearestr)
ifx € Fandl< |z
=-0 if £ =—o00
=0 if x =400
= no_resultp(x) otherwise

5.3.8.15 Radian angle from Cartesian co-ordinates

The arc}, approximation helper function:
arcp : F x F — R

arcy(x} y) returns a close approximation to arc(z,y) in R, with maximum error max_error_fang.

NOTE 1 — The arc operations, with the arguments swapped, are often called arctan2!

Furfher requirements on the arcy approximation helper function are:

afci(z,0) =0 ifre Fandz >0
afcp(x,x) =m/4 ifre Fandz >0
afci(0,y) =m/2 ifye Fandy >0
afcp(x,—x) =3 -7/4 ifre Fandz <0
afcip(z,0) =7 ifre Fandz <P
afcy(z, —y) = —arcp(z,y) if x,y € F and (&7 0 or z > 0)

The arcﬁf range limitation helper function (for z,y € F):

rcﬁ (z,y) = max{upp(—n), min{arcy(z,y), downg(r)}}

The| arcg operation:

afcp : F x F— FU{underflow}

=)

afcp(x,y) = result}(arcﬁf(m,y),nearestp)
ifx,y € Fand (x# 0 or y #0)
=0 ifr=0and y=0
= downp(m) ifr=—-0andy=0
= arcp(0,4) ifr =—0and y € FU{—00,400} and y A0
= negr(aner(x,0)) ify=—-0and z € FU{—00,—0,4+00}
=0 ifr=4occandye€ Fandy >0
=—0 ifxr=+4oc0and y€ Fand y <0
=mnearestp(m/4) if z =400 and y = 400
= nearestp(m/2) if v € Fand y = 400
= nearestp(3 - 7/4) it = —o0 and y = 400
= downp(m) ifx =—oc0and y € Fandy >0
= upp(—m ifx=—oc0oandy € Fand y <0
= nearestp(—3 - w/4) if z =—o00 and y = —00
= nearestp(—m/2) ifzeFandy=—o00
= nearestp(—m/4) if 2 =400 and y = —00
= no_result2r(z,y) otherwise
NOTE 2 - Note that the arc operations do not return an invalid notification at the origin

(both arguments in {—0,0}). See B.5.3.8. Bindings may choose to alter this behaviour.

42 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.9

Operations for trigonometrics with given angular unit

ISO/IEC 10967-2:2001(E)

There shall be one big-angle parameter for argument angular-unit trigonometric operations:

big_angle_up € F

It should have the following default value:

big-angle_up = [T?F/ﬂ/fﬂ

A binding or implementation can include a method to change the value of this parameter. This
method should only allow the value of this parameter to be set to a value greater than or equal

to 1 and such that ulp p(big-angle_ur) < 1/2000.

Faq

Note
appr
Td

Ld

TF

ere shall be a derived parameter signifying the minimum allowed angular unit;
min_angular_unityp = rp - fminNp /epsilonp

NOTE 2 — That is, min_angular unitp = rgfmmeHpF)
r use in the approximation helper function’s signatures, define
F'=(FU{n-u/8n-u/l2 | ne€ Z})N|[-big-angleup - |u|,big.angle-up - |u|]

that u is a parameter here, a parameter which is the valué\of the first argument
ximation helper function. To signify this, the notation (u-:\F') is used below.

make the specifications below a bit easier to express, let

Grp={x € F | min_angular_unitp < |z|}.

com

T

metri

For

The
u €
The

max |

5.3.9

The
the a

t T = {1,2,360,400,6400}. T consists of angle/vdlues for exactly one revolution fd
on non-radian angular units: cycles, half-cycles, arc degrees, grades, and mils.

ere shall be two parameterised maximum error parameters for argument angular-unit {
c operations:

max_error_sinup : F' — F U {invalid }
max_error_tanup : F' — F U {invalid}

€ Gp, the max_error_sinug(w) parameter shall have a value that is < 2 - maz_erro
mazx_error_sinup(u) parameéter shall have the value of max_error_sing if |u| €
77, the max_error_tanwp(u) parameter shall have a value that is < 2 - maz_erro

error_sinup(u)-and max_error_tanup(u) parameters return invalid(gNaN) if u ¢

.1 Argtument angular-unit angle normalisation

rgument angular-unit normalisation computes exactly rad(2 -7 - x/u) - u/(2 - 7), whi
hgular value, and u is the angular unit.

maz_error_tanurp () parameter shall have the value of max_error_tang if |u| € 7.

to the

T some

rigono-

r_sing.

T. For

_tang.

(G F.

ere x is

The cycler operation:

5.3.9

cyclep : F x F — F U {—0, absolute_precision_underflow, invalid }

cycler(u, x) = residuep(z,u) if ue Gp and (z = —0 or
(x € F and |x/u| < big_angle_ur))
= absolute_precision_underflow(qNaN)

ifue Gp and x € F and |x/u| > big_angle_up

= no_result2r (u, x) otherwise

Operations for trigonometrics with given angular unit

43

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

The axis_cycler operation:

aZCiS_Cg/Clep FXF — ({(170)7 (07 1)7 (_170)7 (07 _1)} X (F U {_0}))U
{absolute_precision_underflow, invalid }

azis_cyclep(u, x)
= (azis(u,), resultp(x — (round(x - 4/u) - u/4), nearestr))
ifue Gp and x € F and |z/u| < big-angle_ur and
(/u>0or x — (round(z - 4/u) - u/4) # 0)

= (axis(u,x),—0) ifue Gp and x € F and |z/u| < big-angle_ur and
z/u <0 and x — (round(z - 4/u) - u/4) =0
= ((1,0),—0) itfue Gp and x = -0

= absolute_precision_underflow((gNaN, gNaN),qgNaN)
ifue Gp and x € F and |z/u| > big.anglq-ur
= ((qNaN, gNaN), gNaN)
if at least one of x and u is a quietiNaN and
neither is a signalling NaN

= invalid((gNalN, gNaN), gNaNN)

otherwise
where
aris(u, J") - (17 O) lf round(m . 4/u) ~=4.n
=(0,1) if round(z - 4/u}=4-n+1
=(-1,0) if round(x,- 4fu) =4 -n+ 2
=(0,-1) if round(x~4/u) =4-n+3

for sonje n € Z.

OTES

azis_cyclep(u, x) is exact when divp(uM) = u/4.

N

1

2| cycler is an exact operation.

3| cyclep(u,x) is —0 or has a resulf)in the interval [—|u/2|, |u/2]] if there is no notification.
4] A zero resulting angle is negative if the original angle value is negative.

5

The cycler operation is‘used also in the specifications of the unit argument trigonometric
operations. This does ‘not imply that the implementation has to use the cycler operation,
when implementing-the operations. It only implies that the results (including notifications)
must be as if the.cycler operation was used.

5.3.9.2 Argwnént angular-unit sine

The sipuy (approximation helper function:
stul s (w: F) x F* 5 R

sinuj.(u,) returns a close approximation to sin(x - 2 - w/u) in R if w # 0, with maximum error

maz_error_sinup(u).

Further requirements on the sinu} approximation helper function are:

sinuy,(u,n - u+) = sinuj(u,) ifne Zandue Fand u# 0 and x € F*
sinuy(u,u/12) =1/2 ifue Fandu#0
sinup(u, u/4) =1 ifue Fandu#0

44 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

sinuy(u, b5 - u/12) = 1/2 ifue Fandu#0
sinuy(u, —) = —sinuj(u,) ifue Fand u#0and ze F"
sinuy,(—u,) = —sinuj(u, x) ifue Fandu#0andzeF"

NOTE - sinui(u,z) =z -2 -w/uif |z-2-7/u] < fminNg.
The sinup operation:

sinup : F x F — F U {—0, underflow, absolute_precision_underflow, invalid }

sinup(u,) = result}; (sinu}, (u,), nearestr)
if cyclep(u,xz) € F and cyclep(u,z) & {—u/2,0,u/2}
= divp(0,u) if cyclep(u,x) € {0,u/2}
— f"’l’flVﬁ(n /)l\ ';F f‘/TII‘IDﬁ(/TI ’Y‘\ ey J’ 2L /‘) nl
JAN 7 T I\ T U 7= J
= cyclep(u, x) otherwise

5.3.9.3 Argument angular-unit cosine

The ¢osu} approximation helper function:
cosup : (u: F)x F* - R

cosuit(u,) returns a close approximation to cos(z - 2 - m/u) in R.if # 0, with maximufn error
max Jerror_sinup(u).

Fyrther requirements on the cosu}, approximation helper fufiction are:

cosuf(u,n - u+ x) = cosui(u,) ifne Zandu e Fandu#0and x € F
cosuy(u,0) =1 if u gF)and u # 0

cosuj(u,u/6) =1/2 ifu & F and u # 0
cosup(u,u/3) = —1/2 ifw e F and u # 0

cosup(u,u/2) = —1 if u € F and u # 0

cosuf,(u, —x) = cosuj(u, x) ifue Fandu#0andzeF"
cosuy(—u,x) = cosui(u,) ifue Fand u#0and z e F*

NOTE - cosu(u,z) = 1 should-hold if |z -2 - 7/u| < \/epsilong/rp
The cosup operation:

cosup : F' x F — F U {underflow, absolute_precision_underflow, invalid }

cosup(u,x) = result,(cosu},(u, x), nearest)
if cyclep(u,z) € F
=1 if cyclep(u,xz) = —0
= cyclep(u, x) otherwise

5.3.9.4 (Argument angular-unit tangent

The tammapproximmation retper fumnction:
tanuj, : (u: F) x F* = R

tanu},(u,) returns a close approximation to tan(x -2 - 7/u) in R if u # 0, with maximum error
mazx_error_tanup(u).

Further requirements on the tanu}. approximation helper function are:

5.3.9 Operations for trigonometrics with given angular unit 45

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

tanuy,(u,n - u+) = tanuj(u, x) iftne Zandue Fand u# 0 and x € F"
tanuj.(u,u/8) =1 ifue Fandu#0

tanuy,(u,3 - u/8) = ifue Fand u#0

tanuy(u, —x) = —tcmuF(u, x) ifue Fandu#0and z € F*

tanuy,(—u, x) = —tanuj,(u, v) ifue Fandu#0andzeF"

NOTE 1 - tenufp(u,z) = z-2-7/uif |z -2-7/u| < fminNg.
The tanup operation:

tanup : F x F'— F U {—0, underflow, overflow, infinitary,
absolute_precision_underflow, invalid }

t el — resultt (tanut (o) nearesta)
’ AN F oo)3 7
if cyclep(u, x) € F and
cyclep(u,z) & {—u/2, —u/4,0,u/4%)2}
= divp(0, u) if cyclep(u,x) € {—u/2,0}
= divp(—0,u) if cyclep(u, x) € {—0,u/2}
= 1nﬁn1tary(+oo) if cyclep(u,x) = u/4
= infinitary(—o0) if cyclep(u,x) = —u/4
= cyclep(u, x) otherwise

NOTE 2 — The infinitary notification can arise for tanup(u, z) onlywhen u/4 is in F.

5.3.9.8 Argument angular-unit cotangent

The cofu} approximation helper function:
ptuy, : (u: F) x F* —= R

cotu’,({,) returns a close approximation to cot{z™ 2 - m/u) in R if u # 0, with maximum|error
maz_efror_tanup(u).

@)

Furfher requirements on the cotu}. approximation helper function are:

cptuy(u,n - u+) = cotuj(u, x) iftne Zandue Fand u# 0 and x € F"
cptul(u,u/8) =1 ifue Fandu#0

cptuy(u,3 - u/8) = —1 ifue Fandu#0

eptul (u, —x) = —cotuy, (U i) ifue Fandu#0and z € F"

eptuls(—u,) = —cotty, (u,) ifue Fandu#0andzeF"

The| cotur operationt

tup : F' X F% F U {-0,underflow, overflow, infinitary,
absolute_precision_underflow, invalid}

)

Dt (Ut = result};(cotul,(u, x), nearesty)
if cyclep(u,x) € F and
cyclep(u.x) & {—u/2, —u/4.0.u/2}

@)

=-0 if cyclep(u,x) = —u/4
= divp(u, tanup(u,x)) if cyclep(u, x) € {—u/2,—-0,0,u/2}
= cyclep(u, x) otherwise

46 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.9.6 Argument angular-unit secant

The secu}, approximation helper function:

secup : (u: F) x F* - R

ISO/IEC 10967-2:2001(E)

secu’;(u, x) returns a close approximation to sec(x -2 - m/u) in R if u # 0, with maximum error

max_

error_tanup(u).

Further requirements on the secuy approximation helper function are:

The secur operation:

5.3.9
The

*
cscu
max]

Fy

secup.(u,n - u+ x) = secu(u,) ifne Zand ue Fand u#0and x € F"
secuy(u,0) =1 ifue Fandu#0

Qﬁl“?l; (41771/ﬁ\ =2 fucE andyu£Q

secut.(u,u/3) = —2 ifue Fandu#0

secut(u,u/2) = —1 ifue Fandu#0

secut.(u, —x) = secus.(u,) ifue Fand u#0andze F*
secuf,(—u, x) = secu(u,) ifue Fand u#0and z € P4

secup : F x F — F U {overflow, infinitary, absolute_precision_underflow, invali

secup(u,x) = result},(secul.(u, x), nearesty)
if cycler(u, z) € K and

x
cyclep(u,)& {—u/4,u/4}
= divp(1,cosup(u,z)) if cyclep(ug) € {—u/4,—0,u/4}
= cyclep(u, x) otherwisé

.7 Argument angular-unit cosecant

scuy, approximation helper function:

cscup : (u: F)x F* =R

(u,) returns a close approximation to csc(z -2 - 7/u) in R if u # 0, with maximuy
error_tanup(u).

rther requirements on the)cscuy, approximation helper function are:

cscup(u,n - u + x) = cscup(u,) ifne Zandu e Fandue€0and x € F
cscuf(u,u/12) =2 ifue Fandu#0

cscuf(u,u/d) £ 1 ifue Fandu#0

cscup(u, 5 - f12) = 2 ifue Fandu#0

cscuf(u, &) = —cscuy(u,) ifue Fand u#0andze F*
cscup(s, x) = —escul(u, x) ifue Fandu#0andze F"

The cseup operation:

5.3.9

1 error

cscup(u, x) = result},(cscu},(u, x), nearestp)
if cyclep(u,x) € F' and
cyclep(u,z) & {—u/2,0,u/2}
= divp(1, sinup(u,z)) if cyclep(u,x) € {—u/2,—-0,0,u/2}
= cyclep(u, x) otherwise

Operations for trigonometrics with given angular unit

47

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.9.8 Argument angular-unit cosine with sine

© ISO/IEC 2001 — All rights reserved

cossinup : F' x F — (F x (FU{-0})) U{underflow, absolute_precision_underflow,

invalid}
cossinup(u,z) = (cosup(u,x),sinup(u,x))
NOTES
1 If there is an absolute_precision_underflow notification, then both result parts suffer

from the absolute_precision_underflow and the continuation values for both parts are
gNaN. Similarly for NaN and infinitary arguments, as well as an angular unit with too

5.3.9.9

The ar|
a

arcsin
max._e

Furt
a
a
a
a
N

The

)

The
a

(e}

5.3.9.1

crnall aboalite valiio

If there is an underflow notification, only one of the result parts suffer from the underftow;
and the other part has an absolute value greater than fminNg.

Argument angular-unit arc sine
Ccsinuy, approximation helper function:
csinup : Fx FF— R
7(u,) returns a close approximation to arcsin(z) - u/(2.:(r)'in R, with maximum
ror_sinup(u).
her requirements on the arcsinu} approximation helper function are:
csinuy(u, 1/2) = u/12 itueF
resinuy(u, 1) = u/4 it ug ¥
csinuy(u, —x) = —arcsinuj(u,) if‘gw € F
esinuy,(—u, x) = —arcsinuj,(u, x) Wu,x € F
OTE - arcsinup(u,z) ~u/(2-m) if |z[\<fminNp.
arcsinuﬁ range limitation helpen fimction (for u,z € F):
csinuﬁ(u, x) = max{upp(—|#/4|), min{arcsinuj,(u, z), downp(|u/4])}}
arcsinup operation:
csinup @ F' x F — FJ{—0,underflow, invalid }
csinup(u,x) =resulty (arcsinuﬁ(u, x),nearesty)
ifue Gpand x € F and |z| <1 and z #
= mulp(u,) if u e Gp and z € {-0,0}
= no_result2r(u, x) otherwise

0<{/ Argument angular-unit arc cosine

The ar

ccosuy, approximation helper function:

arccosup : ' x F — R

error

arccosuj;(u, x) returns a close approximation to arccos(z) - /(2 - 7) in R, with maximum error
maz_error_sinup(u).

Further requirements on the arccosu}, approximation helper function are:

48

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

arccosuy,(u,1/2) = u/6 ifueF

arccosuj(u,0) = u/4 ifueF

arccosuy,(u, —1/2) = u/3 ifueF

arccosuj(u, —1) = u/2 ifueF

arccosuy,(—u,r) = —arccosuj(u, x) if u,z € F
#

The arccosuj. range limitation helper function (for u,z € F):
arccosu}% (u,) = max{upp(—|u/2|), min{arccosu},(u, z), downp(|u/2|)}}
The arccosup operation:

arccosup : F' x F' — F U {underflow, invalid }

arccosup(u,x) = result}(arccasuﬁ (u,x),nearestp)
ifueGpandz e F and |z| <1
= nearestr(u/4) ifue Gpand x =—-0
= no_result2r (u, x) otherwise

5.3.9.11 Argument angular-unit arc tangent

The grctanuy, approximation helper function:
arctanuy : F x F'— R

arctanu},(u, x) returns a close approximation to arctan(x) ~u/(2 - m) in R, with maximufn error
max Jerror_tanup(u).

Fyrther requirements on the arctanuy, approximation helper function are:

arctanuj(u,1) = u/8 ifwe F
arctanuy,(u, z) = u/4 if u,z € F and arctanuj.(u,) # arctan(g) - u/(2 - 7)
and x > 3 - rp/epsilonp
arctanuy,(u, —z) = —arctanuj (u,) if u,z € F
arctanuy,(—u,r) = —arctanuj,(uyx) ifu,x e F
NOTE 1 - arctanuf(u,z) =~ wif2 - n) if |x| < fminNp
The arctanuﬁ range limitatién helper function (for u,z € F):

arctanuﬁ (u, z) = max{upp(—|u/4|), min{arctanu},(u, x), downp(|u/4|)} }

The arctanur operation:

arctanup : E xF — F U {-0,underflow, invalid}

arctanup{yx) = Tesult}(arctanuif (u, x),nearestp)
ifueGrpandx € Fand z #0

= mulp(z,u) if u € Gp and z € {—0,0}

= upp(—u/4) ifue Gpand x = —o00 and u > 0
= downrg(u/4) HueGpand x=+00 and u > U
= downp(—u/4) ifueGpand x =—00 and u < 0
= upp(u/4) ifue Gp and z =400 and u < 0
= no_result2r (u, x) otherwise

NOTE 2 - arctanup(u,z) = arcup(u,1,z). (arcur is specified in subclause 5.3.9.15 below.)

5.3.9 Operations for trigonometrics with given angular unit 49

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.9.12 Argument angular-unit arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)
arccotc (both for non-radian angular units).

The arccotu}. approximation helper function:
arccotuy, : F x F' — R

arccotu},(u,) returns a close approximation to arccot(z) - u/(2 - m) in R, with maximum error
mazx_error_tanup(u).

The, n'r'r‘r'nfrm; approximation helper function:

afccotcuy, : Fx F'— R

arccotdquy.(u,) returns a close approximation to arccotc(x) - u/(2 - 7) in R, with maximum|error
maz_efror_tanup(u).

Furfher requirements on the arccotuy and arccotcuy, approximation helperfunctions ar¢:

afccotuls(u,1) = u/8 ifueF

afccotut,(u,0) = u/4 itueF

afccotuy,(u, —z) = —arccotuy,(u,) if u,z € F and z #0

afccotcuy(u, x) = arccotuy,(u,) ifu,z e Fandw> 0

afccotcuy(u,—1) =3 - u/8 ifueF

afccotcur(u, x) = u/2 if v,z &K and arccotcu},(u, x) # arccote(q) - u/(2 -)
and\e < =3 - rp/epsilonp

afccotcuy,(—u, x) = —arccotcuy.(u, x) ifuype F

The arccotul{tE and arccotcuﬁ range limitatioichelper functions (for u,x € F):

=)

ccotu}ié (u,x) = max{upp(—|u/4]), min{arccotu},(u,), downp(|u/4])}}

ccotcu}iE (u, x) = max{upp(—|u/2f)y min{arccotcuy,(u, x), downp(ju/2|)}}

=)

The| arccotur operation:

=)

recotup @ F' x F— F U {uhderflow, invalid}

=)

rccotup (u,) = Tesult}(arccotuff (u,x),nearestp)

fueGrpand x € F
=wegr(arccotup(u,0)) if u e Gp and x = -0
= divp(u,) if u e Gp and x € {—00,+00}
= no_result2p(u, x) otherwise

Z

OTES

arecoturp (u, negr(x)) = negp(arccotup (u, x)).

[

DO

Diie to the range limitation, arccotug(w.0) need not equal arccotcur(u,0).

The arccotcur operation:

arccotcup : F' x F'— F U {underflow, invalid }

arccotcup(u,x) = result (arccotcu? (u,x),nearest)

fueGrpand x € F
= nearestp(u/4) ifue Gp and x = -0
= downp(u/2) ifueGpand x =—o0 and u >0

50 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

= upp(u/2) ifue Gp and x = —00 and u < 0
= divp(u,) if u € Gp and x = 400
= no_result2r (u, x) otherwise

NOTE 3 — arccotcur(u,x) = arcup(u,z,1). (arcup is specified in subclause 5.3.9.15 below.)

5.3.9.13 Argument angular-unit arc secant

The arcsecu}, approximation helper function:

arcsecup, : F x FF =R

arcs r"ui (fu)'r) returns a close apprnvimaﬁnh to QY‘FQDP('}") . fn//(‘) . ’Tl‘) in R _with maximu

max Jerror_tanup(u).

Fyrther requirements on the arcsecu} approximation helper function are:

arcsecut,(u,2) = u/6 ifueF
arcsecuy(u, —2) = u/3 ifueF
arcsecuy,(u, —1) = u/2 ifueF
arcsecuwy(u,r) < u/4 if u,z € F and z > 0,and u > 0
arcsecup(u,) > u/4 if u,z € F and z <0 and u > 0
arcsecuf,(u,) = u/4 if u,z € F and gresecu,(u,) # arcsec(
and |z| > 3CnE/epsilonp

arcsecuy,(—u,x) = —arcsecuy.(u, x) ifu,zeF

The arcsecuﬁ range limitation helper function (form% € F):
arcsecuﬁ(u,:v) = max{upp(—|u/4|), min{arcsécuy. (u,), downp(ju/4()}}

it >1

= max{upr(u/4), min{avesecu},(u, z), downp(u/2)}}
fr<—-landu>0

= max{upr(u/2),min{arcsecuy,(u, z), downp(u/4)}}
fz<—-landu<O

The arcsecur operation:

arcsecup : F x F — F U{underflow, invalid}

arcsecup(u,xr) = 7“esult>“F(arcsecu}‘?£ (u,x),nearestp)
ifue Gpand z € F and 1 < ||
= downp(u/4) ifue Gp and x = —o00 and u > 0
= upp(u/4) ifue Gp and = +o0 and u > 0
= upp(u/4) ifue Gp and x = —o00 and u <0
= downp(u/4) ifue Gp and z =400 and u < 0
= no_result2r (u, x) otherwise

error

) - u/(2-)

5.3.9.14 Argument angular-unit arc cosecant

The arcecscuy, approximation helper function:

arcescuyp : FFX F— R

5.3.9 Operations for trigonometrics with given angular unit

51

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

arccscuy.(u, x) returns a close approximation to arccsc(z) - u/(2 - m) in R, with maximum error
max_error_tanup(u).

Further requirements on the arccscu}. approximation helper function are:

a
a
a
a

The
a
The|

Q

Q

5.3.9.1

The ar|

reescuy(u, 2) = u/12 itueF
reescuy(u, 1) = u/4 ifueF
reescuj(u, —x) = —arcescu(u, x) ifu,xeF
reescuy,(—u, x) = —arcescu, (u,) ifu,zeF
arccscuﬁ range limitation helper function (for u,x € F):
rccscuﬁ(u,:n) = max{upr(—|u/4|), min{arcescuy(u, x), downp(|u/4|)}}
arccscup operation:
ccscup : F' x F'— F U {underflow, invalid }
cescup(u,x) = resulty (arccscuﬁf (u,x),nearestp)
ifue Gpand z € F and 1 < (z
= mulp(—u,0) if u e Gp and z = —o0
= mulp(u,0) ifu € G and = 400
= no_result2r(u, x) otherwise

5 Argument angular-unit angle from Cartesian.co-ordinates

cuy, approximation helper function:

afcuy : F X FxF —TR
arcuy(ju, x,y) returns a close approximation to ar¢(r,y) - u/(2 - 7) in R, with maximum
maz_efror_tanup(u).

Furfher requirements on the arcuy approximation helper function are:
afcuy(u, z,x) = u/8 ifu,z € Fand z >0
afcujs(u,0,y) = u/4 ifu,y € Fand y >0
afcuy(u, z, —x) =3 - u/8 ifu,z € Fand x <0
afcuj(u,x,0) = u/2 ifu,x € Fand z <0
afcuy(u, z, —y) = —arcui{u, z,y) ifu,z,y € F and (y #0 or z > 0)
afcul(—u, x,y) = =drcuy(u, z,y) ifu,z,y € F

The arcu}iE range lithitation helper function (for u,z,y € F):

a cuﬁf(u,x,y) = max{upp(—|u/2|), min{arcu},(u, z,y), downp(|u/2|)}}

The| arcup. 6peration:
afcuf yF x F x F — F U {-0,underflow, invalid }
alccp (1 y\ = rpqwlf}(nrm:f(w h y\ nearestp)

52

error

ifue Grand z,y € F and (x < 0 or y # 0)

= mulp(u,0) ifueGrandax € Fand x >0and y =0

= downp(u/2) ifueGrpand x =—0and y=0and u >0

= upp(u/2) ifueGrpand x =—0and y=0and u <0

= arcup(u,0,y) ifue Gp and x =—0 and y € F U {—00,+00} and
y#0

= negr(arcup(u,z,0)) ifu € Gp and y =—0 and z € F U {—00,—0,+00}

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

5.3.1

5.3.1

Definl

The rad_-to_cycle}, approximation helper function:

rad_{]
max.

Fy

= mulp(0,u) ifueGpand x =400 and y € Fand y >0

= mulr(0, —u) ifueGrpand x =400 and y € Fand y <0

= nearestp(u/8) if u € Gp and x = 400 and y = 400

= nearestp(u/4) ifue Gp and x € F and y = 400

= nearestp(3 - u/8) if u € Gp and x = —00 and y = 400

= downp(u/2) if ue Gp and x = —o0 and y € F' and
y>0and u>0

= upp(—u/2) if u€ Gr and z = —o0 and y € F and
y<0andu>0

= qlpih(w//‘)\ HucGrandr—=—ocoandycF and
y>0and u<0

= downp(—u/2) if u € Gp and x = —o00 and y € F dnd
y<0and u <0

= nearestp(—3 - u/8) if u € Gp and x = —00 and y*="—00

= nearestp(—u/4) if ue G and x € F and y==*o00

= nearestp(—u/8) if u € Gp and x = 400 and y = —00

= no_result3p (u, z,y) otherwise

NOTE - Note that the arc operations do not return aninvalid notification at the origjn

(both second and third arguments in {—0,0}). See B.5.3.87and B.5.3.9. Bindings may choo
to alter this behaviour.

0 Operations for angular-unit conversions
0.1 Converting radian angle to argument angular-unit angle

e the mathematical function:
rad_tocycle : RxR —-R

rad_to_cycle(x,w) = arccos(cos(z)) -w/(2-m) ifsin(x) >0 and w #0
= L arccos(cos(z)) - w/(2-m) if sin(x) <0 and w#0

rad_to_cyclel, v '™ x F — R

p_cycles,(z, w)veturns a close approximation to rad_to_cycle(xz,w) in R, with maximu

N error

error_radg, if |z| < big-angle_rp.

rtherTequirements on the rad_to_cycle}, approximation helper function are (for w €|F):
raddo_cycley,(n-2-m+7/6,w) =w/12 ifne Zand |n-2 -7+ 7/6| < big.anglelrp
Tadtocyclep(n-2 -7 F /4, w) =w/S it ne 2 and (n- 2 -7 Fn/4 < bigangte_ry
rad_to_cycley,(n-2 -7+ 7n/3,w) =w/6 ifneZand|n-2 -7+ x/3| < big.anglerp
rad_to_cycle,(n-2-m+7/2,w) =w/4 ifne Zand|n-2 -7+ 7/2| < big.angle_rp
rad_to_cycley,(n-2-7+2-7/3,w) =w/3

ifne Zand n-2-7+2-7/3| < big_anglerp

rad_to_cycley,(n-2 -7+ 3-7/4,w) =3 -w/8

ifne Zand |n-2 -7+ 3-7/4| < big-anglerp

5.3.10 Operations for angular-unit conversions

53

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.10}2 Converting argument angular-unit angle to radian angle

Define [the mathematical function:

The| cycle_to_rady, approximation helper furiction:

rad_to_cyclep,(n-2-m+5-7/6,w) =5 w/12
ifne Zand |n-2-7+5-7/6] < big-angle_rp

rad_to_cyclej,(n -2 -1+ m,w) =w/2 ifne Zand |n-2 -7+ 7| < big.anglerp
rad_to_cyclel,(—x, w) = —rad_to_cycle},(z, w)

if z € F2™ and rad_to_cycle(z,w) # w/2
rad_to_cyclej,(x, —w) = —rad_to_cycle},(z, w)

if z € F?™ and rad_to_cycle(z,w) # w/2

The rad_to_cycler operation:

rad_to_cycler : F x F' — F U {underflow, absolute_precision_underflow, invalid}

rad to cyclep(x, w)
= result};(rad_to_cycle},(x,w), nearesty)
if we Gp and z € F and |z| < big_angle_rr and
x#0
= mulp(w,) if we Gp and z € {-0,0}
= absolute_precision_underflow(qNaN)
if we G and z € F and|x)> big_angle_rp
= no_result2r (z,w) otherwise

cycle_torad : R xR — R

ycle_to_rad(u,x) = arccos(cos(z -2 - m/u)) if sin(z-2-7/u) >0
= —arccos(cos(z - 2 - /W) ifsin(x-2-7/u) <0

()

cycletorady, : (u: F) x F* - R

cycle_tp_rady(u, x) returns a close approximation to cycle_to_rad(u,x) in R, if u # 0, with maxi-

muim efror ma:c_error_radp.

54

Furfher requirements on the:¢ycle_to_rad}, approximation helper function are (for u |€ F,

u #0):

cycle_to_rady.(u,n - x) = cycle_to_rady,(u,)
ifne Zand x € F*

cle_to_rady(w,w/12) = 7/6
cle_to_radi-(u,u/8) = m/4
cle_tostady,(u,u/6) = /3
cle@orady(u,u/4) = m/2
eléto_rady(u,u/3) =2-7/3

F(

7

al

al

QO O O O

cycle_toradn(u,3 -u/8) =3 -7/4
cycle_toradi.(u,5-u/12) =5-7/6

cycle_toradi.(u,u/2) =m
cycle_to_rady,(u, —x) = —cycle_to_radj.(u, x)

if x € F* and cycle_to_rad(u,z) # 7
cycle_to_rady,(—u,z) = —cycle_to_rady(u, x)

if x € F* and cycle_to_rad(u,z) # 7

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The cycle_to_radp operation:
cycletoradp : F x F — F U {—0,underflow, absolute_precision_underflow, invalid}

cycle_to_radp(u,x)
= result};(cycle_to_rady,(u, x), nearestr)
if cyclep(u,z) € F and cyclep(u,z) # 0
= mulp(cyclep(u,x),u) if cyclep(u,z) € {—0,0}
= cyclep(u, x) otherwise

5.3.10.3 Converting argument angular-unit angle to (another) argument angular-

unit angle
&

Define the mathematical function:
cycle_to_cycle : RXR XR —>R

cycle_to_cycle(u, z,w)
= arccos(cos(z - 2-7/u)) - w/(2-)
ifu#0and w#0andsin(z-2-7/u) =P
= —arccos(cos(z -2 -7m/u)) - w/(2-m)
if u# 0 and w #0and sin(z -2 - 7/u) <P

The cycle_to_cycle}. approximation helper function:
cycle_to_cycley, : (u: F) x F* x FF - R

cyclelto_cycley,(u, x, w) returns a close approximation €0)cycle_to_cycle(u, z,w) in R if u # 0 and
|z/u||< big-angle_up, with maximum error max_error_radg.

Fifrther requirements on the cycle_to_cycle}, &pproximation helper function are (for u,jw € F,
u # ():
cycle_to_cycley,(u,n - u + x,w) = cycle_to_cycle},(u, x,w)
ifne Zandxe F*
cycle_to_cycles,(u, u/12, w) = w12
cycle_to_cyclel,(u, u/8, w) =w/8
cycle_to_cycles,(u, u/6, w)=w/6
cycle_to_cycley,(u, u/4,w) = w/4
cycle_to_cycley, (u,)3, w) = w/3
cycle_to_cyclep, (4, 3" u/8,w) =3 - w/8
cycle_to_cyclerfu, 5 - u/12,w) =5 - w/12
cycle_to_cycley,(u, u/2, w) = w/2
(

cycle_td_cycley,(u, —z, w) = —cycle_to_cycley,(u, z, w)

if z € F* and cycle_to_cycle(u, z,w) # w)2
cyele’to_cycley,(—u, x, w) = —cycle_to_cyclef.(u, z, w)

lf L& F’“ Cl/lld Lyblc_tu_b‘yulc(u],‘b, UJ) w 2
cycle_to_cycley,(u, x, —w) = —cycle_to_cycle}(u, z, w)

if x € F* and cycle_to_cycle(u,z,w) # w/2
The cycle_to_cycler operation:

cycle_to_cyclep : F x F x F' — F U {—0,underflow, absolute_precision_underflow,
invalid}

5.3.10 Operations for angular-unit conversions 55

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

cycle_to_cyclep(u, x,w)

5.3.11

= result};(cycle_to_cycley,(u, z,w), nearestr)

© ISO/IEC 2001 — All rights reserved

if w e Gp and cyclep(u,z) € F and cyclep(u,x) # 0

= mulp(w, cyclep(u,x)) if w € Gr and cyclep(u,z) € {—0,0}
= absolute_precision_underflow(qNaN)
if w € Gr and

cycler(u, z) = absolute_precision_underflow

= no_result3p(u,z,w) otherwise

Operations for hyperbolic elementary functions

There s
inverse

hall be two maximum error parameters for operations corresponding to the hyperboh
hyperbolic functions:

:Iax_error_sinhp eF

ax_error_tanhp € F

c and

The mqx_error_sinhg parameter shall have a value that is < 2-rnd_errorg. ,Fhié max_error_tanhpg
paramgter shall have a value that is < 2 - rnd_errorg.
5.3.11}]1 Hyperbolic sine
The siph} approximation helper function:
sfjnhyp : F — R
sinh}(fr) returns a close approximation to sinh(z) i\, with maximum error max_error_sfnhp.
Furfher requirements on the sinh}. approximation helper function are:
sfnhp(x) = if x € F and sinh},(z) # sinh(x) and
2| < /2 epsilong /T
sfnhy(—x) = —sinhj(x) iteeF
The| sinhp operation:
sfnhp : F — F U {overflow}
sfnhp(x) = resulty(sinh},(x), nearestr)
if x € F and |x| > fminNp
= if x € F and |z| < fminNp
=z if x € {—00,—0,+00}
= no_resultp(x) otherwise
NOTES
1| underflow is explicitly avoided.
2 Qq"nhF(”r\ will overflow npprnYimﬂfp]v when !7‘1 In(2 -f'mnfrr\

5.3.11.2 Hyperbolic cosine

The cosh}, approximation helper function:
coshp : F'— R

56

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

cosh},(z) returns a close approximation to cosh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the cosh}. approximation helper function are:

coshi(z) =1 if x € F and cosh},(x) # cosh(x) and
|z| < v/epsilong
cosh},(—x) = coshj.(x) ifreF

The relationship to the sinh% approximation helper function for the sinhp operation in the

same

library shall be:
cosh},(z) > sinhj.(x) ifeeF

The coshg operation:

5.3.1

The 1

tanh]
Fy

coshp : F — F U {overflow}

coshp(z) = result},(cosh},(z), nearestr)
ifeeF
=1 ifx =-0
= 400 if x € {—o00,+00}
= no_resultp(x) otherwise

NOTE - coshp(z) will overflow approximately when |z| > In(2 - fmdz).

1.3 Hyperbolic tangent
anh? approximation helper function:
tanhy : F — R
() returns a close approximation to tanh(") in R, with maximum error mazx_error,
rther requirements on the tanh} approximation helper function are:
tanhj(x) = x if z € F' and tanh},(x) # tanh(z) and
|z| < /1.5 - epsilong/rF
tanhj(x) =1 if z € F' and tanhj,(x) # tanh(z) and
x > arctanh(1 — (epsilong /(3 -rFp)))
tanhy,(—x) = —tanh}, () ifeeF
The tanhg operation
tanhp : F — F
tanhp(x) = result},(tanh}.(x), nearestr)
if x € F and |z| > fminNp
==z if z € F and |z| < fminNp
=-0 ifx=-0
=—1 if r=—00
=1 if ¢ = 400
= no_resultp(x) otherwise

NOTE - underflow is explicitly avoided.

5.3.11 Operations for hyperbolic elementary functions

tanhp.

57

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.11.4 Hyperbolic cotangent

The coth}, approximation helper function:
cothp, : F'— R
coth¥,(x) returns a close approximation to coth(z) in R, with maximum error maz_error_tanhp.

Further requirements on the coth}. approximation helper function are:

coth(xz) =1 if x € F and coth},(x) # coth(z) and
x > arccoth(1 + (epsilonp/4))
cothy,(—x) = —coth}(x) iteeF

Thercothz operation:

cpthp : F — F U {infinitary, overflow}

cpthp(z) = result},(coth},(x), nearesty)
ifxe Fand x #0
= infinitary(+o00) ite=0
= infinitary(—oo) ife=-0
=-1 if v =—o00
=1 if x = 400
= no_resultp(x) otherwise

NOTE - cothp(x) will overflow approximately when |1/z| &) fmaz .

5.3.11}5 Hyperbolic secant

The seph}. approximation helper function:
spchp : F — R
sech}.(Jr) returns a close approximation t@®ech(x) in R, with maximum error maz_error_tgnhp.

Furfher requirements on the sechyz{approximation helper function are:

spchi(z) =1 if x € F and sech}.(x) # sech(x) and
|x| < /epsilong/rp
spchy,(—x) = sechy, () ifreF
spchi(x) < fminDEf2 if v € F and > 2 — In(fminDr /4)
The| sechr operatiow:
spchp : F <.F U {underflow}
spchp () = result};(sech}.(x), nearestr)
iteeF
=0 if x € {—00,+00}
= no_resultp(x) otherwise

58 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.11.6 Hyperbolic cosecant

The csch}, approximation helper function:
cschy : FF — R
cschy,(z) returns a close approximation to csch(x) in R, with maximum error max_error_tanhp.
Further requirements on the csch}. approximation helper function are:

cschiy(—x) = —eschy () ifereF
cschi(x) < fminDp /2 if x € F and x > 2 — In(fminDr/4)

The relationship to the sech}. approximation helper function for the sechr operation in the

same[tibrarystmattbe:

cschi(x) > sechi.(x) ifre Fandx >0

The cschp operation:

cschp : F — F U {underflow, overflow, infinitary}

cschp(x) = result};(cschi,(z), nearestr)
ifxe Fand z#0
= divp(1,x) if x € {—00,—0,0,+00}
= no_resultp(x) otherwise

NOTE - cschp(z) will overflow approximately when {I/z[> fmaz .

5.3.1§1.7 Inverse hyperbolic sine

The gresinh}, approximation helper functions
arcsinhy : FF' — R
arcsiph},(x) returns a close approximation to arcsinh(z) in R, with maximum error maz_erfor_sinhp.

Fyrther requirements on the arcsinh}. approximation helper function are:

arcsinh},(z) = if z € F and arcsinh},(z) # arcsinh(x) apd
|z| < /3 - epsilong/rF
arcsinhj,(—x) = =arcsinhj(x) ifereF

The arcsinhp operation:

arcsinhp sEv— F

arcsinhp(z) = result}(arcsinhi,(z), nearestr)
if x € F and |z| > fminNp
=z if x € F and |z| < fminNp
=T itz = {—00,—0,+0;}
= no_resultp(x) otherwise

NOTE - underflow is explicitly avoided.

5.83.11 Operations for hyperbolic elementary functions 59

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/T

5.3.11

EC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

.8 Inverse hyperbolic cosine

The arccosh}, approximation helper function:

arccoshp, : ' — R

arccosh};(x) returns a close approximation to arccosh(x) in R, with maximum error max_error_sinhp.

The relationship to the arcsinh? approximation helper function for the arcsinhr operation in
the same library shall be:

arccoshy,(x) < arcsinh(x) iteeF

The arccoshp operation:

=)

5.3.11

afrccoshp : F — F U {invalid}

ccoshp(x) = resulty;(arccoshi,(z), nearestr)
fzeFandx >1
= 400 if x =400
= no_resultp(x) otherwise
9 Inverse hyperbolic tangent

The arftanh}, approximation helper function:

(e}

arctan

ctanhy : F — R

h7-(x) returns a close approximation to arctanh(z) iR, with maximum error max_err

Furfher requirements on the arctanh¥ approximatioh helper function are:

(o}

)

The

)

=)

ctanh},(z) = ife e F and arctanh},(v) # arctanh(z) an
|z| < \/epsilong/rE
ctanh},(—z) = —arctanhi,(x) ifreF
arctanhp operation:
ctanhp : F — F U {infinitary;invalid}
ctanhp(x) = resulty,(grctanhy,(z), nearestr)
if x € F and fminNp < |z| <1
=2z if x € F and |z| < fminNp
==0 ifx=-0
='infinitary(+o0) ife=1
= infinitary(—o0) ife=-1
= no_resultp(x) otherwise

OTE_* underflow is explicitly avoided.

br_tanhp.

jom

5.3.11.10 Inverse hyperbolic cotangent

The ar

ccoth}. approximation helper function:

arccothp, : ' — R

arccoth’;(z) returns a close approximation to arccoth(x) in R, with maximum error max_error_tanhp.

A further requirement on the arccoth}, approximation helper function is:

60

Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

arccothy,(—x) = —arccoth},(x) ifeeF
The arccothg operation:

arccothp : F — F U {underflow, infinitary, invalid }

arccothp(x) = resulty,(arccoth},(x), nearestr)
ifx € Fand || > 1
= infinitary(+o00) ife=1
= infinitary(—o0) ifx =-1
=-0 if v =—00
=0 if x =400
= no_resultp(x) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point_types
e.g. IEC 60559 ones.

5.3.11.11 Inverse hyperbolic secant

The ¢resechy, approximation helper function:

arcsech : ' — R

arcsqch’,(x) returns a close approximation to arcsech(x) in R, with maximum error max_erfor_tanhp.
The arcsechp operation:

arcsechp : F' — F U {infinitary, invalid}

arcsechp(x) = result},(arcsech},(x), nearestr)
it e Fand0O<z <1
= infinitary(+o00) if x € {—0,0}
= no_resultp(x) otherwise

5.3.11.12 Inverse hyperbolic cosecant

The ¢reeschy, approximation helper function:

arccschyp : F' — R

arceschy;(z) returns a clgse approximation to arcesch(z) in R, with maximum error max_erfor_tanhp.
A [further requirement on the arccsch}, approximation helper function is:

arceschi{Zx) = —arceschi, () ifeeF

The arccschr operation:

arcesthp : F — F U {underflow, infinitary}

aTCCSCHE(T) =Tesutt {arccsch (T), learest)
ifre Fandz #0
= divp(1,x) if x € {—00,—0,0,4+00}
= no_resultp(x) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.11 Operations for hyperbolic elementary functions 61

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.4 Operations for conversion between numeric datatypes

Numeric conversion between different representation forms for integer and fractional values can
take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to part 1;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to part 1;

c¢) explicit or implicit conversion between a character string and a numeric datatype.

The latter includes outputting a numeric value as a character string, inputting a numeric value
from a[character string source, and converting a nuieral il the source program to a valug in a
numerie datatype (see clause 5.5). This part covers only the cases where at least one of tlie Source
and taifget is a numeric datatype conforming to part 1.

When a character string is involved as either source or target of a conversion, this'part do¢s not
specify|the lexical syntax for the numerals parsed or formed. A binding standand should specify
the lexjcal syntax or syntaxes for these numerals, and, when appropriate, How'the lexical syntax
for thenumerals can be altered. This could include which script for the digits to use in a popition
system|(Latin-Arabic digits, Arabic-Indic digits, traditional Thai digit§s etc.). With the excgption
of the radix used in numerals expressing fractional values, differences’in lexical syntactic details
that d¢ not affect the value in R denoted by the numerals shotld not affect the result ¢f the
convergion.

Chalracter string representations for integer values candinclude representations for —0,|400,
—o00, ahd quiet NaNs. Character string representatiody fér floating point and fixed point yalues
should [have formats for —0, +00, —o0, and quiet NaNs. For both integer and floating [point
values,|character strings that are not numerals nor‘special values according to the lexical syntax
used, shall be regarded as signalling NaNs whei used as source of a numerical conversion.

For the cases where one of the datatypes;inivolved in the conversion does not conform to part 1,
the values of some numeric datatype patameters need to be inferred. For integers, one nded to
infer tHe value for bounded, and if that is true then also values for maxint and minint, and for
string formats also the radiz. Fortfloating point values, one need to infer the values for|r, p,
and enfax or emin. In case a precise determination is not possible, values that are ‘safe’ for that
instande should be used. ‘Safe’ values for otherwise undetermined inferred parameters ard such
that

a) nponotonicity of (thie conversion function is not affected,

b)

—+

he error intlie conversion does not exceed that specified by the maximum error parameter
ee belaw)}

—~

¢) iff thewvalue resulting from the conversion is converted back to the source datatype|by a
cpnvérsion conforming to this part, the original value should be regenerated if possiblg, and

d) overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as implying the infinitary notification. If, and
only if, a specified NaN special value result cannot be represented in the target datatype, the
NaN result shall be interpreted as implying the invalid notification. If, and only if, a specified

62 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

—0 special value result cannot be represented in the target datatype, the —0 result shall be
interpreted as 0.

5.4.1

Let I and I’ be non-special value sets for integer datatypes.

Integer to integer conversions

corresponding to I and I’ conforms to part 1.

convert;_p : I — I' U {overflow}

convert;_p(x) = resultp(zx)

ifxel

At least one of the datatypes

5.4.2

Let 1
Nnon-S

= if r € {—00.—0.400}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN

NOTE - If both I and I’ are conforming to part 1, then this conversion is covered, by part
This operation generalises the cvt;_ - of part 1, since only one of the integer datatypes in t]

conversion need be conforming to part 1.

Floating point to integer conversions

be the non-special value set for an integer datatype conforming to part 1. Let F

pecial value set for a floating point datatype conforming\te’' part 1.

floorp_;: F'— I U {overflow}

floor p_ ;(x) = resultr(|z])
=z

gNaN

= invalid(gNaN)

roundingp_ : F — I U {—0, overflow}

roundingp_(x)

resulty(round(x))
-0

=N

qNaN

= invalid(gqNaN)

ceilingg=1 : F — I U {—0, overflow}

ife e F

ifx € {—o00,—0,4+00}
if z is a quiet NaN

if z is a signalling NaN

if x € F and (z > 0 or round(z)
if x € F and z < 0 and round(z)
if x € {—00,—0,+00}

if z is a quiet NaN

if is a signalling NaN

4

0)
0

=

1§

be the

5.4.1

ceilirigr_r(x) = result;([z]) if x € Fand (x>0 or [z] #0)
= —0 e c Fandae<Qandlel—0
=z if x € {—00,—0,+00}
= qNalN if z is a quiet NaN
= invalid(gNaN) if x is a signalling NaN

Integer to integer conversions

63

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.4.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F' be the non-special value set for

a floating point datatype. At least one of the source and target datatypes is conforming to part 1.
convert;p : I — F U {overflow}

convert;p(x) = resultp(z,nearesty) ifx el

=z if x € {—00,—0,+00}
= gqNaN if x is a quiet NaN
= invalid(qNaN) if is a signalling NaN

OTE — When both I and F conform to part 1, integer to nearest floating point conversions
e covered by part 1. In this case the operations cvt;_ p and convert;_ p are identical,

oz

5.4.4 | Floating point to floating point conversions

Define [the least radix function, (b, defined for arguments that are greater thamn 0:
h.z2—- =2
l(r) = min{n € Z | n > 1 and there is an m € Z such that r =n""}
Let |F, F’, and F” be non-special value sets for floating poirft-datatypes. At least one ¢f the
source pind target datatypes in the conversion conforms to part, I.

Thefe shall be a max_error_convertp: parameter that-gives the maximum error when comvert-
ing fron F to F’ and lb(rp) # Ib(rg). The maz_errorconvert parameter shall have the [value
0.5. If[the binding standard requires that this parameter has the value 0.5 (see annex A)|, this
paramgter need not be made available for programs:

If if(rp) = Ib(rpr), the maximum error shall'be 0.5 ulp when converting from F to F’|even
when the implementation is only partially egnforming (see Annex A), but this is not reflected in
any parameter.

The| converty,_, », approximation helper functions:
cpnverty, g F— R
converlty,_ q(x) returns a close approximation to x in R, with maximum error max_error_convert .

NOTE 1 — With theimaximum error 0.5 ulp, this and the below conversion helper functions
ate not really needed-~—However, Annex A allows for partial conformity, such that the maximum
efror for these helpér functions may be greater than 0.5 ulp.

Furfher requifements on the convert},_ p, approximation helper functions are:

cpnvertiys o (r) =« itreZNF
cpnerty, () >0 ifreFandz >0
conwerty, (=)= —converty, ..(r) ifre F
converty, p(x) < converty, p(y) ifr,y€ Fand x <y

Relationship to other floating point to floating point conversion approximation helper functions
for conversion operations in the same library shall be:

converty,_ g (x) = converty,_ g (x) if Ib(rpr) = Ib(rp) and z € F N F”
The converty_ g operation:

convertp_ g : F — F' U {overflow, underflow}

64 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

convertp_ g (x) = resultp(x,nearestp) if x € F and Ib(rp) = Ib(rp)
= result}, (converty._ p(x), nearestpr)
if x € F and lb(rp) # 1b(rF)

=z if x € {—00,—0,+00}
= qNalN if x is a quiet NaN
= invalid(gNaNN) if = is a signalling NaN

NOTES

2 Modern techniques allow, on the average, efficient conversion with a maximum error of 0.5
ulp even when the radices differ. C99 [17], for instance, requires that all floating point value
conversion is done with a maximum error of 0.5 ulp.

R P IPLYat-2a) . PR b I R | n " 1 1 Fauway. 4
110U 0UJIJ I TCHUILCITICIIUVS TIITP1Y UIIatl VIIC 77l _CT T OT _COTUUCT U 7 Pal alllClCL IIdS 4 Vallul x U.J| .

Such a large maximum error for the conversion is only partially conforming. See Annex™A.

P

4 When the maximum error is 0.5, the conversion helper function above can be theyidentify
function.

5 When both datatypes conform to part 1, and the radices for both of these floating point
datatypes are the same, floating point to nearest floating point conversignsare covered Wy
part 1. In this case the operations cvtp_. g and convertp_. g are identieal.

5.4.5 Floating point to fixed point conversions

Let A be the non-special value set for a floating point datatypé conforming to part 1. L4t D be
the npn-special value set for a fixed point datatype.

A [fixed point datatype D is a subset of R, characterised by a radix, rp € Z (> 2), a (lensity,
dp €|Z (> 0), and if it is bounded, a maximum positive value, dmaxp € D* (> 1). Givep these
valuep, the following sets are defined:

D* = {n/(r?) | neZ}

D =D if D is not bounded
D = D* N [-dmaxp, dmaxp)] if D is bounded
NOTE 1 - D correspondsito scaled(rp, dp) in ISO/IEC 11404 Language independe

datatypes (LID) [10]. LID-has'no parameter corresponding to dmaxp even when the datatype
is bounded.

~

Tle fixed point rounding helper function:
nearestp : R &,D*
is thg rounding fmction that rounds to nearest, ties round to even last digit.

The fixed point result helper function, resultp, is like resulty, but for a fixed point datatype.
It will return overflow if the rounded result is not representable:

resdltp : R x (R — D*) — DU {-0,overflow}

resultp(xz,rnd) = rnd(x) if rnd(xz) € D and (rnd(xz) # 0 or = > 0)
=-0 if rnd(x) =0 and z <0
= overflow if x € R and rnd(x) € D

There shall be a max_error_convertp parameter that gives the maximum error when converting
from F to D and lb(rp) # lIb(rp). The maz_error_convertp parameter shall have the value 0.5. If
the binding standard requires that this parameter has the value 0.5 (see annex A), this parameter
need not be made available for programs.

5.4.5 Floating point to fixed point conversions 65

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

If Ib(rp) = Ib(rp), the maximum error shall be 0.5 ulp when converting from F' to D, even
when the implementation is only partially conforming (see Annex A), but this is not reflected in
any parameter.

The converty._, , approximation helper function:
convertp_p: F —TR
convert}._ () returns a close approximation to x in R, with maximum error max_error_convertp.

Further requirements on the convert}._, ;, approximation helper functions are:

converty,_ p(z) = itreZNF
converty,_, p(z) >0 ifre Fandz >0
cpnverty_, p(—x) = —converty_, () nHrer

cpnverty,_ p(x) < converty,_ 5 (y) ifz,ye Fand z <y

Reldtionship to other floating point to fixed point conversion approximation helper fun¢tions
for conpyersion operations in the same library shall be:

nvertt._, p(z) = converty, . (x) if b(rpn) = Ib(rp) and © € EXVE”

@)

The| convertp_,p operation:
cpnvertp_p : ' — D U{—0,overflow}

cpnvertp_.p(x) = resultp(x,nearestp) if x € F and lb(rfk))= lb(rp)
= resultp(converty,_ (x), nearestp)

if x € F andclb(rp) # 1b(rp)

=x if x € {=00,—0,4+00}

= qNaN if x is@ quiet NaN

= invalid(gqNaN) if x38 a signalling NaN
NOTES

2| The datatype D need not be visible in thie)programming language. D may be a subtype of’
strings, according to some format. Eyven*so, no datatype for strings need be present in the
programming language.

3| This covers, among other things{ Soutput” of floating point datatype values, to fixed point
string formats. E.g. a binding-may say that float_to_fixed_string(z, m, n) is bound
to convertp_.s,, , (x) whereS,, ,, is strings of length m, representing fixed point values in
radix 10 with n decimals! The binding should also detail how NaNs, signed zeroes and
infinities are represeénted in S, ,, as well as the precise format of the strings representing
ordinary values. (Note that if the length of the target string is limited, the conversion may
overflow.)

4] TEC 60559 Fequirements imply that the max_error_convertp parameter has a value < 0.97.
Such aJarge maximum error for the conversion is only partially conforming. See Annex A.

5| When-the maximum error is 0.5, the conversion helper function above can be the identity
function.

5.4.6 Fixed point to floating point conversions

Let F be the non-special value set for a floating point datatype conforming to part 1. Let D and
D’ be the non-special value set for fixed point datatypes.

The convert},_, approximation helper function:

* .
convertp_p: D — R

66 Specifications for integer and floating point operations

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

convert}, ., p(z) returns a close approximation to x in R, with maximum error max_error_convertp.

Further requirements on the convert},_, » approximation helper functions are:

converty, p(z) =2 iftreZnND
convert}, p(x) >0 ifzeDandx>0
converty, p(—x) = —convert}, p(z) ifxeD

convert}, p(x) < converty, n(y) ifr,ye Dandx <y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions for conversion operations in the same library shall be:

converty, p(x) = converty, p(x) if Ib(rp/) =1b(rp) and x € DN D’
LXK Loa) LK Loa) L ILL AY 1LL) | D I mli
lI:_/IJII/L/CI (/D_>F\u(/) — CuUroovct bF/*)F\J/} jus I/U\I t«’} —_— I/U\I U} allld o O LT T L
The convertp_.p operation:

convertp_,r : D — F U {overflow, underflow}

convertp_,p(x) = resultp(z,nearesty) if x € D and Ib(rp) = Ib(rp)
= result},(convert}, p(z),nearestr)
if x € D and Ib(rp) # lb(re)

=z if x € {—00,—0,+00}
= qNalN if z is a quiet NalN
= invalid(gNaNN) if = is a signallihg) NaN

NOTES
1 This covers, among other things, “input” of floating point datatype values, from fixed poifit

string formats. E.g. a binding may say that stringte float (s) is bound to convertg, . _|r(s)

m,n

where S, , is strings of length m, where m is thedength of s, and n is the number of digits
after the “decimal symbol” represented in Sy, as well as the precise format of the strings
representing ordinary values.

2 When the maximum error is 0.5, the cehversion helper function above can be the identify
function.

5.5 | Numerals as operationsin a programming language

NOTE - Numerals in strings, or input, is covered by the conversion operations in clause 5.{.

Edch numeral is a parameterless operation. Thus, this clause introduces a very large humber
of opprations, since the-number of numerals is in principle infinite.

5.5.1] Numerals for integer datatypes

Let I be asnon-special value set for integer numerals for the datatype corresponding to [

Aj joteger numeral, denoting an abstract value n in I’ U {—0, 400, —00,qNaN, sNaN}, for

: 1 4 b | el 1 4 L | 11 1 -
an lnbUgUl Uataty pc wWILIL IIOI=5PEllal Valuc STU 1, SlIall TTSUIL 111
convertp _y(n)

For each integer datatype conforming to part 1 and made directly available, there shall be
integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype with non-special
value set I, there shall be integer numerals for all non-negative values of I. For each radix for

5.5 Numerals as operations in a programming language 67

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

numerals made available for an unbounded integer datatype, there shall be integer numerals for
all non-negative integer values smaller than 10%°.

For each integer datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity
if there is a positive infinity in the integer datatype.

b) There should be numerals for quiet and signalling NaNs.

5.5.2 Numerals for floating point datatypes

A fixed point numeral, denoting an abstract value x in D U {—0,400, —00, qNalN; sNaN
a floating point datatype with non-special value set F', shall result in

)

bnvert p—, g ()

A flpating point numeral, denoting an abstract value x in F’ U {—0,4003=00, qNaN, sNaN},
for a flpating point datatype with non-special value set F', shall result,in

)

pnvertp g (x)

For pach floating point datatype conforming to part 1 and madédirectly available, there should
be radix 10 floating point numerals, and there shall be radix A0 fixed point numerals.

For pach radix for fixed point numerals made available-f0r a floating point datatype, therq shall
be nunjerals for all bounded precision and bounded range expressible non-negative values jof R.
At least a precision (dp) of 20 should be available. “At least a range (dmazp) of 102 shoyld be
available.

For Jeach radix for floating point numerals“thade available for a floating point datatype with
non-special value set F', there shall be numerals for all bounded precision and bounded range
expresdible non-negative values of R. The precision and range bounds for the numerals shhll be
large efough to allow all non-negative-values of F' to be reachable.

For ach floating point datatype made directly available and that may have special valugs:

a) There should be a numerat'for positive infinity. There shall be a numeral for positive infinity
iff there is a positivesdinfinity in the floating point datatype.

b) There should be{ numerals for quiet and signalling NaNs.

The| conversion, éperations used for numerals as operations should be the same as thosg used
by defgult for ¢onverting strings to values in conforming integer or floating point datatypes

6 Notification

Notification is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Specifically, a notification shall occur when any arith-
metic operation returns an exceptional value. Notification shall be performed according to the
requirements of clause 6 of part 1.

An implementation shall not give notifications for operations conforming to this part, unless
the specification requires that an exceptional value results for the given arguments.

68 Notification

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The default method of notification should be recording of indicators.

6.1 Continuation values

If notifications are handled by a recording of indicators, in the event of notification the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in I or F' (as appropriate), or be special values (—0, —oo, 400, or a
gNaN).

Floating point datatypes that satisfy the requirements of IEC 60559 have special values in
addition to the values in F. These are: —0, +00, —o0, signalling NaNs (sNaN), and quiet
NaNfs (gNaN). Such values may be passed as arguments to operations, and used as regults or
contihuation values. Floating point types that do not fully conform to TEC 60559 candalso have
valuep corresponding to —0, +00, —o0, or NalN.

C¢ntinuation values of —0, 400, —0o, and NalN are required only if the parafmeter i¢c_559r
has the value true. If the implementation can represent such special values in\the result datatype,
they ghould be used according to the specifications in this part.

7 [Relationship with language standards

A compputing system often provides some of the operations specified in this part within the fontext
of a programming language. The requirements of the pregent standard shall be in addition tlo those
impoged by the relevant programming language standaxds.

Tlhis part does not define the syntax of arithmeti¢ expressions. However, programmers peed to
know| how to reliably access the operations specified in this part.
NOTE 1 — Providing the information reguired in this clause is properly the responsibility pf

programming language standards. An ifidividual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

Am implementation shall documént the notation that should be used to invoke an operation
specified in this part and made available. An implementation should document the notatipn that
should be used to invoke an operation specified in this part and that could be made availjble.

NOTE 2 - For example, the radian arc sine operation for an argument x (arcsing(z)) might
be invoked as

arcsin(z) in Pascal [27] and Ada [11]

asin(#) in C [17] and Fortran [22]

(agin @) in Common Lisp [42] and ISLisp [24]
funetion asin(x) in COBOL [19]

witha suitable expression for the argument (z).

Amimplementation siall document the SeInantics of aritimetic eXpressions il terms of compo-
sitions of the operations specified in clause 5 of this part and in clause 5 of part 1.

NOTE 3 — An arithmetic expression might not be executed as written.

For example, if z is declared to be single precision (SP) floating point, and calculation is done
in single precision, then the expression

arcsin(x)

might translate to

6.1 Continuation values 69

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

arithm

Only t
notificqg
be doc

arcsingp(x)

© ISO/IEC 2001 — All rights reserved

If the language in question did all computations in double precision (DP) floating point, the

above expression might translate to

arcsinpp(convertsp—,pp(x))

Alternatively, if x was declared to be an integer, and the expected result datatype is single

precision float, the above expression might translate to

convertpp_,sp(arcsinpp(convert;_,pp(x)))

Compilers often “optimize” code as part of compilation. Thus, an arithmetic expression might
not be executed as written. An implementation shall document the possible transformations of

a)
b)

c)
d)

Insertion of operations, such as datatype conversions or changes in precision.

Replacing operations (or entire subexpressions) with others, such as “cos (-x)’]~ “co
(¢xactly the same result) or ¢
“bxp(x)-1" — “expml(x)” (more accurate result if z > —1, less accurate result if x

djfferent notification behaviour).
Hvaluating constant subexpressions.

Hliminating unneeded subexpressions.

applied to a particular expression.

The

providg programmer control over this process,shiould be documented as well.

NOTE 4 - Tt is highly desirable that $rogramming languages intended for numerical use
plovide means for limiting the transformrations applied to particular arithmetic expressions.

8 Documentation requirements

In ordaq

followipg information to.programmers.

70

o> g9 2

OTE — Much.of the documentation required in this clause is properly the responsibility of
ogramming)language or binding standards. An individual implementation would only need
provide(détails if it could not cite an appropriate clause of the language or binding standard.

list(of*the provided operations that conform to this part.

btic expressions (or groups of expressions) that it permits. Typical transformations,infclude

& (X)”

‘pi - arccos(x)” — “arccos(-x)” (more acturate resylt) or

il’

ansformations which alter the semantics of an expression (the values produced, and the
tions generated) need be documented. Only the range of permitted transformations{ need
hmented. It is not necessary to describe the speeifié choice of transformations that will be

textual scope of such transformations shall”’be documented, and any mechanismgq that

r to conform to this\part, an implementation shall include documentation providing the

I aIm-

reach maximum error parameter the value of that parameter or definition of that p

eter function. Only maximum error parameters that are relevant to the provided operations
need be given.

The value of the parameters big_angle_rr and big_angle_upr. Only big angle parameters that
are relevant to the provided operations need be given.

For the nearestp function, the rule used for rounding halfway cases, unless iec_559F is fixed
to true.

Documentation requirements

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

e) For each conforming operation, the continuation value provided for each notification condi-
tion. Specific continuation values that are required by this part need not be documented. If

the notification mechanism does not make use of continuation values (see clause 6),
uation values need not be documented.

contin-

f) For each conforming operation, how the results depend on the rounding mode, if rounding
modes are provided. Operations may be insensitive to the rounding mode, or sensitive to it,

g)

but even then need not heed the rounding mode.

For each conforming operation, the notation to be used for invoking that operation.

h) For each maximum error parameter, the notation to be used to access that parameter.

i)
)

k)

Si
requi
ment

)

m)

The notation to be used to access the parameters big_angle_rrp and big_angle_up.

specified in this part, the binding for that other operation.

‘internal’ and ‘external’ numerals are different.

hce the integer and floating point datatypes used in conforming”operations shall sat

htion.

The means for selecting the modes of operation thdt eénsure conformity.

The translation of arithmetic expressions into<gbrhbinations of the operations prov

part 1.)

(See clause 6 of part 1.)

The means for selecting among-the notification methods, and the notification meth
in the absence of a user selection. (See clause 6.3 of part 1.)

When “recording of indicators” is the method of notification, the datatype used to re
Ind (see clause 6.1.2.0f part 1), the method for denoting the values of Ind, and the n|
for invoking eaclrof the “indicator” operations. FE is the set of notification indicato
association of values in Ind with subsets of E must be clear. In interpreting clause

part 1, thesset of indicators E shall be interpreted as including all exceptional valug
in the sigifatures of conforming operations. In particular, £ may need to contain infi
and absolute_precision_underflow.

For each of the provided operations where this part specifies a relation to anofher operation

For numerals conforming to this part, which available string conversion@perations, ingluding
reading from input, give exactly the same conversion results, even if\the string syntgxes for

sfy the

ements of part 1, the following information shall also be provided by any conforming imple-

ded by

any part of ISO/IEC 10967, including any use made of higher precision. (See clayse 7 of

The methods used for notification, and the information made available about the notifjcation.

d used

present
otation
s. The
5.1.2 of
s listed
nitary

8. Documentation requirements

71

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

72 Documentation requirements

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

Annex A
(normative)

Partial conformity

ISO/IEC 10967-2:2001(E)

If an implementation of an operation fulfills all relevant requirements according to the main
normative text in this part, except the ones relaxed in this Annex, the implementation of that
operation is said to partially conform to this part.

A.l

This

For

rtial conformity shall not be claimed for operations that relax other requirements tha
bd in this Annex.

Maximum error relaxation

part has the following maximum error requirements for conformity.
mazx_error_hypotr € [0.5,1]

max_error_expp € [0.5,1.5 - rnd_errorp]
mazx_error_powerp € [0.5,2 - rnd_errorg]

max_error_radrg = 0.5
max_error_sing € [0.5,1.5 - rnd_errorg]
max_error_tang € [0.5, 2. rnd,errorp]

max_error_sinup : F' — F U {invalid}
max_error_tanup : F' — F U {invalid}

max_error_sinhp € [0.5,2 - rnd_errory]
mazx_error_tanhp € [0.5,2 - rnd_eprory]

max_error_converty = 0.5
max_error_convertp = 0.5

t € Gp, the max_error.sinup(u) parameter shall have a value in the interval

maxJerror_singp|, and the maz_error_tanup(u) parameter shall have a value in the
[0.5,2 - max_error_tafp): For u € T, the mazx_error_sinup(u) parameter shall be e
maz ferror_sing, andthe max_error_tanur(u) parameter shall be equal to max_error_ta

the s

In
what
shall

wme library,

a partially conforming implementation the maximum error parameters may be great,
is specified by this part. The maximum error parameter values given by an impleme
Ltill adequately reflect the accuracy of the relevant operations, if a claim of partial con

n those

[0.5,2 -
nterval
ual to
ng, for

er than
ntation
formity

is made.

A partially conforming implementation shall document which maximum error parameters have

great

er values than specified by this part, and their values.

A. Partial conformity

73

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

A.2 Extra accuracy requirements relaxation

This part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning “Further requirements on the opy approximation helper function are:”.

In a partially conforming implementation these further requirements need not be fulfilled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of partial conformity is made.

The extra accuracy requirements together with the sign and monotonicity requirements imply
a number of requirements that are not stated explicitly, due to that they are implied. Removing
one or more of thee given requirements may thus remove some weaker requirements that were
not intfnded To be removed. SoINe of the remaining weaker requirements may need to be Jtated
explicifly if a stronger requirement is removed.

A partially conforming implementation shall document which extra accuracy requitements are
not fulfilled by the implementation, and which weaker requirements that are still fulfilled.

A.3 |Relationships to other operations relaxation

This pgrt has a number of requirements giving relations to other operations. These are depailed
in the paragraphs beginning with wordings like “Relationship to(the op}. approximation helper
functiop for operations in the same library shall be:”.

In a| partially conforming implementation these relationships need not be fulfilled. The yalues
returndd must still be within the maximum error boundsythat are given by the values provided
for the|maximum error parameters, if a claim of partiak conformity is made.

A phprtially conforming implementation shall dégiment which operation relationships aie not
fulfilled by the implementation.

A.4 [Very-close-to-axis angular normalisation relaxation

This pjrt requires, explicitly and by ‘implication, that angular normalisation (sometimes ¢alled
argumgnt reduction) is done sothat the (intermediate or explicit) result is accurate withip less
than am ulp. For angular values/especially in radians, that denote an angle very close to an| axis,
that refjuires extra high préeision in the calculation of the normalised value.

In a|partially conforming implementation the accuracy requirements for angular normalidation
for anglles that are very close to an axis need not be fulfilled.

A partially conforming implementation shall document which trigonometric operations amd for
which (small)intervals near axes angular values, that are not so large that absolute_precigsion_
underflow dotifications would be the result, the angular normalisation accuracy requireents
are notl fulfilled by the implementation. The implementation shall also document how largg the
absolute error for angular normalisation is also for angles that are in those intervals very near
an axis. It may be appropriate for a binding to specify one or more parameters describing this
relaxation if this relaxation is allowed by a binding. The maximum error parameter values given
by an implementation shall still adequately reflect the accuracy of the relevant trigonometric oper-
ations for angular values outside of those very-near-axis intervals, if a claim of partial conformity
is made.

74 Partial conformity

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

A.5 Part 1 requirements relaxation

Part 2 depends on the datatypes and operations specified in part 1. Part 1 allows for partial
conformity. Part 2 operations may thus be only partially conforming if a relevant datatype or
part 1 operation is only partially conforming to part 1.

A.5 Part 1 requirements relaxation 75

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

76 Partial conformity

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO

/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Annex B
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology — Language
independent arithmetic — Part 2: Elementary numerical functions (LIA-2). This allows the stan-
dard itself to be more concise. The clause numbering matches that of the standard, although
additional clauses have been added.

B.1

The
by LI
appr
ment
they

B.1.]

LIA-]
as sp
does

are u

Scope

cope of LIA-2 includes the traditional arithmetic operations, that are iot” already
A-1, usually provided in programming languages. This includes operatigns that are 1
ximations to real elementary functions. Even though these operations usually are
bd in software rather than hardware they are still to be regarded(as atomic in the sen
hre never (as seen by the user) interrupted by an intermediate nétifiacation.

| Inclusions

 is intended to define the meaning of some operations on integer and floating poin
beified in LIA-1 (ISO/IEC 10967-1), in addition'to the operations specified in LIA-1
ot specify operations for any additional aritlimetic datatypes, though fixed point da
bed in some of the specifications for conversion operations.

Tlhe specifications for the operations covered by LIA-2 are given in sufficient detail to

2)
b)
)

L]
LIA-

support detailed and accurate nunierical analysis of arithmetic algorithms,
enable a precise determinationsef conformity or non-conformity, and

prevent exceptions (like overflow) from going undetected.

A-2 only covers operations that involve integer or floating point datatypes, as sped
, and in some casgsialso a Boolean datatype, but then only as result. In order to

also fixed point string fermats for floating point values, fixed point datatypes are also inv

some

of the LIA-2%onversion operations.

The operations covered by LIA-2 are often to some extent covered by programming la

stand
oper3a

ards, Jike” the operations sin, cos, tan, arctan, and so on. Annex C also surveyy
tions_are already covered by various programming languages.

LI

AD 3ol doc copnn oneodionc thod o ot (ot oo I rocranamaine lanaiia o

rovered
jumeric

imple-
se that

t types
LIA-2
tatypes

ified in
include
lved in

nguage
which

5. Like

operations to normalise

mon
T eGSOt O Pt Ons—riort o O IOty O v SO O T ProOST o i s o SOt s

units. These operations are closely related to the other operations included in LIA-2, an
operations are non-trivial to implement with high accuracy. The angular normalisation operations
are useful to keep high accuracy in the angular values used when increasing angular values are

used.

angular values, and to convert angular values between different angular

d these

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further

B. Rationale

77

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

arithmetic datatypes, like rational number or fixed point datatypes. Some of these may become
the topic of standardization in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even when
an LIA-2 operation specification is made in terms of other LIA-1 or LIA-2 operations, that does
not imply a requirement that an implementation implements the operation in terms of those other
operations. It is sufficient that the result (returned value or returned continuation value, and
exception behaviour) is as if it was implemented in terms of those other operations.

LIAF2 does not provide specifications for operations which involve no arithmetic processing, like
assignment and parameter passing, though any implicit conversions done in association.with such
operations are in scope. The implicit conversions should be made available to the programmper as
explicitl conversions.

LIA}2 does not cover operations for the support of domains such as linear,algebra, statistics,
and synbolic processing. Such domains deserve separate standardization, if\standardized.

LIA}2 does not cover how to represent numeric values, internally (as bit patterns) or extefnally
(as chajracter strings).

B.2 [Conformity

Conformity to this standard is dependent on the existence of language binding standards. [Each
prograjnming language committee (or other organization responsible for a programming language
or othdr specification to which LIA-1 and LIA-2 may apply) is encouraged to produce a bipding
coverinfg at least those operations already required, by the programming language (or similai) and
also spgcified in LIA-2.

The|term “programming language” is héve used in a generalised sense to include other comput-
ing entfities such as calculators, spread.sheets, page description languages, web-script langjages,
and dafpabase query languages to the extent that they provide the operations covered by LIA-2.

A conforming system consistsrof an implementation (which obeys the requirements) together
with dpcumentation which shows how the implementation conforms to the standard. Thiq doc-
umentdtion is vital sincewits gives crucial characteristics of the system, such as the range for
trigongmetric operations, and the accuracy of the operations.

The| binding of ILIA-2 facilities to a particular programming language should be as natural
as posdible. Existing language syntax and features should be used for operations, paramleters,
notificgtion, and/so on. For example, if a language expresses application of cosine as “cos|(x),”
then L]A-2(cosine operations cosp should be bound to (overloaded) “cos” functions.

Suggestions for bindings are provided in annex C. Annex C has partial binding examplps for
a number of existing programming languages and LIA-2. In addition to the bindings for the
operations in LIA-2, it is also necessary to provide bindings for the maximum error parameters
and big angle parameters specified by LIA-2. Annex C contains suggestions for these bindings. To
conform to this standard, in the absence of a binding standard, an implementation should create
a binding, following the suggestions in annex C.

78 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

LIA-2 has fairly strict accuracy requirements. Annex A deals with the case that an implemen-
tation (or binding standard) conforms to most aspects of LIA-2, but not necessarily all of the
accuracy requirements.

Some implementations, or binding standards, may wish to conform to most of the requirements
in LIA-2, but make exceptions from the specifications given by LIA-2 in certain cases. Some of
the bindings examples in annex C also exemplify, in different ways, such changes of specification.
Real bindings are expected to elaborate such differences much more than in the examples given
in annex C.

B.2.1 Validation

LIA-2 gives a very precise description of the operations included. This will expedite tlie\cdnstruc-
tion ¢f conformity tests. It is important that objective tests are available.

LIA-2 does not define any process for validating conformity.

Inflependent assurance of conformity to LIA-2 could be by spot checks ©n-products by a val-
idatign suite. Alternatively, checking could be regarded as the responsibility of the vend¢r, who
wouldl then document the evidence supporting any claim to conformity.

B.3 | Normative references

The feferenced IEC 60559 standard is identical to the IEEE“754 standard and the former IEC 559
standard.

B.4 | Symbols and definitions

LIA-2 uses the same specification mechanisms“as LIA-1. LIA-2, however, uses helper functi¢ns to a
much| higher degree, in particular for the@pecification of the operations approximating elementary
transpendental functions.

A4 in LIA-1, operations specified in LIA-2 are done so by cases, and in some of the caseg helper
functjons are used. In contrast-to LIA-1, LIA-2 also cover cases that involve “special yalues”

for the floating point operatiens. The specification of how to handle these “special valjies” as
arguthents and results ferithe included operations is one of the major added-values of LIA-2.

Tlhe cases in eachroperation specification are non-overlapping, though there is an “othprwise”
case §t the end of ‘many lists of cases.

B.4.1 Symbols

B.4.1.1¥ Sets and intervals

The interval notation is in common use. It has been chosen over the other commonly used interval
notation (with brackets and round parentheses mixed) because the chosen notation has no risk of
confusion with the pair notation.

B.2.1 Validation 79

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations specified by
IEC 60559, LIA-1, LIA-2, or, with the exception of program excerpts which are clearly marked, any
programming language. For example, z/u stands for the mathematically exact result of dividing
x by u, independently of whether that value is representable in any floating point datatype or
not, and z/u # divp(z,u) is often the case. Likewise, = is the mathematical equality, not the eqp
operation: 0 # —0, while eqr(0,—0) = true.

B 4 1 2} NI il il 1L i
el e IVIAuIICIIIallUdl 1UliCuIuUlLlS

The elgmentary functions named sin, cos, etc., used in LTA-2 are the exact mathematical fimcfions,
not any approximation. The approximations to these mathematical functions are~introduded in
clauses| 5.3 and 5.4 and are written in a way clearly distinct from the mathembatical functions.
E.g., sqn},, cosy., etc., which are unspecified (or, more precisely, partially specified) mathemptical
functiops approximating the targeted exact mathematical functions to a specified degree; |sing,
cosp, dtc., which are the operations specified by LIA-2 based on the regpective approxinlating
functiop; sin, cos, etc., which are programming language names thit“may be bound to L.IA-2
operations. sin and cos are thus very different from sin and cos.

B.4.1.4 Exceptional values

LIA-2 fises a modified set of exceptional values compared to LIA-1. Instead of LIA-1’s undefined,
LIA-2 yises invalid and infinitary. IEC 60559 distingunishes between invalid and divide_by|zero
(the lafter is called infinitary by LIA-2). The distinction is valid and should be recognised,|since
infinithry indicates that an infinite but ezact.ryesult is (or can be, if it were available) retyrned,
while ipvalid indicates that a result in the-farget datatype (extended with infinities) cannpt, or
should [not, be returned with adequate agcuracy.

LIA} distinguished between intéger_overflow and floating_overflow. This distinctjon is
moot, g$ince no distinction was made between integer_undefined and floating undefined. In
additiop, continuing this distinction would force LIA to start distinguishing not only integer_
overfl¢w and floating_overflow, but also fixed_overflow, complex_floating _overflow, fom-
plex_integer_overflow;etc. Further, there is no general consensus that maintaining this distinc-
tion is piseful, and many)programming languages do not require a distinction. A binding standard
can sti]l maintain_distinctions of this kind, if desired.

infinitary i§ used for integer operations, when the operation rightfully should return an jnfini-
tary vajue, bt ho infinitary value occurs among the arguments. infinitary is also used for flgating
point dpevations for the same circumstances. That includes when the approximated real-vlalued

3 1s 1 + +1 4 ot
funCth TS g Port—at Tt argHiehRr pPott:

LIA allows for three methods for handing notifications: recording of indicators, change of
control flow (returnable or not), and termination of program. The LIA-2 preferred method is
recording of indicators. This allows the computation to continue using the continuation values.
For underflow and infinitary notifications this course of action is strongly preferred, provided
that a suitable continuation value can be represented in the result datatype.

80 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how notifications are handled, and there may be implicit changes. For
example, invalid without a specified continuation value may cause change of control flow (like
an Ada [11] exception), while invalid with a specified continuation value may use recording of
indicators. This should be specified by bindings or by implementations.

The operations may return any of the exceptional values overflow, underflow, invalid,
infinitary, or absolute_precision_underflow. This does not imply that the implemented op-
erations are to actually return any of these values. When these values are returned according to
the LIA specification, that means that the implementation is to perform a notification handling
for that exceptional value. If the notification handling is by recording of indicators, then what is

11 . 13 1 : 1 1 .. PR | e : 1
actu 11y ITCLUIIICA Dy UIIC HIIPICIICIIICU OPClatlOll 15 UIIC COIILIIIUaUIOIl Valuc.

Mpst bindings are expected to be such that underflow and infinitary are “quietly” hpndled.
If inflnities are guaranteed to be representable, infinitary may even be disregarded comipletely,
quiet]y returning the infinitary result without even any setting of any indicator.

B.4.1.5 Datatypes

The Sequence types [I] and [F] appear as input datatypes to a few opérations: max_seqr, min_seqr,
gcd_seqr, lem_seqr, mazr_seqp, min_seqr, mmax_seqr, and mminyseqr.

In| effect, a sequence is a finite linearly ordered collection™of elements which can be indexed
from [1 to the length of the sequence. Equality of two or(more elements with different [indices
is possible. Sequences are used in LIA-2 as an abstraction of arrays, lists, other kinds jof one-
dimensional sequenced collections, and even variableflenigth argument lists. As used in LIA-2 the
order| of the elements and number of occurrences ofveach element, as long as it is more than one,
does pot matter, so sets, multi-sets (bags), and-tuples also qualify.

B.4.2 Definitions of terms

Note [the LIA distinction between exdeptional values, exceptions, and exception handling|(hand-
ling ¢f notification by non-returnable change of control flow; as in, e.g., Ada). LIA excdptional
valuep are not the same as Ada~exceptions, nor are they the same as IEC 60559 special yalues.

No¢te also that LIA-1tused the term denormal for what IEC 60559 and LIA-2 refer to as
subn¢rmal.

B.5 | Specifications for the numerical functions

The gbstract values used in the specifications are independent of datatype, just like the [mathe-
matidalnimbers are. That they are represented differently in, say, single precision and in|double

s H P £ TTA o
PreciSromr 1s-out O SCOpPT 10T II7y- 27

The specifications in LIA-2 for floating point operations give details about certain special values
(they are ‘special’ in that they are not in R). These special values are commonly representable in
floating point datatypes, in particular all floating point datatypes conforming to IEC 60559.

B.4.2 Definitions of terms 81

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.5.1 Basic integer operations

Integer datatypes can have infinity values as well as NaN values, and also may have a —0. A
corresponding I must, however, be a subset of Z. —0 is commonly available when the integer
datatype is represented using radix-minus-1-complement, e.g., 1’s complement. When using, e.g.,
2’s complement, the representation that would otherwise represent the most negative value can
be used as a NaN. Especially for unbounded integer types, the inclusion of infinities is advisable,
not for overflow, since these do not occur, but in order to have a smallest and a largest value in
the type.

B 5 1 ja nh] hd i L. 1 1 1 L i
e Jdele L1IC 1IILCSCL 7TCoWil allU Wiy HCIpPTl 1TUlICUL1UILIIS

The refsult; helper function notifies overflow when the result cannot be represented in\. When
an ovetflow occurs, and recording of indicators is the method for handling (integer) overflqws, a
continyation value must be given. For bounded integer datatypes, maxinty and ‘minintf can
be suitpble continuation values, if infinities are not representable. In some inistances a wrgpped
result, [see below, may be used as continuation value on overflow. Few inteéger datatypes| offer
represejutations for positive and negative infinity. In case such representations are offered) they
can be Jised as continuation values on overflow, similar to their use in floating point datatypes| LIA
does ndt specify the continuation value in this case, that is left t6_bindings or implementafions,
but LI{ does require that the continuation value(s) be documented.

The| wrapy helper function wraps the result into a value‘that can be represented in I.| The
result ip wrapped in such a way that the value returned €an*be used to implement extended fange
integer|arithmetic.

B.5.1.2 Integer maximum and minimum

The ogerations for integer maximum andgminimum are trivial, except taking the maximym or
minimym of an empty sequence (empty array, empty list, zero number of parameters, or sinjilar).
The cape for zero number of parameters is often syntactically excluded (as in Fortran, Cotnmon
Lisp, ahd ISLisp), while an empgyCarray or empty list given as a single argument must usually be
possiblg to handle at ‘runtimel, LIA specifies an infinitary notification for this case. infinjtary
is to be¢ interpreted as “exact-infinite result from finite operands”, in this case an empty list of
numbefs. The infinitapy\notification is not specified if any of the arguments is an infinity.

If inffinity values are-required to be available for a particular integer datatype, a binding may
require{the continuation values specified to be returned without any infinitary notification. When
the spdcified céntinuation value, +00 or —o0o, is not available, other suitable continuation yalues
may bd used;and if so they must be documented. If the integer datatype is bounded, but wifhout
infiniti¢simdzint r may be used in place of 400 and minintr may be used instead of —oo.

Infinities as arguments are not specified for these operafions, since infinities are rarely available
in integer datatypes. However, compare the specification for max and min operations for floating
point datatypes (clause 5.2.2).

B.5.1.3 Integer diminish

Integer diminish is sometimes called ‘monus’.

82 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

B.5.1.4 Integer power and arithmetic shift

The integer arithmetic shift operations can be used to implement integer multiplication and integer
division more quickly in special cases (assuming the shift operation is supported by the hardware,
and that support is used).

The shift operations shift either ‘right’ or ‘left’ depending on the sign of the second argument.
‘Right’ shift is done with a positive second argument, and ‘left’ shift with a negative second
argument.

Any continuation value used on overflow here must be documented, either by the binding
standard or by the implementation.

B.5.1.5 Integer square root
B.5.1.6 Divisibility tests

Even|and odd are simple special cases of the divisibility test offered as separately named opdrations
in seyeral programming languages.

B.5.1.7 Integer division (with floor, round, or ceiling) and remainder

When the result of a division between integers is not an integer, but the final result is required to
be ar] integer, the quotient must be rounded. There aredseveral ways of doing this; floor, |ceiling,
and finbiased round to nearest being the most impertant. Truncating, rounding towards zero,
is often provided, which, however, may introduceisubtle program errors. Integer divisi¢n, and
remajlnder, is often used for grouping into groups<of n items, it is natural to put item ¢ int$ group
dividg(i,n). If i can be negative, and truncagion is used, group 0 will get 2 - n — 1 items| rather
than [the desired n.

pad; returns the negative of the reméainder after division and ceiling. The reason for] this is
twofdld: 1) for unsigned integer datatypes the remainder is < 0, and would thus often|not be
reprepentable unless negated, and(2) it is intuitively easier to think of the “places left in fhe last
unfilled group of equi-sized and\packed groups” as a positive entity, a padding.

refsiduer can overflow only for unsigned integer datatypes (minint; = 0), and does solfor too
many| cases, and negatifigiit does not change this. residue; should therefore not be provided for
unsigned integer datatypes. residuer rounds in the same way as residuep. residuep s often
referied to as IEEE.remainder.

Wkhen theresis no exception, for n € Z these operations fulfill:

quol (T +n - y,y) = quot;(z,y) +n,
rdtior(x +2-n-y,y) = ratior(z,y) + 2 - n,

groupTte—r = grourT{Er
modr(x +n-y,y) = modr(z,y),
residuer(x +2-n-y,y) = residuer(x,y), and
padr(z+n-y,y) = padr(z,y).

Note that the divt and rem’ from LIA-1 do not fulfill similar useful equalities, due to the
disruption around O for this pair of operations.

And, when there is no exception, the sign rules are:

B.5.1 Basic integer operations 83

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

quoti(x,y) = —groupr(—z,y),
(z,—y)

quotr(x,y) = —groupr(z, —y),
ratior(x,y) = —ratior(—x,y),
ratior(x,y) = —ratior(x, —y),

mOdI(xv y) = —padj(a:, _y)v and
residuer(z,y) = residuer(z, —y).

© ISO/IEC 2001 — All rights reserved

Finally, when there is no exception, the integer division and remainder operations come in pairs
that fulfill:

quoty(z,y) -y + mod(z,y) = ,
ratior(z,y) - y + residuer(z,y) = x, and

g

B.5.1.

The gre
commo

Rety
€commo
divide
given a

gedy
minint

Lea
and y
maxin

B.5.1.

These
suppor

The
comple
that ov

B.5.2

F must

oupr(x,y) -y — pad(x,y) = .

B Greatest common divisor and least common positive multiple

batest common divisor is useful in reducing a rational number to its lowesOterms. The
n multiple is useful in converting two rational numbers to have the,samie denominat

irning 0 for gedr(0,0), as is sometimes suggested, would be indorrect, since the gre
n divisor for 0 and 0 should be the supremum (upper limit) Of*Z7, since elements
D. The supremum of Z7 is infinity. Note also that for an x>)0, gedr(n,+00) should
reasonable extension of gedy to cover infinity arguments:

will overflow only if bounded; = true, minint; = #maxint; — 1, and both argumen
7. The greatest common divisor is then —mininty,)which then is not in I.

t common positive multiple, lemy(z,y), overflows for many “large” arguments. E.g
re relatively prime, then the least commontmultiple is |x - y|, which may be greater
I-

D Support operations for extended integer range

perations would typically beLused to extend the range of the highest level integer dat
bed by the underlying hardware of an implementation.

two parts of an integer product, mul_ovy(z,y) and mul_wrapr(x,y) together provid
te integer productS:Similarly for addition and subtraction. The use of wrap; guars
rerflow will not oecur.

Basicfloating point operations

be 'a_subset of R. Floating point datatypes can have infinity values as well as NaN v,

and als

least
r.

ratest
f Zz+
be n,

s are

, if x
than

atype

e the
ntees

hlues,

o may have a —0. These values are not in F'. The special values are, however, comi

nonly

available in floating point datatypes today, thanks to the wide adoption of IEC 60599.

Note that for some operations the exceptional value invalid is produced only for argument
values involving —0, 400, —o0, or sNalN. For these operations the signature given in LIA-2 does
not contain invalid.

The report Floating-Point C Extensions [57] discusses possible ways of exploiting the IEC 60559
special values, much of which is now integrated in C. The report identifies some of its suggestions

84

Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO

/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

as controversial and cites Branch Cuts for Complex Elementary Functions, or Much Ado about
Nothing’s Sign Bit [52] as justification.

The following paragraphs is a short summary of the specifications of IEC 60559 regarding the
creation and propagation of signed zeros, infinities, and NaNs. There is also some discussion of
the material in references [52, 53, 50] where suggestions on this matter are made.

IEC 60559 specifies that 0 and —0 compare equal. The sign is supposed to indicate the direction
of approach to zero. The sign is reliable for a zero generated by underflow in a multiplication
or division operation, and should be reliable also for operations that approximate elementary
transcendental functions (see the LIA-2 specifications in clause 5.3). It is not reliable for a zero
generated by an implied subtraction of two floating point numbers with the same value, for which

case
addit]

he zero is arbitrarily given a + sign. The phrase “implied subtraction” indicates gitlher the
jon of two oppositely signed numbers or the subtraction of two like signed numblers.

Of occurrence of floating overflow or division of a non-zero number by zero, animplementation

confo
conti
indic
state
infini
for th
for in

N
negaf
well
with
funct,
C Ex
Sign

rming to IEC 60559 sets the appropriate status flag (if trapping is not.e¢nabled) and then
hues execution with a result of +00 or —oo if rounding is to nearest. Infinities as such do not
ite that an overflow or division by zero has occurred; infinities can beexact values. IEQ 60559
that the arithmetic of infinities is that associated with mathematical infinities. Thus, an
by times, plus, minus, or divided by a non-zero finite floating point number yields an finfinity
e result; no status flag is set and execution continues. These)rules are not necessarily valid
finities generated by overflow, though they are valid if thelinfinitary arguments are g¢xact.

\N's are generated by invalid operations on infinities, O‘divided by 0, and the square rpot of a
ive number (other than —0). Thus NaNs can repreSent unknown real or complex values, as
s totally undefined values. TEC 60559 requires “%hat the result of any of its basic opdrations
bne or more NaN arguments shall be a NaN. This principle is not extended to the numerical
jons by Floating-Point C Extensions [57].;The controversial specifications in Floating-Point
fensions [57], Branch Cuts for Complex<Elementary Functions, or Much Ado about N¢thing’s
Bit [52], and Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point

Arithmetic [53] are based on an assumption that all NaN operands represent finite non-zefo real-

value

1 numbers.

The LIA-2 policy (for clauses 5.2 and 5.3) for dealing with signed zeros, infinities, angl NaNs

is as

a)

b)

follows:

The output is a quiet NaN for any operation for which one (or more) arguments is |a quiet
NaN, and none ¢f'the other arguments is a signalling NaN. There is then no notificgtion.

If a mathematical function h(z) is such that h(0) = 0, the corresponding operation|opr(z)
returns z<fx € {0,—0} and h has a positive derivative at 0, and opr(z) returns negr(z) if
x € {03=0} and h has a negative derivative at 0.

— .
For'an argument vector, x', where that argument vector involves 0, —0, 400, or —oo, the

reeult of the operation on=(7) is
g 717X VA
. —
lim A(%")
- =
zZ— T

where an approach to zero is from the positive side if @ = (...,0,...), and the approach
is from the negative side if @ = (...,—0,...). There is no notification if the limit exists,
is finite, and is path independent. The returned value is 400 or —oo if the limiting value
is unbounded, and the approach is towards a point infinitely far from the origin. The
returned value is infinitary(4o00) or infinitary(—oo) if the limiting value is unbounded,

B.5.2 Basic floating point operations 85

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

1SO/

IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

and the approach is towards a finite point. The result is —O0 if the limit is zero and the
approaching values are path independently negative. The result is 0 if the limit is zero and
the approaching values are path independently positive. If a path independent limit does
not exist the value returned is invalid, and a notification occurs, with a continuation value
of gNaNN if appropriate.

An exception is made for the arcg and arcup operations, where it is found significantly more
useful to return certain non-exceptional values for the origin and for the four double infinity
argument cases, than to return an exceptional value, even with non-NaN continuation values.

B.5.2. The rounding and floating point result helper functions

The r
value

ebultr helper function notifies overflow when the result is too large to be approximated by a
i F'. The resultp helper function notifies underflow when there is (risk for) denormalidation

loss for a tiny result. The resulty helper function also ensures that a propetrly.signed zgro is
the corftinuation value when a zero is appropriate for an underflow continuatiémvalue. When an
overfloy or underflow occurs, and recording of indicators is the method for hahdling (floating point)
overfloy or underflow, a continuation value must be provided. LIA-2 speg¢ifies a continuation yalue,
and if fhat can be represented in the target datatype, that value shotdd be used as continyation

value.

particullar continuation values (consistent with what is specified by LIA-2) to be used.

If the parameter iec_559r has the value true, then IEG 60559 in many cases rg¢quire

The| continuation values for overflow are defined to be in@ccordance with IEC 60559. These

particullar choices for continuation values are useful for imtérval arithmetic.

B.5.2.2 Floating point maximum and minimum

As for fhe integer case, the maximum and minimum of empty sequences need be handled, bt for

floating point datatypes, infinities are usually* available.

For [floating point datatypes there is~also usually a negative zero available, and returnirg the
correct|sign on a zero result for the niaximum and minimum operations requires more than simple
compaiisons to implement. The(signs of zeroes may need to be inspected using copysijn or

1snegaivezero.

B.5.2.8 Floating point diminish

As for fhe integer eage, this operation computes the positive difference. Note that dimp (400, 00) =
invalid(gqNalNJis consistent with that subp (400, 400) = invalid(qNaN) according to IEC p0559.

An jmplementation of dimp could be if x >= y then x-y else 0.

B.5.2.4 Floor, round, and ceiling

Since

fmaz always has an integral value for floating point types that conform to LIA-1, no

overflow can occur for these operations.

Note that the sign of a zero result is maintained in accordance with IEC 60559:

86

Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

floor p(x) = negp(ceilingr(negr(x)))
roundingr(z) = negr(roundingr(negr(z)))
ceilingp(z) = negp(floor p(negr(z)))
Negative zeroes, if available, are handled in such a way as to maintain these identities.

Note that rounding restp always is an exact operation, while floor_rest is not always exact
for negative arguments, and ceiling_resty is not always exact for positive arguments.

B.5.2.5 Remainder after division and round to integer

The remainder after division and unbiased round to integer (IEC 60559 remainder, or IEEE
remajnder) is always an exact operation (unless there is an implied division by zero), eweh if the
floatipg point datatype only conforms to LIA-1, but not to the more specific IEC 60559.

Rg¢mainder after floating point division and floor to integer cannot be exact)for all pairs of
argutnents from F. For a small negative numerator and a positive denomirator, the rgsulting
value|loses much absolute accuracy in relation to the original value. Such an(operation is therefore
not icluded in LIA-2. Similarly for floating point division and ceiling.

See also the radian normalisation and the argument angular-unit~normalisation opdrations
(5.3.4.1, and especially 5.3.9.1).

B.5.2.6 Square root and reciprocal square root

The ipverses of squares are double valued, the two possible results having the same magnitufde with
opposite signs. For a non-zero result, LIA-2 requitres*that each of the corresponding opgrations
returh a positive result.

V¥ cannot be exactly halfway between twd values in F' if z € F. For \/x to be exactly halfway
betw¢en two values in F' would require that it had exactly (p + 1) digits (last digit non-z¢ro) for
its extact representation. The square of sti¢h a number would require at least (2-p+ 1) digits with
last i + 1 digits not all zero, which_e¢ould not equal the p-digit number x.

Tle extensions sqrtp(4+00) =400 and sqrtp(—0) = —0 are mandated by IEC 60559, LIA-2
also 1lequires that these hold forimplementations which support infinities and signed zerod. How-
ever, fit should be noted that while the second is harmless, the first may lead to erroneous redults for
a +od generated by an.dddition or subtraction with result just barely outside of [—fmax ., |[fmaz]
after [rounding. Henceits square root would be well within the representable range. Th¢ possi-
bility| that LIA-2 Sheuld require that sqrtp(+o00) = invalid(4o00) was considered, but tejected
becayse of the principle of regarding arguments as exact, even if they are not exact, when fhere is
a non-degenerate neighbourhood around the argument point, for which the mathematical flinction
on R|is defined. In addition sqrty(4+00) = 400 is already required by IEC 60559.

N¢tecthat the requirement that sgrip(z) = invalid(qNaN) for x strictly less than|zero is
mandated by IEC 60559. It follows that NaNs generated in this way represent imaginary values,
which would become complex through addition and subtraction, and even imaginary infinities on
multiplication by ordinary infinities.

The rec_sqrtp operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector or,
equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

B.5.2 Basic floating point operations 87

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.5.2.7 Multiplication to higher precision floating point datatype

This operation is intended for the case that there exist at least two floating point datatypes F
and F”, ideally such that the product of two numbers of type I is always exactly representable in
type F".

To obtain higher precision for multiplication, in the absence of a suitable level of precision F’,
a programmer can exploit the paired mulr and mul_lor operations.

B.5.2.8 Support operations for extended floating point precision

These pperations would typicaily be used to extend the precision of tie mighnest tevel fidating
point datatype supported by the underlying hardware of an implementation. There is,ChoWever,
no intept to provide a set of operations suitable for the implementation of a completepackape for
the sugport of calculations at an arbitrarily high level of precision.

The| major motivation for including them in LIA-2 is to provide a capability for accutately
evaluatling residuals in an iterative algorithm. The residuals give a measute,-of the error in the
current|] solution. More importantly they can be used to estimate a gorréction to the current
solutiop. The accuracy of the correction depends on the accuracy of theéTesiduals. The residuals
are calpulated as a difference in which the number of leading digits' cancelled increases gs the
accura¢y of the solution increases. A doubled precision calculation of the residuals is ugually
adequalte to produce a reasonably efficient iteration.

For [the basic floating point arithmetic doubled precisién operations, the high parts mpy be
calculafed by the corresponding floating point operations as specified in LIA-1. Note, however,
that inf order to implement exact floating point addition and subtraction, rndr must round to
nearest|. If addp(x,y) rounds to nearest then the high and low parts represent x + y exactly.

Wh¢n the high parts of an addition or subtraction overflows, the low parts, as specified by
LIA-2,|return their results as if there was no* overflow. add_lop and sub_lop can underflow] only
when spibnormals are not supported. In‘addition, if the high part underflows, then the low part
is zero.

The|product of two numbers,.each with p digits of precision, is always exactly representaple in
at most 2 - p digits. The high and*low parts of the product will always represent the true prqduct.

The|remainder for division is more useful than a 2 - p-digit approximation. The remaindgr will
be exagtly representablé if the high part differs from the true quotient by less than one ulp| The
true quotient can be,constructed p digits at a time by division of the successive remainders by the
divisor

The| remainder for square root is more useful than a low part for the same reason thgt the
remainfler i§ more useful for division. The remainder for the square root operation will be exactly
represejntable only if the high part is correctly rounded to nearest, as is required by the specifidation
for sqrig.

See Semantics for Ezxact Floating Point Operations [62] for more information on exact floating
point operations.

See Proposal for Accurate Floating-Point Vector Arithmetic [63] for more information on exact,
or high accuracy, floating point summation and dot product. These operations may be the subject
of an amendment to LIA-2.

88 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

B.5.3 Elementary transcendental floating point operations

The basic floating point operations of LIA-2 and the elementary transcendental floating point
operations have been separated into two different clauses of LIA-2, since they use slightly different
specification mechanisms. The basic floating point operations need no approximation helper
functions. The elementary transcendental floating point operations need approximation helper
function in order to express the wider error tolerance for these operations.

B.5.3.1 Maximum error requirements

The ar—errar one=narameters measure the discrenanev bhotuween the computed sraliie one x) and
- = rrrr i i i i I

the tfue mathematical value f(x) in ulps of the true value. The magnitude of the errer“bpund is
thus fvailable to a program from the computed value opr(x). Note that for results atlan exponent
bounflary for F', y, the error away from zero is in terms of ulpr(y), whereas the erfor’ towgrd zero
is in perms of ulpr(y)/rr, which is the ulp of values slightly smaller in magnitude than y

Wiithin limits, accuracy and performance may be varied to best meet cugtomer needs. Npte also
that LIA-2 does not prevent a vendor from offering two or more implementations of the [various
opergdtions.

The operation specifications define the domain and range for\the operations. This |s done
partly by the given signature, and partly by the specification gf-gases that do not return ipvalid.
In addition, the computational domain and range are more\limited for the operations than for
the cgorresponding mathematical functions because thedarithmetic datatypes are subsets of R.
Furtfer, any (conforming) F' is limited in range, and;the operations may return an oveiflow or
an uipderflow. Thus the actual domain of expp(x)-is approximately given by = < In(fmazf). For
larget values of x, expp(x) will overflow, though ferz = 400 the exact result 400 will be repurned.
The 4ctual range extends over positive F', althedgh there are non-negative values, v € F', for which
there|is no x € F satisfying expp(z) = v.

The thresholds for the overflow andusiderflow notifications are determined by the pargmeters
defining the arithmetic datatypes. The threshold for an invalid notification is determined| by the
domdin of arguments for which the ‘mathematical function being approximated is definefl. The
infinftary notification is the operation’s counterpart of a mathematical pole of the mathematical
functjon being approximated by the operation. The threshold for absolute_precision_underflow
is deflermined by the parameters big_angle_ rr and big_angle up.

LIA-2 imposes afajrly tight bound on the maximum error allowed in the implementgtion of
each pperation. The-tightest possible bound is given by requiring rounding to nearest, for which
the accompanying' performance penalty is often unacceptably high for the operations approxi-
mating elementary transcendental functions. LIA-2 does not require round to nearest fpr such
opergtions,but allows for a slightly wider error bound characterised via the max_error_¢pr pa-
rameters,” The max_error_opr parameters must be documented by the implementation fpr each
such parameter required by LIA-2. A comparison of the values of these parameters with the values
of the specified maximum value for each such parameter will give some indication of the “quality”
of the routines provided. Further, a comparison of the values of this parameter for two versions
of a frequently used operation will give some indication of the accuracy sacrifice made in order to
gain performance.

Language bindings are free to modify the error limits provided in the specifications for the
operations to meet the expected requirements of their users.

B.5.3 Elementary transcendental floating point operations 89

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Material on the implementation of high accuracy operations is provided in for example [50, 52,
59].

B.5.3.2 Sign requirements

The requirements imply that the sign of the result or continuation value is to be reliable, except
for the sign of an infinite result or continuation value, where except for a signed zero argument,
it is often the case that one cannot determine the sign of the infinity. Still for sign symmetric
mathematical functions, the approximating operation is also sign symmetric, including infinitary
results.

Not¢ that the sign requirements stated generally imply some requirements that are net |given
explicifly for each operation specification in LIA-2. For example, sinj.(n -2 -7+ m){= 0 is a
requirement implied by the general sign requirements.

B.5.3.83 Monotonicity requirements

A maximum error of 0.5 ulp implies that an approximation helper function must be a monqtonic
approxjmation to the mathematical function. When the maximum efror is greater than 0.9 ulp,
and th¢ rounding is not directed, this is not automatically the case.

Thefe is no general requirement that the approximation helper-functions are strictly monptone
on the|same intervals on which the corresponding exact function is strictly monotone, however,
since sfich a requirement cannot be made due to the facttlfat all floating point types are disgrete,
not continuous.

The|monotonicity requirements are not extended.t0 the angular unit arguments (for the dpera-
tions that take such an argument or arguments). Fhe reason for this is that it is thought both hard
to implement, and also of no interest to users*to have monotonicity on that (those) argumepnt(s),
since the angular unit is not normally variedy except when converting between angular unity, and
even tHen the unit arguments involved are usually constants.

The| monotonicity requirements together with the extra accuracy requirements also implly re-
quirempnts not explicitly stated. . For example —1 < sin}.(z) < 1 is such an implied requirement.
Therefgre, even if some of thelextra accuracy requirements are relaxed (see annex A), it mpy be
necessdry to reintroduce some*of the requirements that were implied.

B.5.3.4 The result*helper function

The repulty hélper function is more suitable than the resultr helper function when the approxi-
mation|is netiguaranteed to be 0.5 ulp nor guaranteed to be directed.

Idedlly{however, though not expressed in the LIA-2 specifications, also the operations approx-
imating elementary transcendental Tunctions obey the rounding mode (if the implementation has
rounding modes) in the sense that “round towards negative infinity” gives a result that is less
than or equal to the true result (and similarly for “round towards positive infinity”). However,
and in contrast to the basic arithmetic operations, the error may then be more than 1 ulp. So
even if the rounding modes are heeded also for the operations approximating elementary tran-
scendental functions, the interpretation of the rounding modes are still looser than for the basic
arithmetic operations. LIA-2 as such does not require even this looser interpretation. It is up
to implementations, and the accompanying documentation, to implement this, if desired, and to

90 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

document the behaviour of these operations under different rounding modes. To get reliable upper
and lower bounds of the true result, that are also close to the true result, is useful for interval
arithmetic. Still, using the returned result, within the error bounds specified by LIA-2, together
with the relevant max_error_opp parameter, one can get a (perhaps slightly wider) safe interval
containing the true result.

B.5.3.5 Hypotenuse

The hypotr operation can produce an overflow only if both arguments have magnitudes very close
to the overflow threshold. hypotr only underflows if both arguments are subnormal numbers. Care

must fbetakemrrits huplculcu‘ba‘uluu toerthrer—avord-or lJlUpUlLy tramdteoverftows—arrdmmderflows
whiclh might occur in squaring the arguments. The function approximated by this~operation
is mgthematically equivalent to complex absolute value, which is needed in the (galculdtion of
the apgument (also called phase; see arcp) and modulus (also called absolute valie; hypofr) of a
compllex number. It is important for this application that an implementation satisfy the constraint
on the magnitude of the result returned.

LIA-2’s hypotr does not follow the recommendations in Branch Cuts for Complex Elepentary
Functions, or Much Ado about Nothing’s Sign Bit [52] and in Lecture’ Notes on the Status df IEEE
Standard 754 for Binary Floating-Point Arithmetic [53] which reeommend that
hhypotr(+00,qNaN) = 400
hhypotp(—o00,qNaN) = 400
hhypot p(qNaN, +00) = 400
hhypotr(gNaN, —o0) = 400
whicl} are based on the claim that a gINaN represents an (unknown) real valued number. [Such a
claim| is not always valid, though it may sometimes be.

B.5.3.6 Operations for exponentiations and logarithms

For alll of the exponentiation operations, overflow occurs for sufficiently large values of thie argu-
ment(s).

There is a problem for powérg(x,y) if both & and y are zero:
—|Ada raises an ‘exception’ for the operation that is close in semantics to powerr whé¢n both

arguments are zérd, in accordance with the fact that 0° is mathematically undefined.

—|The X/OPEN Portability Guide, as well as C99, specifies for pow(0.0, 0.0) a return value
of 1, andio notification. Those specifications agree with the recommendations in [50, 52,

53, 56
Thepecification in LIA-2 follows Ada, and returns invalid for powerg(0,0), becausg¢ of the
risks bnherent in returning a result which might be inappropriate for the application handl. Note

however, that powerp (0,0) is 1, without any notification. The reason is that the limiting value
for the corresponding mathematical function, when following either of the only two continuous
paths, is 1. This also agrees with the Ada specification for a floating point value raised to a power
in an integer datatype, as well as that for other programming languages which distinguish these
operations. The C99 (and X/OPEN) specification for the pow can be regarded as a combination
of the powergp and powerp operations. Due to this combination, LIA-2 has a requirement that

B.5.3 Elementary transcendental floating point operations 91

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

powerp for integral second arguments and powerg (in the same library) are related by equality
for positive first arguments.

Along any path defined by y = k/In(z) the mathematical function z¥ has the value e*. It
follows that some of the limiting values for ¥ depend on the choice of k, and hence are undefined,
as indicated in the specification.

The result of the powerp operation is invalid for negative values of the base x. The reason
is that the floating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative x. This constraint is explicit in Ada, and is widely
imposed in existing numerical packages provided by vendors, as well as several other programming
languages.

The| arguments of powerp are floating point numbers. No special treatment is providgd for
integer| floating point values, which may be approximate. The cases for integer values ¢f the
argumgnts are covered by the operations powerg and power;. In the example binding for C a
specifidation for powr is supplied. powr combines powerr and powerpz in a way, suitable for C’s
pow opgration.

For implementations of the powerg operation there is an accuracy problem with an algofithm
based ¢n the following, mathematically valid, identity:

y-log, ()
y F
Z e

The infeger part (floor plus one, not truncation) of the produgt\y~ log, (z) defines the exppnent
of the fesult and the remaining fractional part defines the rediiced argument. If the expongnt is
large, gnd one calculates pr digits of this intermediate result, there will be fewer than pg digits for
the frag¢tion. Thus, in order to obtain a reduced arguméntvaccurately rounded to pp digits, it may
be necgssary to calculate an approximation to y - logys\(z) to a few more than log, (emazr)+pr
base rg digits.

In Ada95 the operation closest to powerg r*is specified to be computed by successive muftipli-
cations| for which the error in the evaluationiincreases linearly with the size of the exponent| In a
strict Ada implementation there is no way that a prescribed error limit of a few ulps can bg met
for large exponents.

The|special exponentiation operations, corresponding to 2% and 10%, have specifications which
are mirjor variations on those forjexpr(x). Accuracy and performance can be increased if th¢y are
specially coded, rather than evaluated as, e.g., expr(mulp(x,inp(2))) or powerp(2,z). Similar
commepnts hold for the base 2 and base 10 logarithms operations.

The| ezpm 1y operation has two advantages: Firstly, expmip(x) is much more accurate| than
subp(efpr(x), 1) when the exponent argument is close to zero. Secondly, the expmI » opefation
does n¢t underflow for “very” negative exponent arguments, something which may be afvan-
tageouy if underflow handling is slow, and high accuracy for “very” negative arguments {s not
needed| {Note in addition that underflow is avoided for this operation. This can be dond only
2 o ddc o nta bavand thoca oFf TTA 1 oo P EEEWN R 2R EEE LA EEE L SC o=t Par]

. a free—¢]
since [HA~2addsrequirements—beyondthose—of LA regarding minimum preeision—{see—¢lause

4). If those extra requirements were not done, underflow would not be justifiably removable for
this operation. Similar argumentation applies to Inipp.

Similarly, there are two advantages with the poweripm1y operation: Firstly, poweripm1y (b, x)
is much more accurate than subp(powerp(addr(1,b),z),1) when the exponent argument is close
to zero. Secondly, the powerlpml1y operation does not underflow for “very” negative exponent
arguments (when the base is greater than 1), something which may be advantageous if underflow
handling is slow, and high accuracy for “very” negative arguments is not needed.

92 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The handling of infinites and negative zero as arguments to the exponentiation and logarithm
operations, like for all other LIA operations, follow the principles for dealing with these values as
explained in section B.5.2. Note in particular that logbaser (b, x) is specified so as to be consistent
with divp(Inp(x),Inp(b)) except that logbaser (b, x) is required to be more accurate.

The expml r and InIpp operations are required to return the argument when the argument is
in a certain interval around 0. Some floating point parameters from LIA-1 had to be made a bit
stricter for LIA-2 to guarantee that this interval always is wider than the interval of subnormal
numbers (this change is to be integrated with LIA-1 when LIA-1 is revised). This way underflow
can always be avoided for these operations, and in the interval specified, they can with high
accuracy return the argument unchanged.

Several of the operations have requirements that push the result towards a finite limiting value,
so thpt that the limiting value is actually reached (within a reasonable margin) after rojinding,
even [if the limiting value cannot, or otherwise need not, be reached before roudding. [Similar
requirements appear also in the other subclauses of clause 5.3.

Note also that even the use of the nearest approximation to e that is representable in|F' as a
base hrgument to the powerr and logbaser operations do not produce ayduplication of expr and
Ing.

B.5.3.7 Introduction to operations for trigonometric elementary functions

The teal trigonometric functions sin, cos, tan, cot, sec,,afd csc are all periodic. The gmallest
periofl for sin, cos, sec, and csc is 2 - 7 radians (360 degrees). The smallest period for ffan and
cot i 7 radians (180 degrees) (and thus also have #period of 2 - m radians (360 degrees]). The
mathematical trigonometric functions are perfectly-*periodic. Their numerical counterpgrts are
not that perfect, for two reasons.

Fifstly, the radian normalisation cannot beexact, even though it can be made very good given
very many digits for the approximation(syof 7 used in the angle normalisation, returning ap offset
from the nearest axis, and including guard digits. The unit argument normalisation, howeyer, can
be miade exact regardless of the (non-zero and, in case denormp = false not too smajl) unit
and the original angle, returning;only a plain angle in F'. LIA-2 requires unit argument angle
normplisation to be exact.

Secondly, the length of one revolution is of course constant, but the density of floatink point
valuep gets sparser (in@hsolute spacing rather than relative) the larger the magnitude of th¢ values
are. This means that.the number of floating point values gets sparser per revolution the laiger the
magnitude of thetangle value is. For this reason the notification absolute_precision_underflow
is infroduced;together with two parameters, one for radians and one for other angular units.
This motification is given when the magnitude of the angle value is “too big”. Exactly when the

reprepentable angle values get too sparse depends upon the application at hand, but LIA{2 gives
a defbult value for the parameters that define the cut-off

Note that the absolute_precision_underflow notification is unrelated to any argument re-
duction problems. Argument reduction is (implicitly for radians, explicitly for other angular units)
required by LIA-2 to be very accurate. But no matter how accurate the argument reduction is,
floating point values are still sparser in absolute terms the larger the values are. The trigonometric
operations return a result within about an ulp, and that high accuracy is wasted if the angular
argument is not kept at a high accuracy too, both relative and absolute.

B.5.3 Elementary transcendental floating point operations 93

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

LIA-2 includes specifications for high accuracy angle normalisation operations, both for radi-
ans and for other angular units. The angle normalisation operations give a result within minus
half a cycle to plus half a cycle (as does the angle conversion operations), unless the argument
angular value is too big (or there is some other error). These operations should be used to keep
the representation of angles at a high accuracy. LIA-2 also includes angle normalisation opera-
tions that can be used to maintain an even higher degree of accuracy, giving the offset from the
nearest axis (though without any extra guard digits). To use these, one need to keep track of the
currently nearest axis, and make appropriate adjustments in the calculations, which unfortunately
complicates programs that use these nearest-axis normalisations.

Note that rad(x) = arccos(cos(z)) if sin(z) > 0 and rad(x) = — arccos(cos(x)) if sin(z) < 0.
The fir ‘ A . .

(z) is an angle offset from the axis that is nearest to the angle x. The second\ part of
(x) is equal to rad(x) if cos(x) = 1/y/2 (i.e. if the first part of azis_rad(x) is (130)). [More
y, the second part of azis_rad(x) is equal to rad(4 - x)/4.

rad(x) returns the same angle as the angle value z, but the returned angle valye is betwegn —m
and 7. [The rad function is defined to be used as the basis for the angle norimalisation operafions.
The aais_rad function is defined to be used as the basis for a numerically more accurate rpdian
angle rormalisation operation. The arc function is defined to be used as the basis for the [arcus
(angle)| operations, which are used for conversion from Cartesian tepolar co-ordinates.

B.5.3.8 Operations for radian trigonometric elementary functions

The raflian trigonometric approximation helper functions/(including those for normalisatiop and
converdion from radians) are required to have the same zero points as the approximated mjathe-
matical function only if the absolute value of the drgument is less than or equal to big_angle_rp.
Likewige, the radian trigonometric approximagiofr’helper functions are required to have the|same
sign as|the approximated mathematical function only if the absolute value of the argument is less
than or equal to big_angle_rp. Indeed, theradian trigonometric approximation helper fun¢tions
need n¢t be defined at all outside of [=big_angle_rp, big_angle_rp].

The| big_angle_rr parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a prograni. However, this method should only allow the value of this
paramgter to be set to a value greater than 2 - 7, so that at least arguments within the firgt two
(plus ahd minus) cycles arelallowed, and such that ulp p(big-angle_rp) < w/1000, so that at|least
2000 eyenly distributed ‘points within the ‘last’ cycle (farthest away from 0) are distinguishable.
The lafter gives a rather low accuracy at the far ends of the range, especially if pg is comparatively
large, do values this*large for big_angle_rr are not recommendable unless the application i such
that hiph accurady trigonometric operations are not needed. Note that if big_angle_rg is allowed
to be ifcreased, then, for conformity with LIA-2, the radian angle reduction may need to be made
more pFecise.

For reduction of an argument given in radians, implementations use one or several approximate
value(s) of 7 (or of a multiple of), valid to, say, n digits. The division implied in the argument
reduction cannot be valid to more than n digits, which implies a maximum absolute angle value
for which the reduction yields an accurate reduced angle value.

Regarding argument reduction for radians, there is a particular problem when the result of the
trigonometric operation is very small (or very big), but the angular argument is not very small. In
such cases the argument reduction must be very accurate, using an extra-precise approximation

94 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

to m, relative to what is normally used for arguments of similar magnitude, so that significant
digits in the result are not lost. Such loss would imply non-conformance to LIA-2 by the error in
the final result being greater than that specified by LIA-2. In general, extra care has to be taken
when the second part of azxis_rad(x) is close to 0.

Note that

— tan and sec have poles at odd multiples of 7/2 radians (90 degrees).

— cot and csc have poles at multiples of 7 radians (180 degrees).

All four of the corresponding operations with poles may produce overflow for arguments suffi-
ciently close to the poles of the functions. The tang operation produces no infinitary notification.
The feason is that the poles of tan(x) are at odd multiples of 7/2, which are not repiesentable
in F.| The mathematical cotangent function has poles at even multiples of 7/2, of which gnly the
originl is representable in F'. For a system which supports signed zeros and infiniti€s;-the |contin-
uatiop values are +00 and —oo for arguments of 0 and —0 respectively to cotp (), Althouigh the
mathpematical function sec has poles at odd multiples of 7/2, the secp operation will not generate
any ipfinitary notification because such arguments are not representableAn)F.

The infinitary notification cannot occur for any non-zero argument-in radians because fr is not
reprepentable in F', nor is /2. For the angular unit argument trigenommetric operations the sign
of th¢ infinitary continuation value has been chosen arbitrarily foran infinitary which oc¢urs for
a norl-zero argument. However, sign symmetry, when appropriate, is maintained.

Tle operations may produce underflow for arguments-sufficiently close to the zeroq of the
functjon. For a subnormal argument z, the sing, tanglarcsing, and arctang return x |for the
resulf, with very high accuracy. Similarly, for a subtiormal argument, cosy and secr can return
a resIlt of 1.0 with very high accuracy.

Tlhe trigonometric inverses are multiple valued: They are rendered single valued by defining a
princjpal value range. This range is closely elated to a branch cut in the complex plane|for the
corregponding complex function. Among-the floating point numerical functions this brapch cut
is “visible” only for the arcp operation® The arc function has a branch cut along the negative
real gxis. For x < 0 the function Has a discontinuity from —m to +7 as y passes through zero
from megative to positive values ~Fhus for x < 0, systems supporting signed zeros can hardle the
discohtinuity as follows:

arcp(x,—0) = upp (=)
arcp(z,0) = downp(T)

Tlhere is a problem for zero argument values for this operation. The values given [for the
opergtion arcpfxyy) for the four combinations of signed zeros for z and y are those given|in [52].
The following table of values is given in [52] for the value of arcp(z,y) with both of the arguments
Z€ero:

Zero arguments

x |y |arcp(z,y)
0 0 0
-0 0 s
-0 | -0 -

0 | -0 -0

B.5.3 Elementary transcendental floating point operations 95

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Note that the mathematical arc function is indeterminate (undefined) for (0,0), but close rep-
resentable approximations the above result are numerically more useful than giving an invalid
notification for such arguments. LIA-2 therefore specifies results as above.

There is also a problem for argument values of +00 or —oo for this operation. The following
table of values is given in [52] for the value of arcp(z,y) with at least one of the arguments infinite:

Infinite arguments

z y | arcr(z,y)
400 | 20 0
+o00 | +00 /4
fimite oo 7
—00 | +00 3-m/4
-0 | =0 T
—oo | —0 -7
—o00 | <0 —T
—00 | —o0 | —3-m/4
finite | —oo —7/2
400 | —00 —m/4
400 | <0 -0
400 | —0 -0

If one pf & and y is infinite and the other is finite, the result tabulated is consistent with that
obtaingd by a conventional limiting process. However¢the results of n/4, —7w/4, 3 - w/4 and
—3 - /Wt corresponding to infinite values for both x and y, are of questionable validity, sinc¢ only
the quddrant is known, not the angle within the quadrant. However, these results are numeifically
more yseful than giving an invalid notification,for such arguments. LIA-2 therefore spgcifies
results [as above.

B.5.3.9 Operations for trigonometrics with given angular unit

At pregent only Ada specifies trigonometric operations with angular unit argument. LIA-2 has
adoptefl angular unit argumeft,operations in order to encourage uniformity among languages
which tight include such operations in the future. The angular units in 7" appear to be particfilarly
importhnt and have therefére been given a tighter error bound requirement. An implementation
can of |course have tlie;same (tighter) error bound for all angular units. Some programming

languages provide strigonometric operations with an implicit angular unit argument with [value
360.

The|trigoniometric approximation helper functions with angular unit argument (includingfthose
for normalisation and conversion from radians) are required to have the same zero points gs the

approx mated mathematical function. Likew iqn’ the frignnnmnf‘r-ir‘ apprnvimafinn]’n:\]par fun tions

with angular unit argument are required to have the same sign as the approximated mathematical
function. However, the trigonometric approximation helper functions with angular unit argument
need not be defined at all outside of [—big_angle_up - |u|, big_-angle_up - |u|], where u is the value
of the angular unit argument.

The big_angle_urp parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than or equal to 1, so that at least arguments within

96 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

the first two (plus and minus) cycles are allowed, and such that ulpp(big-angle_ur) < 1/2000,
so that at least 2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are
distinguishable. The latter gives a rather low accuracy at the far ends of the range, especially if
pr is comparatively large, so values this large for big_angle_up are not recommendable unless the
application is such that high accuracy trigonometric operations are not needed.

The min_angular_unitp parameter is specified for two reasons. Firstly, if the type F' has
no subnormal values (denormp = false), some angle values in F are not representable after
normalisation if the angular unit has too small magnitude. This gives the firm limit given in
cluase 5.3.9. Secondly, even if F' has subnormal values (denormp = true), angular units with
very small magnitude do not allow the representable angles to be particularly dense, not even if

the apgutarvatue ts—withim thefirsttycte—Thisdoes T itsetf motgive Tisetoa particayr limit

valuel but the limit value defined in cluase 5.3.9 is reasonable.

Pijovided that |u| > min_angular_unitp, an angular unit u can be either positive‘ornegdtive. If
it’s npgative, growing angular values turns the angle “clockwise” rather than counter-clockwise as
for rafdians and other positive angular units. Ada does not permit negative angular units, bfit since
there|is no mathematical nor numerical reason to not allow them, LIA-2 allows negative angular
unit argument values, avoiding an unjustifiable and arbitrary decision to disallow them. This only
very marginally complicates the specifications given in LIA-2 as well ag“the implementations that
follow those specifications.

Naote that the angular unit argument need not be integraljéven though several comm¢n non-
radiah angular units are integral, 360, 400, etc. Note also that even the use of the pearest
apprgximation to 2 - 7w that is representable in F' as angtlar unit argument does not prgduce a
duplitation of the radian trigonometric operations. The’radian trigonometric operations heed to
use ojne or more approximations to 7 (or an integer fraction of 7) that are more accurafe than
can He represented in F', in order to fulfill the aceiiracy requirements of LIA-2.

All of the argument angular unit trigonometric, and argument angular unit inverse triggnomet-
ric, approximation helper functions, including those for normalisation, angular unit conyersion,
and grc, are exempted from the monotonicity requirement for the angular unit argument.

If the angular unit argument, u3Jjs such that u/4 € F, the tanup operation has poles|at odd
multiples of u/4. This is the case for degrees (u = 360). As for tanup, if the angular unit
arguthent, u, is such that u/4 & F the secup operation has poles (infinitary) at odd mpultiples
of u/f.

The same commerits) hold for the arcup operation as for arcp operation, except that the
discoptinuity in the ‘mbathematical function is from —u/2 to +u/2.

B.5.3.10 OQOperations for angular-unit conversions

Angulat/conversion operations are commonly found on ‘scientific’ calculators and also in Java,

thougirthemroftemr oty betweenm degrees anmd TadiarTs:

Conversion of an angular value x from angular unit a to angular unit b appears simple: compute
x - b/a. Basing a numerical conversion of angular values directly on the above mathematical
equality (e.g. divp(mulp(z,b),a)) loses much absolute angular accuracy, however, especially for
large angular values. Instead computing arcup (b, cosur(a,z), sinup(a,z)) then gives a more
accurate result. This might still not be within the accuracy required by LIA-2 for the angular
unit conversion operations specified by LIA-2, which here requires a maximum error of 0.5 ulp.

B.5.3 Elementary transcendental floating point operations 97

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Note that all of the angular conversion operations return an angularly normalised result. This
is in order to maintain high absolute accuracy of the angle being represented.

B.5.3.11 Operations for hyperbolic elementary functions

The hyperbolic sine operation, sinhp(x), will overflow if |z| is in the immediate neighbourhood
of In(2 - fmax), or greater.

The hyperbolic cosine operation, coshp(x), will overflow if |z| is in the immediate neighbour-
hood of In(2 - fmax), or greater.

The hvperbolic cotangent operation. cothr(z). has a pole at z = 0.

The|inverse of cosh is double valued, the two possible results having the same magnitudq with
opposifle signs. The value returned by arccoshp is always greater than or equal to 1,

The|inverse hyperbolic tangent operation arctanhp(zx) has poles at x = +1 and at = 1.
The|inverse hyperbolic cotangent operation arccothp(z) has poles at z = 4\band at x = —1.

Likd for the exponentiation and logarithm operations, there are extra aceuracy requirenjents,
for cerfain arguments.

Wh¢n appropriate, there are also sign symmetry requirements_onthe approximation Helper
functiops. These sign symmetry requirements for “ordinary” arguments are followed throygh in
the opgration specification to cover also signed zeroes and infinites. Similar requirements appear
also in [the other subclauses of clause 5.3.

For |sinhp, tanhg, arcsinhp, and arctanhp, for a_specified interval around 0, the opetation
returnq its argument unchanged, and does so with high accuracy. Underflow notifications arp also
avoided for these cases, since there is no denormalisation loss.

B.5.4 | Operations for conversion between numeric datatypes

Clause|5.2 of LIA-1 covers conversions from an integer type to another integer type and to a
floating point type, as well as between”(LIA-1 conforming) floating point types of the same fadix.

LIA}2 extends these conversions to cover conversions to and from non-LIA conforming datqtypes,
such ag{ conversion to and from strings, and also extends the floating point conversion specificgtions
to handle conversions where the radices may be different.

In ofdinary string formats for numerals, the string “Hello world!” is an example of a signplling
NaN.

LIA}2 does nop specify any string formats, not even for the special values —0, 400, —od, and
quiet JaN, but possibilities for the special values include the strings used in the text of| LIA-
2, as wWell as’strings like “4infinity” or “positiva odndligheten”, etc, and the strings used may

on Y\Y‘D‘FDY‘DY’IPQ QfoiY\(‘)‘Q as fhﬂ‘ haak2hva Q]Qf\ Ff\Y‘ havaval QY\D(‘;Q] ‘Q]1IQQ PﬂY‘ iﬂQfQY\(“D ondg
depen P o Y e 3 may

use different notation for the decimal separator character (like period, comma, Arabic comma,
...), use superscript digits for exponents in scientific notation, or use Arabic digits or traditional
Thai digits. String formats for numerical values, and if and how they may depend on preference
settings, is also an issue for bindings or programming language specifications, not for this part of
LIA.

If the value converted is greater than those representable in the target, or less than those
representable in the target, even after rounding, then an overflow will result. E.g., if the target is

98 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

a character string of at most 3 digits, and the target radix is 10, then an integer source value of
1000 will result in an overflow. As for other operations, if the notification handling is by recording
of indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

LIA-2 requires, like C99, all floating point conversion operations to be such that the error is
at most 0.5 ulp. This is in contrast to IEC 60559, which allows conversion operations to have an
error of up to 0.97 ulp.

B.S.W
B.5.5.1 Numerals for integer datatypes

Negative values (except minint; if minint; = —maxint; — 1) can be obtained by usjng the
negaffion operation (negy).

Infeger numerals in radix 10 are normally available in programming languages. Other [radices
may plso be available for integer numerals, and the radix used may B¢ part of determinfing the
targe} integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or [L6 may
be for unsigned integer datatypes.

Syintaxes for numerals for different integer datatypes needwiot be different, nor need {hey be
the same. This part does not further specify the format for‘integer numerals. That is an igsue for
bindipgs.

Oyerflow for integer numerals can be detected a$. “compile time”, and warned about. Ijikewise
can 1fotifications about invalid, e.g. for infinitar§®or NaN numerals that cannot be convdrted to
the target type, be detected at “compile time”“nd be warned about.

B.5.5.2 Numerals for floating poiut datatypes

If thq numerals used as operations in a program, and numerals read from other sources juse the
same|radix, then “internal” numerals and “external” numerals (strings) denoting the samle value
in R Jand converted to the samie target datatype should be converted to the same value. [ndeed,
the r¢quirement on such_conversions to round to nearest implies this. But even if this requijements
is relfxed by a binding (See Annex A), external and internal conversions should not differ

N¢gative values\(iricluding negative 0, —0, if avaliable) can be obtained by using the npgation
opergtion (negg).

R4dices other than 10 may also be available for floating point numerals.

Infeger-numerals may also be floating point numerals, i.e. their syntaxes need not be different.
Nor teed svntaxes for numerals for different ﬂna‘ring point. da‘m‘ryppq be different. nor neéed they

be the same. This part does not specify the syntax for numerals. That is an issue for bindings or
programming language specifications.

Overflow or underflow for floating point numerals can be detected at “compile time”, and
warned about. Likewise can notifications about infinitary or invalid, e.g. for infinitary or NaN
numerals that cannot be converted to the target type, be detected at “compile time” and be
warned about.

B.5.5 Numerals as operations in a programming language 99

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.6 Notification

An intermediate overflow on computing approximations to, for example, z? or 3> during the
calculation of hypotp(z,y) ~ /22 + y? does not result in an overflow notification, unless the end
result overflows. This is clear from the specification of the hypotr operation in this part. It is
not helpful for the user of an operation to let intermediary overflows or underflows that are not
reflected in the end result be propagated. Implementations of LIA-2 operations are required to
shield the user from such intermediary overflows for all of the LIA-2 operations. More generally,
well-made numerical software should similarly shield users of that software from overflows and
underflows that are not reflected in a properly calculated end result. However, such requirements
in general are beyond the scope of LIA-2.

If a pingle argument operation opg, for the corresponding mathematical function f, is suclll that
f(x) véry closely approximates x, when |z| < fminNg, then opp(z) returns x for |z < fminNp,
and ddes not give a notification if there cannot be any denormalisation loss relative to |f(x).
For defails, see the individual operation specifications for expmI r, Inlpp, sing) arcsing, fang,
arctang, sinhp, arcsinhp, tanhp, and arctanhp.

Opgrations specified in LIA-2 return invalid(gNaN) when passed a _signalling NaN (sINaN)
as an argument. Most operations specified in LIA-2 return qINalN, wigheut any notification [when
passed [a quiet NaN (qNalN) as an argument.

The| different kinds of notifications occur under the following‘eircumstances:

a) ipvalid: when an argument is not valid for the operation, and no value in F™* or any special
vhlue result makes mathematical sense.

b) ipfinitary: when the input operand corresponds to a pole of the mathematical furjction
pproximated by the operation, or, more geénerally, when the true result is infinitary, but
pne of the arguments is infinitary.

B &

¢) overflow: when the (rounded) result.isi outside of the range of the result datatype.

d) underflow: when a sufficiently closély approximating result of the operation has a njagni-
1de that is so small that it might not be sufficiently accurately represented in the result
ptatype.

o,

e) apsolute_precision_underflow: when the magnitude of the angle argument to a flqating
ppint trigonometriceoperation exceeds the maximum value of the argument for whidh the
density of floating. point values is deemed sufficient for the operation to make sense| See
clause 5.3.7 and the associated discussion in this rationale (section B.5.3.7).

In order to<avoid absolute_precision_underflow notifications, and to maintain al high
apcuragyyimplementors are encouraged to provide, and programmers encouraged to usp, the
nele\normalisation operations specified in 5.3.8.1 and 5.3.9.1.

<

Theldifference betwoen the-infinitary and overflow notificationsfor Hoating point-operdtions
is that the first corresponds to a true mathematical singularity, and the second corresponds to a
well-defined mathematical result that happens to lie outside the range of F'.

B.6.1 Continuation values

For handling of notifications, the method that does recording of indicators (LIA-1, clause 6.1.2)
is preferred.

100 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

An implementation which supports recording of indicators must supply continuation values to
be used when execution is continued following the occurrence of a notification. For systems which
support signed zeros, infinities and NaNs, LIA-2 specifies how these values, as well as ordinary
values, are used as continuation values. Other implementations which use recording of indicators

must

B.7

supply other suitable continuation values and document the values selected.

Relationship with language standards

The datatypes involved in implicit conversions need not be accessible to the programmer. For
example, trigonometric operations may be evaluated in extended double precision, even though

h I . . 1 111 . . — 1 . 1
that [lalaly pPC 15 110U IIIaluc avdllaDIC 1O PIOZSIalllllICsS USIIIE a pPal'tiCulal PIOZSIalllllllllE 1a.

Thes¢ extra datatypes should be made available, however, and the implicit conversions-sh

exprd

is goihg to be evaluated without having to look at the machine code.

B.8

To m
only
to do
envir

It
incor

tatiop that the language standard does not specify:n the required detail, and the impleme
to document those details. For example, tlie language standard may specify the rhnge of

needs
allow]
natio
the r

ssible as explicit conversions. At least in order to be able to show exactly whi¢h)exy

Documentation requirements

hke good use of an implementation that conforms to LIA-2, prégrammers need to kr
that the implementation conforms, but how it conforms. L&IA-2 requires implemer
cument the binding between the LIA-2 operations and parameters and the total arif
pnment provided by the implementation.

poration of the relevant language standard. However, there will be aspects of the imyj

bd parameter values, but the implementation must document the actual value. The

bquirements in clause 8.

\guage.

buld be

ression

ow not
tations
hmetic

is expected that an implementation will meet paff of its documentation requirements by

lemen-

ntation

combi-

h of the language standard and the iniplementation documentation together should 1heet all

B.7 Relationship with language standards

101

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

102 Rationale

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

Annex C
(informative)

Example bindings for specific languages

ISO/IEC 10967-2:2001(E)

This annex describes how a computing system can simultaneously conform to a language stan-
dard (or publicly available specification) and to LIA-2. It contains suggestions for binding the
“abstract” operations specified in LIA-2 to concrete language syntax. The format used for these

exam

ple bindings in this annex is a short form version. suitable for the purposes of this ann

ex. An

actud
as in
ident

Pq
gram
requi
oper§
anoth
were
gesti
betwd
tions

Tle following clauses are suggestions rather than tequirements because the areas covd

the r¢
dards
on th

The languages covered in this annex. &be

| binding is under no obligation to follow this format. An actual binding should,hh
the bindings examples, give the LIA-2 operation name, or parameter name, boun
fier (or expression) by the binding.

ming language agree in the manner with which they adhere to LIA-20\For instance
es that the parameter big_angle_rr be provided (if any conforming’radian trigon:
tions are provided), but if one system provides it by means of,the identifier BigAng
er by the identifier MaxAngle, portability is impaired. Clearlyyitvould be best if such

ns are given here to aid portability. Name consistency cauriot, however, be fully mai
ben different programming languages, due to already éxisting differences in naming

sponsibility of the various programming language standards committees. Until bindiy
are in place, implementors can promote “@e facto” portability by following these sugd
eir own.

Ada,

BASIC,

C,

CH+,
Fortran,
Haskell,

Java,
Commondisp,
ISLisp,
Mogdula-2,
Pascal and Extended Pascal,

and LIA does not require wholesale naming changés, nor expression syntax changes.

bwever,
1l to an

rtability of programs can be improved if two conforming LIA-2 systems 1sing the saime pro-

LIA-2
bmetric
le and

names

defined in the relevant language standards or binding standards, but in the meantinje, sug-

htained
onven-

red are
g stan-
estions

Eat A 3
L/1, alld

SML.

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-

culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are ex-
amined to see how closely they fit the requirements of LIA-2. Where parameters, constants, or

C. Example bindings for specific languages

103

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a x.)

This annex describes only the language-level support for LIA-2. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-2 requirements.

A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete
binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-
1/TEC 60559 binding should be developed as a single binding standard. To avoid conflict with
ongoing development, only the LIA-2 specific portions of such a binding are examplified in this
annex.

Mosdt language standards permit an implementation to provide, by some means, the paranlleters
and opprations required by LIA-2 that are not already part of the language. The methiod fpr ac-
cessing|these additional parameters and operations depends on the implementation-and language,
and is pot specified in LIA-2 nor examplified in this annex. It could include external subrqutine
librarigs; new intrinsic functions supported by the compiler; constants and funébions provided as
global ['macros”; and so on. The actual method of access through librariesymacros, etc. should
of courpe be given in a real binding.

Mogt language standards do not constrain the accuracy of elementary numerical functiohs, or
specify|the subsequent behaviour after an arithmetic notification~-océurs.

In the event that there is a conflict between the requirenfents of the language standardl and
the requirements of LIA-2, the language binding standard.ghould clearly identify the conflidt and
state itfs resolution of the conflict.

C.1 JAda

The pogramming language Ada is defined\by ISO/IEC 8652:1995, Information Technology —
Progratnming Languages — Ada [11].

An jmplementation should follow, all the requirements of LIA-2 unless otherwise specified by
this larjguage binding.

The|operations or parameters;tharked “i” are not part of the language and should be provided
by an inplementation that wishes to conform to LIA-2 for that operation or parameter. Foi each
of the marked items a suggested identifier is provided.

The| Ada datatype'Boolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one floating |point
datatype. The motations INT and FLT are used to stand for the names of one of these dataftypes
(respedtively)Nin what follows.

Adal hag an overloading system, so that the same name can be used for different types of
arguments to the operations. Ada allows in general that formal parameter names are used in
calls, though one normally does not write out the formal parameter names in calls. However, in
some cases a formal parameter name is needed in the call to make the overloaded name resolve to
the appropriate definition, rather than some other definition.

The Ada packages which contain some of the operations listed below are not detailed in this
abbreviated example binding. For such details, see ISO/TEC 8652:1995, Information Technology —

104 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

Programming Languages — Ada [11]. A full binding would include information regarding packages

also for the operations that are not included in the Ada standard.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazr(x,y) INT’ Max(x, y) *
ming(z,y) INT’Min(z, y) *
maz_seqr(xs) Max (xs) T
min_seqr(xs) Min(zs) T
dimp(z,y) Dim(xz, y) T
power(z,y) T kk gy *
shift2r(x,y) Shift2(z, y) T
shift10;(z,y) Shift10(x, y) T
sqrtr(zx) Sqrt (z) 7
dividesy(x,y) x /= 0 and then y mod z = 0 *
eveny(x) x mod 2 =0 *
oddr(z) x mod 2 /=0 *
quot(z,y) Quotient(z, y) T
mody(z,y) x mod y *
ratior(x,y) Ratio(z, y) T
residuer(x,y) Residue(x, ¥) T
groupr(x,y) Group(x, y) T
padi(z,y) Pad(r, y)]
gedr(z,y) Ged(z, y)]
lemy(z,y) Lem(z,) T
gcd_seqr(zs) Ged(@$) T
lem_seqr(xs) Lem(xs) T
add_wrapr(z,y) Add Wrap(z,) T
add_ovi(x,y) Add_0Over(x, y) T
sub_wrapr(z,y) Sub_Wrap(x, ¥) T
sub_ovy(z,y) Sub_Over(z, y) T
mul_wrapr(z,y) Mul Wrap(xz, ¥) T
mul_ovr (z,9) Mul Qver (z, y) T
wher¢ x and_§ are expressions of type INT and where xs is an expression of type array (Integer
range <>)Sof INT.
TheXJA-2 basic floating point operations are listed below, along with the syntax used tq invoke
them:
maxp(z,y) FLT Max(x, y)
ming(z,y) FLT Min(z, v)

mmazp(x,y)
mming(z,y)
max_seqp(xs)
min_seqp(xs)

C.1 Ada

MMax (z,)
MMin(x, y)
Max (zs)
Min(xs)

— = = — ¥

105

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

where

© ISO/IEC 2001 — All rights reserved

mmax_seqp(zs) MMax (zs) T
mmin_seqp(xs) MMin(xs) T
dimp(z,y) Dim(z, y) T
floorp(x) FLT’Floor(x) *
floor_rest () x - FLT’Floor (x) *
roundingp(x) FLT’Unbiased Rounding(z) *
rounding_restp(x) x - FLT’Unbiased Rounding(x) *
ceilingp(x) FLT’Ceiling(x) *
ceiling_restp(x) x - FLT’Ceiling(x) *
roeiffqlppf'r :1/1\ EFLT’Remainder(x (7}1\ %
syrtp(x) Sqrt (z) *
rec_sqrip(x) Rec_Sqrt (z) T
mpulp—pr (2, y) Prod(z, y) 1
afld_lop(x,y) Add Low(z,) T
spb_lop(z,y) Sub_Low(z, v) T
mul_lop(x,y) Mul Low(z,) T
djv_restp(x,y) Div Rest(x, y) T
syrt_restp(x) Sqrt_Rest (x) T

range [<>) of FLT.

The
be acce

- and y are expressions of type FLT, and where xs is an expression of type array (Int

parameters for LIA-2 operations approximating teal valued transcendental function

ssed by the following syntax:
npax_error_hypot g Err _Hypotenuse(z) T
Ztax,error,emp r Err_Exp(x) T
ax_error_powerg Err_Power (x) T
blg_angle_rp Big Radian Angle(x) 1
ax_error_radp Err Rad(z) 1
E[a:zxzrro&sinF Err Sin(z) T
ax_error_tang Err Tan(z) 1
npin_angular _ynitp Smallest_Angular _Unit(x) T
bjg_angle_up Big Angle(x) T
:tax_error_sinula (u) Err_Sin Cycle(u) T
ax_ertor_tanup(u) Err_Tan Cycle(u) T
R 00 b = Qs (o)) +
oL _CTr T U _oSUTrvitv f L L WJLIIII\ U) l
max_error_tanhp Err_Tanh(x) 1
mazx_error_convertp Err Convert (x) T
max_error_convert gs Err_Convert_To_String T
max_error_convert ps Err Convert_To_String f

eger

S can

where x and u are expressions of type FLT, and F’ and D’ are non-special value sets for string
formats. Several of the parameter functions are constant for each type (and library), the argument

106

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

is then used only to differentiate among the floating point types. (This is in Ada normally done
as ‘type attributes’, but new such cannot be defined outside of the Ada standard itself.)

The LIA-2 elementary floating point operations are listed below, along with the syntax used

to invoke them:

hypotp(x,y) Hypotenuse(z, ¥) T
powerg, (b, z) b ** z *
expr(zx) Exp(z) *
expm1 () ExpM1(z) T
exp2p(x) Exp2(x) T
expl0p(x) Exp10(z) T
powerp(b,y) b **x y *
powerlpmlp(b,y) Power1PM1 (b,) 7
Inp(x) Log(x) *
Inlpp(z) LoglP (x) T
log2p(z) Log2(x) T
log10p(x) Log10(x) T
logbaser (b, x) Log(z, b) (note parameter-order) *
logbaselp1p (b, x) Log1P1P(x, b) T
radp(z) Rad (x) T
azis_radp(z) Rad(x, h, v) (sete out parameters) T
sing(x) Sin(x) *
cosp(x) Cos(x) *
tanp(x) Tan(x) *
cotp(x) Cot.(a) *
secp(x) Sec(x) T
cscp(x) Csc(x) T
cossinp(x) CosSin(x, ¢, s) (note out parameters) T
arcsing(x) ArcSin(x) *
arccosp(x) ArcCos(x) *
arctanp () ArcTan(x) *
arccotp(x) ArcCotS(x) T
arccotep(t) ArcCot (x) *
arcseep(T) ArcSec(x) T
arcestp(x) ArcCsc(x) T
arey(z. y) ArcTan(y, x) or ArcCot(x, y) x(invallid at origin)
cyclep(u, x) Cycle(z, u) (note parameter order) T
azis_cyclep(u, x) Cycle(x, u, h, v) T
sinup(u,) Sin(xz, uw) (note parameter order) *
cosup(u,x) Cos(x, wu) *
tanup(u,x) Tan(z, u) *

C.1 Ada

107

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

1 at origin)

s, h,

ation
plica-
uired
st be
rative
must

cotup(u, x) Cot(z, w) *
secup(u, x) Sec(x, u) 1
cscup(u, x) Csc(z, w) T
cossinup(u,) CosSin(x, u, ¢, S) T
arcsinup(u, x) ArcSin(x, u) *
arccosup(u, x) ArcCos(x, u) *
arctanup (u, x) ArcTan(z, Cycle=>u) *
arccotup (u, x) ArcCotS(z, u) T
arccotcup (u,) ArcCot (z, Cycle=>u) *
a PQP{"I/F(’H) ArcSec(r 1) '!'
afcescup (u,) ArcCsc(x, u) T
afrcup(u, x,y) ArcTan(y, x, u) or ArcCot(x, y, w) *(invali
rad_to_cyclep(x,w) Rad to Cycle(z, w) i
cycle_to_radp(u,x) Cycle_to_Rad(u, x) T
cycle_to_cyclep(u, x,w) Cycle_to Cycle(u, =, w) T
sfnhp(x) SinH(x) *
cpshp(z) CosH(x) *
t¢nhp(x) TanH (x) *
cpthp(x) CotH(x) *
spchp(x) SecH(x) i
cpchp(x) CscH(x) T
afrcsinhp(x) ArcSinH(x) *
afrccoshp(x) ArcCosH (x) *
afrctanhp () ArcTanH(¥) *
af-ccothp(x) ArcCotH(x) *
afrcsechp(x) ArcSecH(x) T
afccschp(x) ArcCscH(z) T
where §, =, y, u, and w are expressions of type FLT, z is an expression of type INT, and ¢
and v gre variables of type FLT.

Ada5 specifies (in gther words) that powerp; must be computed by repeated multiplig
(in an unspecified order). That computation method cannot, whatever the order of multi
tions, guarantee fulfilment of the LIA-2 accuracy requirements, and cannot fulfill the req
relatiofship betwéen powerp; and powerp. Further, Ada95 specifies that angular units my
positive, and<dmplicitly has a value for min_angular unitp of fming. LIA-2 allows also neg
angulat units, but has a larger value for min_angular _unitr. A real Ada binding for LIA-2
state hpw.these conflicts are resolved (see clause 2).

Arithmetic value conversions in Ada are always explicit and usually use the destination datatype
name as the name of the conversion function, except when converting to/from string formats.

108

converty_p(x) INT2(x) *
convertn_y(s) Get(s, n, w); *
convertpn_r(f) Get(f?, n, w?); *
converty_pn(x) Put(s, =, base?); *
converty . (x) Put(h?, =, w?, base?); *

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

floorg_ 1 (y) INT(FLT’Floor (y)) *
roundingr—1(y) INT(FLT’Unbiased Rounding(y)) *
ceilingr—1(y) INT(FLT’Ceiling(y)) *
convertr_p(x) FLT(x) *
convertp_ g (y) FLT2(y) *
convertpn_,p(s) Get(s, n, w?); *
convertpn _p(f) Get(f?, n, w?); *
convertp }‘\//('ldl\ Put (s gy, Aft=>g% F‘YP=>p7\: *
convertp_.pn(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>e?); x
convertp_,p(z) FLT(2) *
convertpr_.p(s) Get(s, n, w?); *
convertp_p(f) Get(f?, n, w?); *
convertp_.p(y) FXD(y) *
convertp_.pr(y) Put(s, y, Aft=>a?, Exp=>0); *
convertp_.pr(y) Put(h?, y, Fore=>i?7, Aft&>u?, Exp=>0); «*

wher¢ x is an expression of type INT, y is an expression of¢type FLT, and z is an expregsion of
type |[FXD, where FXD is a fixed point type. INT2 is the'ihteger datatype that corresppnds to
I'. HLT2 is the floating point datatype that corresponds to F’'. A ? above indicates that the
paratheter is optional. f is an opened input file (defaqlt is the default input file). A is an jopened
outpyt file (default is the default output file). s s\of type String or Wide_String. For Get of a
floating point or fixed point numeral, the baseds indicated in the numeral (default 10). For Put
of a floating point or fixed point numeral, ouly base 10 is required to be supported. For|details
on Gqt and Put, see clause A.10.8 Input-Quitput for Integer Types, A.10.9 Input-Output fpr Real
Typep, and A.11 Wide Text Input-Output, of ISO/IEC 8652:1995. base, n, w, i, a, anf e are
exprgssions for non-negative integers.) e is greater than 0. base is greater than 1.

Adla provides non-negative nuinerals for all its integer and floating point types. The defafilt base
is 10) but all bases from 2 to 16 can be used. There is no differentiation between the niyimerals
for different floating point, types, nor between numerals for different integer types, but |integer
numdrals (without a point) cannot be used for floating point types, and ‘real’ numerals [with a
point)) cannot be used for integer types. Integer numerals can have an exponent part though.
The details are netirepeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numeric
Litergls, clauge.8.5.4 Integer Types, and clause 3.5.6 Real Types.

The Adastandard does not specify any numerals for infinities and NaNs. Suggestion:

400 FLT’Infinity]
qlNaN FLT?NaN T
sNaN FLT’NaNSignalling]

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Ada uses its exception mechanism as its default means of notification. underflow does
not cause any notification in Ada, and the continuation value to the underflow is used directly,

C.1 Ada 109

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

since an Ada exception is inappropriate for an underflow notification. On underflow the con-
tinuation value (specified in LIA-2) is used directly without recording the underflow itself. Ada
uses the exception Constraint_Error for infinitary and overflow notifications, and the excep-
tions Numerics.Argument Error, I0_Exceptions.Data Error, and IO_Exceptions.End Error
for invalid notifications. Since Ada exceptions are non-returnable changes of control flow, no
continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

C.2 [BASIC

The prpgramming language BASIC is defined by ANSI X3.113-1987 (R1998) [40], ‘endors¢d by
ISO/IHC 10279:1991, Information technology — Programming languages — Full BASIC [16].

An jmplementation should follow all the requirements of LIA-2 unless otherwise specified by
this lan)guage binding.

The|operations or parameters marked “1” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that\doperation. For each ¢f the
marked items a suggested identifier is provided.

BASIC has no user accessible datatype corresponding to the LIA datatype Boolean.

BASIC has one primitive computational datatype, nameric. The model presented bl the
BASI(] language is that of a real number with decimalradix and a specified (minimum) nymber
of significant decimal digits. Numeric data is not declared directly, but any special characteristics
are inf¢rred from how they are used and from any*QPTIONS that are in force.

The| BASIC statement OPTION ARITHMETIC{NATIVE ties the numeric type more closely o the

underlying implementation. The precision.and type of NATIVE numeric data is implementation
dependent.

For fthe trigonometric operations, i.0PTION ANGLE DEGREES is in effect, the argument or tesult
is giver] in degrees. If OPTION ANGEE-RADIANS (default) is in effect, the argument or result is|given
in radijins.

Sinde the BASIC numeric* datatype does not match LIA-1 integer datatypes, this bihding
example does not includéany of the LIA-2 operations for integer datatypes.

The|LTA-2 non-transcendental floating point operations are listed below, along with the syntax
used td invoke them:

az g (x3y) MAX(z, 1) *

ind(xyy) MIN(z,) *

matp(x,y) MMAX (z, 1) T
mming(z,y) MMIN(z, y) T
maz_seqp(xs) MAXS (xs) T
min_seqp(xs) MINS (zs) T
mmaz_seqp(xs) MMAXS (z8) T
mmin_seqp(xs) MMINS (xs) T
dimp(x,y) MONUS (z, ¥)
floorp(x) INT (x) *

110 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

wher
numej

Tlhe LIA-2 parameters for operations approximating real valued transcendental functi
cessed by the following syntax:

be ag

floor_rest p () x - INT(z) *
roundingp(z) ROUND () *
rounding_restp(x) x - ROUND(z) *
ceilingp(x) CEIL(x) *
ceiling_restp(x) x - CEIL(x) *
residuer(x,y) RESIDUE(x, %) T
sqrtp(x) SQR(x) *
rec_sqrtp(x) REC_SQRT (z) T
add lop(z,y) ADD_LOW(z, y) T
sub lop(:1/1\ SUR T.OW(x, 9) '!‘
mul_lop(z,y) MUL_LOW(z, %) T
div_restp(z,y) DIV REST(z, ¥) T
sqrt_restp(x) SQRT_REST (x) T

C1C.

max_error_hypotp

maxr_error_expr
max_error_powerg

big_angle_rp

max_error_radp
MaxT_error_sing
max_error_tang

min_angular_unit g
big_angle_up
mazx_error_sinup(u)
maz_error_tanup(u)

max_error_sinhi
max_error_tanhp

max_erroy_convertp
max-error_convert
max-error_convertp:

ERR_HYPOTENUSE

ERR_EXP
ERR_POWER

BIG_RADIAN_ANGLE
ERR_RAD
ERR_SIN
ERR_TAN

MIN_ANGLE_UNIT
BIG_ANGLE
ERR_SIN_CYCLE(u)
ERR_TAN_CYCLE (u)

ERR_SINH
ERR_TANH

ERR_CONVERT
ERR_CONVERT_TO_STRING
ERR_CONVERT_TO_STRING

b and y are expressions of type numeric, and where xs is an expression of type a

—_ — = —- — = — —- — —

— —

— = —

where w 1s an expression ol type numeric.

rray of

1S call

The LIA-2 floating point operations are listed below, along with the syntax used to invoke

them. BASIC has a degree mode and a radian mode for the trigonometric operations.

hypotp(z,y)

expr(x)
expml p(x)

C.2 BASIC

HYPOT (z, y)

EXP(x)
EXPM1(z)

f

*

t

111

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

1 at origin)

exp2p () EXP2(x) T
exp10p(x) EXP10(x) T
powerp (b, y) POWER (b,) T
powerlpmlp(b,y) POWER1PM1 (b, %) T
Inp(x) LOG(x) *
Inlpp(x) LOG1P(z) T
log2p(x) LOG2(x) *
log10p(x) L0G10(z) *
logbasep (b,) LOGBASE(b, =) T
l ghncpfpipF(h) LOGRBASE1P1P(h) '!'
rudp(z) NORMANGLE(z) (when in radian mode) T
stnp(x) SIN(z) (when in radian mode) *
cpsrp(x) CO0S(z) (when in radian mode) *
tgnp(z) TAN(z) (when in radian mode) *
cptp(x) COT(z) (when in radian mode) *
sper () SEC(x) (when in radian mode) *
cpep(x) CSC(x) (when in radian mode) *
afrcsing(x) ASIN(z) (when in radian‘mode) *
afrccosp(x) ACOS(z) (when in radian mode) *
afctanp(x) ATN(z) (when in{radian mode) *
afccotp(x) ACOT(z) (whenin radian mode) T
afrccoter (x) ACOTC(z) (when in radian mode) T
afrcsecp(x) ASEC(z) (when in radian mode) T
afrcesep(x) ACSC(z)+\ (when in radian mode) T
afcp(z,y) ANGLE(%¥, y) (when in radian mode) *(invali
cyclep(u,) NORMANGLEU (u, x) T
stnup(u,) SINU(u, x) T
cpsup(u,x) Ccosu(u, x) T
tnup(u,) TANU(u, x) T
cptup(u, x) COTU(u, x) T
speup(u, x) SECU(u, x) T
cpeup (u,) CsCU(u, x) T
afcsinur (u, x) ASINU(u, x) T
arceosar{wT) ACOST) i
arctanup (u, x) ATNU(u, x) T
arccotup(u, x) ACOTU(u, x) T
arccotcur (u, x) ACOTCU(w, x) T
arcsecup(u, x) ASECU(u, x) T
arcescup(u,) ACSCU(u, x) T
arcup(u,x,y) ANGLEU(u, z, y) T

112

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

cycler(360, x) NORMANGLE(z) (when in degree mode) T
sinup(360, x) SIN(xz) (when in degree mode) *
cosur (360,) C0S(x) (when in degree mode) *
tanup(360, z) TAN(z) (when in degree mode) *
cotur (360,) COT(z) (when in degree mode) *
secur (360, x) SEC(z) (when in degree mode) *
cscup (360, x) CSC(x) (when in degree mode) *
arcsinup (360,) ASIN(z) (when in degree mode) *
arccosup(360) ACOS () (when in degree made) *
arctanur (360, x) ATN(z) (when in degree mode) *
arccotup (360, x) ACOT(z) (when in degree mode) T
arccotcur (360,) ACOTC(z) (when in degree mode) 7
arcsecur (360, x) ASEC(x) (when in degree mode) T
arcescup (360,) ACSC(z) (when in degree mode) T
arcurp(360,z,y) ANGLE(z, y) (when in degree mode) *(invalid at origin)
rad_to_cycler(x,360) DEG () *
cycle_to_radr (360, z) RAD (z) *
rad_to_cyclep(x,w) RAD_TO_CYCLE(z, w) T
cycle_toradp(u,) CYCLE_TO_RAD(u, x) T
cycle_to_cyclep(u, z,w) CYCLE_TO_CYCLE (u %, w) T
sinhp(x) SINH(x) *
coshp(x) COSH(x) *
tanhp(x) TANH () *
cothp(x) COTH () T
sechp(x) SECH(Z) T
cschp(x) GSCH(x) T
arcsinhp(z) ARCSINH(x) T
arccoshp(x) ARCCOSH (x) T
arctanhp(z) ARCTANH () T
arccothp(x) ARCCOTH (x) T
arcsechp(x) ARCSECH (x) T
arccschp{x) ARCCSCH () T
wher¢ b, x, yot, and w are expressions of type numeric.
Atithmetic value conversions in BASIC are always tied to reading and writing text.

where x is a variable of type numeric, and y is an expression of type numeric.

ooy oot (atdio)
CcUTotuUTT l/b ’_>t4 \ouu/ub}

convertp_.pn(y)

convertp_ p(stdin)

TCLIYD U

PRINT y

READ x

BASIC provides non-negative numerals for numeric in base 10.

BASIC does not specify any numerals for infinities and NaNs. Suggestion:

C.2 BASIC

113

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

+00 INFINITY t
qNaN NAN 1
sNalN NANSIGNALLING 1

as well as string formats for reading and writing these values as character strings.

BASIC has a notion of ‘exception’ that implies a non-returnable change of control flow. BASIC
uses its exception mechanism as its default means of notification. underflow does not cause any
notification in BASIC, and the continuation value to the underflow is used directly, since an
BASIC exception is inappropriate for an underflow notification. BASIC uses the exception
numbers 1001 to 1008 for overflow, exception numbers 1502 and 1503 for handled underflow,
the exception number 3001 to 3004 for infinitary, the exception numbers -3000, 3002, and
3004 t¢ 3011 for invalid, and the exception numbers -3050 and -3051 for absolute_precifsion_
underflow. Since BASIC exceptions are non-returnable changes of control flow, no continijation
value i$ provided for these notifications, except that unhandled underflow uses the ‘continyation
value specified without any BASIC exception.

An jmplementation that wishes to follow LIA-2 should provide recording-¢Pindicators ps an
alternafive means of handling numeric notifications. Recording of indicatorg is)the LIA-2 preferred
means pf handling numeric notifications.

C3 [C

The prpgramming language C is defined by ISO/IEC 9899:1999, Information technology -| Pro-
gramming languages — C [17]. This edition of the C standard is often referred to as C99, wlfich is
also used below.

An jmplementation should follow all the requirements of LIA-2 unless otherwise specified by
this lanjguage binding.

The|operations or parameters marked “i”.:\are not part of the language and should be provided
by an implementation that wishes to conférm to the LIA-2 for that operation. For each ¢f the
marked items a suggested identifier is provided.

The|LIA datatype Boolean is implemented by the C datatype int (1 = true and 0 = false)
or the hew C99 Bool datatype-

C d¢fines numerous integer datatypes. They may be aliases of each other in an implementation
defined| way. The descripfion here is not complete. See the C99 standard. Some of the injteger
datatypes have a predétermined bit width, and the signed ones use 2’s complement for represen-
tation pf negative yalues: intn_t and uintn_t, where n is the bit width expressed as a decimal
numergl. Some Bit-widths are required. There are also minimum width, fastest minimum width,
and spe¢cial purpose integer datatypes (like size_t). Also provided are the more well-known| inte-
ger daflatypes char, short int, int, long int, long long int (new in C99), unsigned [har,
unsignedishort int, unsigned int, unsigned long int, and unsigned long long int|(new
in C99). Finally there are the integer datatypes intmax_t and uintmax_t (both new in C99) that
are the largest provided signed and unsigned integer datatypes. intmax_t and uintmax_t may
even be unbounded with a negative integer infinity as INTMAX_MIN and a positive integer infinity
as INTMAX _MAX and UINTMAX MAX. INT is used below to designate one of the integer datatypes.

C names three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

114 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

For some of the operations below, the C standard defines ‘type generic macros’. These are
fixed by the C standard, and new ones cannot be defined in program libraries.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazr(x,y) imaxt(z, y) T
mazr(x,y) (x<y? y: x *
ming(x,y) imint(z, y) T
ming(z,y) (x <y ? x: ¥y *
maz_seqr(xs) imax_arrt(zs, nr_of_items) T
min_seqr(xs) imin_arrt(xzs, nr_of _items) T
dimp(z,y) idimt(x, y) T
powery(z,y) ipowert(x, y) T
shift2;(z,y) shift2t(x, y) 7
shift10(z,y) shift10t(z, y) T
sqrtr(zx) isqrtt(z) T
dividesy(x,y) does_dividet(x, ¥) T
dividesy(x,y) x'=08& y %h x == *
eveny(zx) x h 2 == *
oddr(x) xh21!1=0 *
quot(z,y) quott(z, y) ;
mody(z,y) modt (z, y) T
ratior(z,y) ratiot(x, y) T
residuer(x,y) iremaindertCx) y) T
groupr(x,y) groupt (z,.4)) T
pady(z,y) padt(z,) T
gedr(z,y) gedt(z, y) T
lemyp(z,y) Lemt (x, y) T
gcd_seqr(zs) ged_arrt(xs, nr_of _items) T
lem_seqr(xs) lem_arrt(xs, nr_of _items) T
add_wrapy(z,y) add_wrapt(z,) T
add_ovi(x,y) add_overt(zx, y) T
sub_wrapp(ey) sub_wrapt(xz, y) T
sub_ovfx5y) sub_overt(z, y) T
mul_weapr(z,y) mul wrapt(z, y) T
maulbovr(z,y) mul _overt(zw, y) T
where——and—4—are—expressions—of—the same—inteser—type—and—where—x9is—an—expressien—of type

array of an integer type. ¢ is a string (part of the operation name in C), that is the empty string
for int, is 1 for long int, is u for unsigned int, and is ul for unsigned long int.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

maxp(z,y)

c.3C

nmaxt(x, y)
nmint (z, y)

115

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

mmazp(x,y) fmaxt(x, y) or fmax(z, y) *(C99)

mming(z,y) fmint(z, y) or fmin(x, y) *(C99)

maz_seqp(xs) nmax _arrt(xs, nr_of _items) T

min_seqp(xs) nmin_arrt(xs, nr_of _items) T

mmaz_seqr(xs) fmax_arrt(zs, nr_of _items) T

mmin_seqp(zs) fmin arrt(zs, nr_of _items) T

dimp(z,y) fdimt(z, y) or fdim(z, y) (dev. for special values) *(C99)

floor p(x) floort(z) or floor(z) *

floor_rest p(x) x - floort(z) *

r flmf)rﬁwgp(fr\ nearhyi ntt(z) (when in round to nearest maode) +(h99)
bunding_restp(z) x - nearbyintt(z) (when in round to nearest modé).| x(C99)
ilingp(x) ceilt(z) or ceil(x) *

piling_restp(x)
siduep(z,y)
rtp ()
ec_sqrip ()

= W 3 O O 3

npul g pr (l’, y)
afld_lop(x,y)
blop(z,y)
ul lop(x,y)
djv_restp(x,y)
rt_restp(x)

g%

v

x - ceilt(x) *
remaindert{(z, y) or remainder(z, y) *(C99)
sqrtt(z) or sqrt(z) *
rec_sqrtt(x) T
dprodt(z, y) T
add_lowt(x, y) T
sub_lowt(x, y) T
mul_lowt(x, y) 1
div_restt(x, y) 1
sqrt_restt(x) T

where & and y are expressions of the same floating, point type, and where xs is an expression of
type afray of a floating point type. t is a string part of the operation name), that is the gmpty
string for double, is f for float, and is 1 for<long double (the same applies to the paranpeters

and opprations below).

The| LIA-2 parameters for operations-approximating real valued transcendental functions can
be accgssed by the following syntax;

npax_error_hypotp err_hypott 1
Ztax_error_exp Ja err_expt T
ax_error_power g err_powert 1
blg_angle_r1p big radian_anglet 1
ax_errorywadp err_radt T
ax_ervor_sing err_sint t
aazerror tany err_tant T
min_angular_unitp smallest_angle unitt t
big_angle up big anglet 1
max_error_sinup(u) err_sin_cyclet(u) T
maz_error_tanup(u) err_tan cyclet(u) T
max_error_sinhp err_sinht T
max_error_tanhg err_tanht 1

116

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

where v is an expression of a floating point type. No conversion error parameters are needed, since
C99 requires all floating point datatype conversion (even to and from strings) to always have an
error that is < 0.5 ulp.

C has a pow operation that does not conform to LIA-2, but may be specified in LTA-2 terms:

powr (x,y)

= powerpz(z,y) itye FNZ

= powp(x,0) ify=-0

=1 if x € {-1,1} and y € {—o00, 400}
=1 if x is a quiet NaN and y = 0

= powerp(z,y) otherwise

C99 has a hypot operation that does not conform to LIA-2. but may be specified in LIA-2

termg:

hhypotp(z,y)

= 400 if is a quiet NaN and y € {—00, A0}
= 400 if z € {—00,400} and y is a quiet, NaN
= hypotp(z,y) otherwise

Tlhe LIA-2 elementary floating point operations are listed below, together)with the non-LIA-2

powr and hhypotr, along with the syntax used to invoke them:

hypotr(z,y)
hhypotp(z,y)

azisradp ()

hypotenuset (z, y) T
hypott(z, y) or hypot(x;\y) * Not LIA-2!

powerg (b, z) powerit(b, z) T
expr(x) expt(x) or exp(z) *
expmlIp(x) expmit(z) or expml(x) *(C99)
exp2p(x) exp2t(x) or “exp2(x) *(C99)
exp10p(x) exp10t(x) T
powerg(b,y) powert (by~%) T
powr (b, y) powt(b,\ 1) or pow(b, y) * Not LIA-2!
powerlpml1p(b,y) poweripmit (b, 1) T
Inp(z) Yogt(z) or log(x) *
Inlpp(x) logipt(x) or loglp(x) *(C99)
log2p(x) log2t(z) or log2(w) *(C99)
log10p(x) logl0t(xz) or loglO(x) *
logbaser (b, x) logbaset(b, x) T
logbaselp1p p(bya) logbaselpipt (b, z) T
radp(x) radiant(z) T

axis_radt(z, &h, &v) (note out parameters) T

Qf;’nF(fr> sint () or sin(p) e
cosp(x) cost(x) or cos(x) *
tang(x) tant(x) or tan(x) *
cotp(x) cott(x) T
secp(x) sect (x) T
csep(x) csct(x) T
cossinp(x) cossint(x, &c, &s) T

c.3C

117

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

arcsing(x) asint(x) or asin(x) *
arccosp(x) acost(z) or acos(z) *
arctang(x) atant(z) or atan(z) *
arccotp(x) acott(x) T
arccotcp(x) acotct(x) T
arcsecp(x) asect (x) T
arcescp(x) acsct(z) T
arcp(z,y) atan2t(y, x) or atan2(y, x) *
cyclep(u,) cyclet(u, x) T
axis mdmlpp('u) axis r'yr'1 et(u 7 &h &u) '!'
stnup(u,) sinut(u, x) 1
cpsup(u,x) cosut(u, x) il
tgnup(u,x) tanut(u, x) i
cptup(u, x) cotut(u, x) T
speup(u, x) secut(u, x) T
ckcup(u, x) cscut(u, x) T
cpssinup(u,) cossinut(u, x, &c, &s) T
afcsinup (u, x) asinut(u, z) T
afrccosup (u, x) acosut(u,) T
af-ctanup(u, x) atanut(u, z) T
af-ccotup(u, x acotut(u, x) T
af-cecteup(u, x) acotcut(u, x) T
afrcsecup(u, x) asecut(u, x) T
afcescup(u,) acscut (u @) T
afcup(u, x,y atan2utfu, y, T) T
rad_to_cyclep(x,w) radian to_cyclet(x, w) T
cycle_to_radp(u, x) cycle to_radiant(u, z) T
cycle_to_cyclep(u, x,w) cycle to_cyclet(u, x, w) T
stnhp(x) sinht(z) or sinh(z) *(C99)
cpshp(x) cosht(z) or cosh(x) *(C99)
t¢nhp(x) tanht(x) or tanh(x) *(C99)
cpthp(z) cotht (x) T
spchp(x) secht (z) T
ckch () cscht (x) T
a (/bl:IL;LF(JJ) st Cr)—or —asimrtr) *(ng)
arccoshp(x) acosht(x) or acosh(x) *(C99)
arctanhp(zx) atanht(z) or atanh(x) *(C99)
arccothp(x) acotht (x) T
arcsechp(z) asecht(x) T
arceschp(x) acscht (x) T

where b, x, y, u, and w are expressions of type FLT, h, v, ¢, and s are lvalue expressions of type

FLT, and z is an expression of type INT.

118

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C99 standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
there may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating the
numbfer of fractiomatdigits T thestrimg— e Coperations betow wse H Y PHEN-MINTS rather
than [MINUS (which would have been typographically better), and only digits that are~n[ASCII,
indepgendently of so-called locale. For generating or parsing other kinds of digits, sayyArabik digits
or THai digits, another API must be used, that is not standardised in C. For the flgating and fixed
point| formats, 400 may be represented as either inf or infinity, —oo may 'be represented as
eithef —inf or -infinity, and a NalN may be represented as Nal; all independently of s¢-called
local¢. For language dependent representations of these values another ART must be used,|that is
not sfandardised in C.

Fgr the integer formats then follows an internal type indicator;0f which some are new fo C99.
Not g1l C99 integer types have internal type indicators. Howevér;for ¢ below, hh indicates ghar, h
indicgtes short int, the empty string indicates int, 1 (theYetter 1) indicates long int, L1 (the
letters 11) indicates long long int, and j indicates intméx_t or uintmax_t. (For system plirposes
there|are also special type names like size_t, and z ifidicates size_t and t indicates ptydiff_t
as type format letters.) Finally, there is a radix (for the string side) and signedness (both sides)
formgt letter (r below): d for signed decimal; o, @)%, X for octal, decimal, hexadecimal with small
letters, and hexadecimal with capital letters,~&ll unsigned. E.g., %jd indicates decimal rumeral
string for intmax t, %2hhx indicates hexadecimal numeral string for unsigned char, with a two
chargcter field width, and %1u indicates decimal numeral string for unsigned long int.

Fgr the floating point formats instead follows another internal type indicator. Not hll C99
floatipg point types have standard ititernal type indicators for the format strings. However, for u
below the empty string indicates’double and L indicates long double. Finally, there is |a radix
(for fhe string side) format letter: e or E for decimal, a or A for hexadecimal. E.g., %[15.8LA
indicgites hexadecimal floating point numeral string for long double, with capital letters|for the
letter] components, a_field width of 15 characters, and 8 hexadecimal fractional digits.

Far the fixed peint formats also follows the internal type indicator as for the floating point
formgts. But fér-the final part of the pattern, there is another radix (for the string side)|format
letter] (p belew), only two are standardised, both for the decimal radix: f or F. E.g., %Lf irfdicates
decinpal fixed point numeral string for long double, with a small letter for the letter component.
(Theted$also a combined floating/fixed point string format: g.)

converty_p(x) (INT2)x *
convertyn_y(s) sscanf (s, "%wtr", &i) *
convertp _(f) fscanf (f, "%wir", &) *
converty_ () sprintf (s, "Jjwtr", x) *
converty_(x) fprintf(h, "Ywtr", x) *
floory_ 1 (y) (INT)floort(y) *

c.3C 119

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

floorp_,1(y) (INT)nearbyintt(y) (when in round towards —oo mode) «(C99)
roundingpg_1(y) (INT)nearbyintt(y) (when in round to nearest mode) *(C99)
ceilingr_1(y) (INT)nearbyintt(y) (when in round towards +0o0 mode) «(C99)
ceilingp—1(y) (INT)ceilt(y) *

convertr_p(x) (FLDx *

convertp_.p(y) (FLT2)y *

convertpn_,p(s) sscanf (s, "%w.duv", &r) *

convertpn _p(f) fscanf (f, "Yw.duv", &r) *

conuertp I—vu(?jﬂ qp'r"in‘t"f"(e "l dup") %

cpnvertp_, g (y) fprintf(h, "%w.duv", y) *

cpnvertp_p(s) sscanf (s, "%wup", &g) *

cpnvertp _p(f) fscanf (f, "%hwup", &g) *

cpnvertp_.pr(y) sprintf (s, "%w.dup", y) *

cpnvertp_.pr(y) fprintf(h, "hw.dup", y) *

where § is an expression of type char*, f is an expression of type FILE¥, 7 is an lvalue exprgssion
of typd int, ¢ is an lvalue expression of type double, x is an expression of type INT, y|is an
expresdion of type FLT, INT2 is the integer datatype that corrésponds to I’, and FLT2 is the
floating point datatype that corresponds to F”.

C99| provides non-negative numerals for all its integérand floating point types. The default
base is|[10, but base 8 (for integers) and 16 (both integer and float) can be used too. Numperals
for diff¢rent integer types are distinguished by suffixes. Numerals for different floating point [types
are disfinguished by suffix: £ for float, no suffix' for double, 1 for long double. Numerdls for
floating point types must have a ‘.” or an exponent in them. The details are not repeatled in
this exfmple binding, see ISO/IEC 9899:1999, clause 6.4.4.1 Integer constants, and clause 6{4.4.2
Floatinlg constants.

C99[specifies numerals (as macrgs)-for infinities and NaNs for float:

+oo INFINITY *
gNaN NAN *
sNalN NANSIGNALLING 1

as welllas string formats for reading and writing these values as character strings.

C99| has two ways of handling arithmetic errors. One, for backwards compatibility, |is by
assignihg to errno. The other is by recording of indicators, the method preferred by LIA-2, which
can be|used-for floating point errors. For C99, the absolute_precision_underflow notifidation
is ignofed., “Phe behaviour when integer operations initiate a notification is, however, not d¢fined
by C99

C4a4 CH+

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages —
C++ [18].

120 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

An implementation should follow all the requirements of LIA-2 unless otherwise specified by

this language binding.

The operations or parameters marked “{” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

This example binding recommends that all identifiers suggested here be defined in the name-
space std: :math.

The LIA datatype Boolean is implemented by the C++ datatype bool.

C++ has three floating point datatypes: float, double, and long double. FLT is(ise

to depignate one of the floating point datatypes.

Every implementation of C++ has integral datatypes int, long int, unsigned int, and

1 below

he LIA-2 integer operations are listed below, along with the syntax used toinvoke th
mazxy(x,y) max(z,) *
ming(x,y) min(z, y) *
mazx_seqr(xs) xs.max () *
min_seqr(xs) xs.min() *
dimy(z,y) dim(z, y) T
powery(z,y) power (z, ¥) T
shift2;(x,y) shift2(z, y) T
shift10;(z,y) shift10(z, y) T
sqrtr(z) sqrt () T
dividesy(x,y) does_divide(xz, 1) T
dividesy(x,y) x 1= 0N& y % x == *
eveny(x) T o2 == *
oddr(x) Ok 2 1=0 *
quot(z,y) quot(z, y) T
mody(x,y) mod(x, y) T
ratior(z,y) ratio(z, y) T
residuer(x,y) remainder(x, y) T
groupr(z,y) group(z, y) t
pad; (v, y) pad(z, y) t
ged(2yy) ged(z, y) T
Ié (x,y) lem(x, y) T
JCd_Seqr(ZT3) TS.gecdC) T
lem_seqr(xs) xs.lem() T
add_wrapy(z,y) add_wrap(z, y) T
add_ovi(x,y) add_over(z, ¥) T
sub_wrapy(z,y) sub_wrap(z,) T
sub_ovy(z,y) sub_over(z,) T
mul_wrapr(z,y) mul wrap(z, ¥y) T

C.f CH+

121

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

mul_ovr(z,y)

mul _over (z, ¥)

© ISO/IEC 2001 — All rights reserved

l

where x and y are expressions of the same integer type and where xs is an expression of type

valarray of an integer type.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

where

type v
NaN ai

The
cessed

122

mazp(x,y) nmax (x,) T
ming(x,y) nmin(z,) T
mmazp(x,y) max(x, y) *
mming(z,y) min(z, ¥y) *
max_seqr(xs) xs.nmax () i

in_seqp(xs) xs.nmin() T

maz_seqr(xs) xs.max () *

min_seqp(xs) xs.min() *
dfymp(z,y) dim(z, y) T
foorg(z) floor (z) *
foor_rest () x - floor(z) *
rpundingr(z) round (x) T
rpunding_restp(x) x - round(z) T
cpilingp(x) ceil(x) *
cpiling restp(x) x - ceil(x) *
residuer(x,y) remainder (z, y) T
sgrtp(x) sqrt () *
rec_sqrip(x) rec_sqrt(z) T
mulp_ g (x,y) dprod(zx, ;) T
afld lop(z,y) add low(x, v) T
spb_lop(z,y) sub_low(z, y) T
npul log(z,y) muk. Tow(z,) T
djv_restp(x,y) div rest(x, ¥) T
syrt_restp(zx) sqrt_rest (x) T

npazx_efror_hypotp

’r" QL C1rror erno
= =St

numeric_limits<FLT>:

numeric limits< ELTS .

:err_hypotenuse ()

corr oxpn()
= i

it and y are expressions of the same floating point type, and where xs is an express
larray of a floating-point type. The C++ standard does not make clear how to h
guments, in partietular for max and min.

parameters.for’ operations approximating real valued transcendental functions can |
y the follewing syntax:

l

on of
andle

€ acC-

maxr_error_powerg

big_angle_rp

max_error_radp
Max_error_sing
max_error_tang

numeric_limits<FLT>:

numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:

rerr_power ()

T

t

:big radian_angle() f
rerr_rad()
rerr_sin()
terr_tan()

I
T
l

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

min_angular_unit g
big_angle up
maz_error_sinup(u)
maz_error_tanup(u)

max_error_sinhg
max_error_tanhpg

maa:,error,convertp
ma:v_error_convertpx

numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:

numeric_limits<FLT>:
numeric_limits<FLT>:

numeric_limits<FLT>:
numeric_limits<FLT>:
numeric limits<FLT> -

ISO/IEC 10967-2:2001(E)

:smallest_angle unit() 7
:big_angle() T
rerr_sin_cycle(u)
rerr_tan_cycle(u)

rerr_sinh()]
:err_tanh() T
:err_convert () T

rerr_convert_to_string()

T

maxr error conyertoy
p=g

wher¢ u is an expression of a floating point type.

Tle LIA-2 elementary floating point operations are listed below, along with the synt

to inyoke them:

cerr convert to string()
o

f

x used

[LIA-2! (See C.)

hypotp(z,y) hypotenuse(x, ¥) T
powerg (b, z) power (b, z) T
expr(zx) exp(x) *
expm1p(x) expmi (x) T
exp2p(x) exp2(x) T
exp10p(x) exp10(x) T
powerp(b,y) power (b, y) T
powr (b, y) pow(b, y) * Not
powerlpmlp(b,y) powerlipmi (b, 4 T
Inp(z) log(x) *
Inlpp(z) loglp(x) T
log2p(z) log2(x) T
log10p(x) legl0(x) *
logbasep(b,) Togbase(b, x) T
logbaselp1p (b, x) logbaselplp(b, x) T
radp(z) rad(z) T
azis_radp(z) axis_rad(z, &h, &v) (note out parameters) f
sing(x) sin(x) *
cosp(x) cos(x) *
tanp() tan(x) *
catp () cot(x) T
SCEF (3:) seet®) T
csep(x) csc(x) T
cossing(x) cossin(z, &c, &s) T
arcsing(x) asin(z) *
arccosp(x) acos(x) *
arctanp () atan(z) *
arccotp(x) acot (z) T

C.f CH+

123

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

arccotcp(x) acotc(x) T
arcsecp(x) asec(x)]
arcescp(x) acsc(x) T
arcp(z,y) atan2(y, x) *
cyclep(u,) cycle(u, x) T
azis_cyclep(u, x) axis_cycle(u, x, &h, &v) 1
sinup(u,) sinu(u, x) T
cosup(u,x) cosu(u, x) T
tanup(a) tanun(a) '!'
cptup(u, x) cotulu, x) i
spcup (u, x) secu(u, x) T
ckeup(u, x) csculu, x) il
cpssinup(x) cossinu(u, x, &c, &s) T
afrcsinup (u, x) asinu(u, x) T
afrccosup(u, x) acosu(u, x) T
afctanup(u, x) atanu(u, x) T
afrccotup (u, x acotu(u,) T
afccotcup (u,) acotcu(u, x) T
afrcsecup(u, x) asecu(u, x) 1
afcescup(u,) acscu(u, x) T
afcup(u, x,y atan2u(u, y, x) T
rd_to_cyclep(z, w) radian to_cycle(x, w) T
cycle_to_radp(u,x) cycle_torédian(u, z) T
cycle_to_cyclep(u, x,w) cycle_teicycle(u, =, w) T
sfnhp(x) sinh(x) *
cpshp(z) cosh(x) *
t¢nhp(x) tanh (x) *
cpthp(x) coth(x) T
spchp(x) sech(x) T
cpchp(x) csch(x) T
afrcsinhp (%) asinh(z) T
afrccosh () acosh(z) T
af-ctaphp () atanh (z) T
afrccothp(x) acoth(z) T
arcsechr{T) asecitT) i
arccschp(x) acsch(z) T

where b, x, y, u, and w are expressions of type FLT, h, v, ¢, and s are lvalue expressions of type
FLT, and z is an expression of type INT.

Arithmetic value conversions in C++ can be explicit or implicit. The rules for when implicit
conversions are applied are not repeated here. C++ also deals with stream input/output in other
ways, see clause 22.2.2 of ISO/IEC 14882:1998, ‘Locale and facets’. The explicit arithmetic value

124 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

conversions are usually expressed as ‘casts’, except when converting to/from string formats.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++ standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
there may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating
the number of fractional digits in the string. The C++ operations below use HYPHEN-MINUS
rather than MINUS (which would have been typographically better), and only digits that are
in ASCII, independently of so-called locale. For generating or parsing other kinds of digits, say

Arabjcdigits or thardigits;, amotier AP must—beused;that s ot stamdardised T C=H-. For
the floating and fixed point formats, +00 may be represented as either inf or infinify, —oo
may pe represented as either -inf or -infinity, and a NalN may be represented-as NaN; all
indegendently of so-called locale. For language dependent representations of thede values gnother
API must be used, that is not standardised in C.

Fgr the integer formats then follows an internal type indicator. For t lselow, the empty string
indicgtes int, 1 (the letter 1) indicates long int. Finally, there is a-radix (for the strifg side)
and gignedness (both sides) format letter (r below): d for signed decimal; o, u, x, X fof octal,
decinpal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E.g.,
%d inglicates decimal numeral string for int and %1u indicates déetinal numeral string for ungsigned
long| int.

Fgr the floating point formats instead follows another\internal type indicator. For u below the
empty string indicates double and L indicates long)double. Finally, there is a radix (for the
string side) format letter: e or E for decimal. E.g.;%15.8LE indicates hexadecimal floating point
numdral string for long double, with a capital Tetter for the letter component, a field width of
15 chiaracters, and 8 hexadecimal fractional digits.

Fgr the fixed point formats also follow®*the internal type indicator as for the floating point
formgts. But for the final part of the pattern, there is another radix (for the string side)|format
letten] (p below), only two are standatdised, both for the decimal radix: f or F. E.g., 4Lf irldicates
decinpal fixed point numeral string-for long double, with a small letter for the letter component.
(Thete is also a combined floating/fixed point string format: g.)

converty_p(x) static_cast<INT2>(x) *
convertyn_1(s) sscanf (s, "Ywtr", &i) *
convertp 1 (f) fscanf (f, "hwtr", &i) *
convertr_, p () sprintf (s, "Jwtr", x) *
convertyxpi(x) fprintf (h, "%wtr", x) *
flodup_ 1 (y) static_cast<INT>(floor(y)) *
rowndingg_1(y) static_cast<INT>(round(y)) T
ceilingr—1(y) static_cast<INT>(ceil(y)) *
convertr_p(x) static_cast<FLT>(x) *
convertp g (y) (FLT2)y *
convertpn_, p(s) sscanf (s, "%w.duv", &r) *
convertpn _p(f) fscanf (f, "Yw.duv", &r) *

C.4 C++ 125

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

convertp_, g (y) sprintf (s, "%w.duv", y) *
convertp_pn(y) fprintf (h, "%w.duv", y) *
convertp_p(s) sscanf (s, "%wup", &g) *
convertp _p(f) fscanf (f, "%wup", &g) *
convertp_.pr(y) sprintf (s, "%hw.dup", y) *
convertp_.pr(y) fprintf(h, "%w.dup", y) *

where s is an expression of type char*, f is an expression of type FILE#*, 7 is an lvalue expression
of type int, g is an lvalue expression of type double, x is an expression of type INT, y is an

: Ly kmb e al LA | : h - h| . 1 n L 1 /oo
eXpreS“lUll oL Wype i, Iivl1 15 LIIC HIILCECT dalalype tllal COITCsSpOIlds tO 1, allld I"L/ 1

floating point datatype that corresponds to F’.

CH-
Numer

- provides non-negative numerals for all its integer and floating point type$ in ba
hls for different integer types are distinguished by suffixes. Numerals for different flg

point types are distinguished by suffix: f for float, no suffix for double, 1(for long do

Numer

[

hls for floating point types must have a ‘.’ or an exponent in them(\Phe details ax

repeatdd in this example binding, see ISO/IEC 14882:1998, clause 2.9.1 Integer literals, and

2.9.4 Floating literals.
C++ specifies numerals for infinities and NaNs:
oo numeric_ limits<FLT>::infinity() *
qNaN numeric_ 1imits<FLT>: quiet_NaN() *
sNaN numeric_limits<FLA>%:signaling NaN() *
as welllas string formats for reading and writing these values as character strings.

C+
ing to

C.5

- has completely undefined behaviour on arithmetic notification. An implementation
onform to LIA-2 should provide a meausdor recording of indicators, similar to C99.

[Fortran

The prpgramming language Fortran-is defined by ISO/IEC 1539-1:1997, Information tech

— Prog

amming languages — Fovtran — Part 1: Base language [22]. It is complemented

ISO/IHC TR 15580:1998, Information technology — Programming languages — Fortran — Flo

point e
An

rception handling [23)

mplementation should follow all the requirements of LIA-2 unless otherwise specifi

this lajjguage binding.

The
by an
marke
base st

The

operatign$.or parameters marked “i” are not part of the language and should be pro
mplementation that wishes to conform to the LIA-2 for that operation. For each
items a suggested identifier is provided. The operations marked “(x)” are not part

s the

e 10.
ating
uble.
e not
lause

wish-

ology
with
ting-

bd by

vided
f the
bf the

pridard, but included in the Floating-point exception handling Technical Report [23]

Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two float-

ing poi

nt datatype denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to offer additional INTEGER types with a different range and
additional REAL types with different precision or range, each parameterised with a kind parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

126

Ezxample bindings for specific lang

uages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

mazr(x,y) MAX(z, y) *
ming(x,y) MIN(z, ¥y) *
maz_seqr(xs) MAX(x1, T2, ..., Zp) *
mazx_seqr(xs) MAXVAL (xs) *
min_seqr(xs) MIN(z1, Z2, ..., Zp) *
min_seqr(xs) MINVAL (xs) *
dimp(z,y) DIM(z, y) *
powerr(x,y) T Rk Yy *
shift2;(z,y) SHIFT2(z, y) T
th'fffﬁf(fr ?}I\ SHIFT10(x 21) i
sqrtr(zx) ISQRT (x) T
dividesy(x,y) DIVIDES(z, y) 7
eveny(x) MODULO(x,2) == 0 *
oddr(x) MODULO(x,2) /= 0O *
quot(z,y) QUOTIENT (z, y) T
mody(x,y) MODULO(z, y) *
ratior(x,y) RATIO(x, y) T
residuer(x,y) RESIDUE(z, y) T
groups(z,y) GROUP(z, ¥) t
pady(z,y) PAD(z, y) T
gedr(w,y) GCD(z, ¥) +
lemp(x,y) LCM(z, y) T
ged_seqr(zs) GCDVAL (&%) T
lem_seqr(xs) LCMVAL{xs) T
add_wrapy(z,y) APD_WRAP(x, v) T
add_ovi(z,y) ADD_OVER(z, y) T
subwrapy(z,y) SUB_WRAP(x, %) T
sub_ovr(z,y) SUB_OVER(z, %) T
mul_wrapr(z,y) MUL_WRAP(x, %) T
mul_ovy(z,y) MUL OVER(z,) T

wher¢ z and y are ‘expressions of type INTEGER (kind) and where xs is an expression of typ

of IN[EGER (kindy:

Tlhe LIA-2non-transcendental floating point operations are listed below, along with the

used toAnvéke them:

[A MAV L \ .
T Tty TGt Y7 x
ming(x,y) MIN(z, y) *
mmax g (x,y) MMAX (x, y) T
mming(x,y) MMIN(z, y) T
maz_seqp(xs) MAX(x1, %2, ..., Tp) *
maz_seqr(xs) MAXVAL (xs) *
min_seqp(xs) MINCz1, 22, ..., Tp) *
min_seqp(xs) MINVAL(xs) *

C.5 Fortran

e array

syntax

127

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

where

mmaz_seqp(xs)
mmaz_seqp(xs)
mmin_seqp(zs)
mmin_seqp(xs)
dimp(z,y)
floorp(x)
floor_rest ()
roundingp(z)
rounding_restp(x)

COHi'ngF(fr\

© ISO/IEC 2001 — All rights reserved

MMAX(x1, T2, ..., Tp) t
MMAXVAL (x5) T
MMIN(x1, %2, ..., Zp) 1
MMINVAL (xs) T
DIM(x,) *

IEEE RINT(z) (if in round towards —oo mode) (x)
x - IEEERINT(z) (if in round towards —oo mode) (x)
IEEE RINT(z) (if in round to nearest mode) (%)

x - IEEERINT(z) (if in round to nearest mode) (%)
IEEE RINT(2) (if in round towards 400 made) (%)

piling_restp(x)
siduep(x,y)
rtp ()
ec_sqrtp ()

= W 3 O

mulp . pr (l‘, y)
ld_lop(z,y)
1b_lop(z,y)
mul_lop(x,y)
djv_restp(x,y)
rt_restp(x)

w o

v

of REALl (kind).

The
be acce

mpax_error_hypotp

:[aac,ermr,empp
axr_error_powerg

x - IEEERINT(z) (if in round towards 400 mode). (x

IEEE REM(z,) (%)
SQRT (x) +
REC_SQRT (z) T

DPROD(z, y)
ADD_LOW(z, y)
SUB_LOW(x, ¥)
MUL_LOW(z, y)
DIV_REST(x,)
SQRT_REST ()

— — — — —

i and y are expressions of type REAL(kind), and(Wwhere xs is an expression of type [array

LIA-2 parameters for operations approxiniating real valued transcendental functions can
ssed by the following syntax:

ERR_HYPQTENUSE (z) T

ERR.EXP (z) T
ERR_POWER (z)

bjg_angle_rp BIG_RADIAN ANGLE(xz) T
ax_error_radp ERR_RAD (z) 1
ax_error_sing ERR_SIN(xz) T
ax_error_tang ERR_TAN(z) T
in_angtlar_unitp MIN_ANGLE UNIT(x) T

blg_angle:up BIG_ANGLE(x) 1
ageerror_sinup (u) ERR_SIN_CYCLE(u) T

Pttt} ERR-TAN-CYCEEG+ +
max_error_sinhg ERR_SINH(x)

max_error_tanhp ERR_TANH (x) T

mazx_error_convertp ERR_CONVERT () T

max_error_convert g ERR_CONVERT_TO_STRING T

max_error_convertps ERR_CONVERT_TO_STRING T

128

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

where x and u are expressions of type REAL (kind). Several of the parameter functions are constant
for each type (and library), the argument is then used only to differentiate among the floating

point types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used

to invoke them:

hypotp(x,y) HYPOT (z, y) T
powerg (b, z) b *x z *
expr(zx) EXP(x) *
expmIp(x) EXPM1 (z) T
exp2p () EXP2(x) T
expl0p(x) EXP10(z) T
powerp(b,y) b *x y X
powerlpmlp(b,y) POWER1PM1(b, y) T
Inp(x) LOG(x) *
Inlpp(z) LOG1P (x) T
log2 p(z) L0G2 () T
log10 g () LOG10(x) *
logbaser (b, x) LOGBASE(b, z) T
logbaselplp (b, x) LOGBASE1P1P(b, x) T
radp(x) RAD (z) T
sing(x) SIN(x) *
cosp(z) Cos(x) *
tanp(x) TAN (x) *
cotp () COT.(@) T
secp(x) SEC(x) T
cscp(x) €SC(x) T
arcsing(x) ASIN(x) *
arccosp(x) ACOS (x) *
arctang(x) ATAN (x) *
arccot g () ACOT (x) T
arccotcp () ACOTC(z) T
arcsecp{) ASEC(x) T
arccsepT) ACSC(x) T
arcri,y) ATAN2(y, x) *
cyclep(u, x) CYCLE(u, x) T
sinup(u,) SINU(u, z) T
cosup(u,x) CosU(u, x) T
tanup(u,x) TANU(u, x) T
cotup(u, x) COTU(u, =) T
secup(u, x) SECU(u,) T

C.5 Fortran

129

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

cscup(u, x) CsCU(u, x) T
arcsinup(u, x) ASINU(u, x) T
arccosup(u, x) ACOSU(u, x) T
arctanup(u, x) ATANU(u, x) T
arccotup(u, x ACOTU(u, x) T
arccotcup (u, x) ACOTCU(u, x) T
arcsecup(u, x) ASECU(u, x) T
arcescup(u,) ACSCU(u, x) T
arcup(u, x,y ATAN2U (u, y, x) T
cycler (360, x) DEGREES () T
sfnup(360, x) SIND(x) T
cpsurp (360, z) COsD (x) il
tgnup (360, x) TAND () T
cpturp (360, z) COTD (x) T
spcup (360,) SECD(x) T
cpeur (360, x) CSCD(x) T
afrcsinup (360, x) ASIND(z) T
afrccosur (360, x) ACOSD(x) T
afrctanur (360,) ATAND (z) T
afrccotur (360, x) ACOTD (z) T
afrccotcur (360,) ACOTCD () T
afrcsecur (360, x) ASECD (z) T
afrcescur (360, x) ACSCD(z) T
afcur (360, x,y) ATAN2D (y ;) T
rad_to_cyclep(z,w) RAD_TESCYCLE (z, w) T
cycle_toradp(u, x) CYCLE TO_RAD (u, x) T
cycle_to_cyclep(u, z,w) CYCLE_TO_CYCLE(u, =, w) T
sfnhp(x) SINH(x) *
cpshp(x) COSH(z) *
t¢nhp(x) TANH(z) *
cpthp(x) COTH(x) T
spchp(x) SECH(x) T
cpchp(x) CSCH(x) T
afc&inhp(x) ASINH(z) T
arccostrtT) ACOSHCD) i
arctanhp(x) ATANH (x) T
arccothp(x) ACOTH(z) T
arcsechp(x) ASECH(x) T
arceschp(x) ACSCH(z) T

where b, z, y, u, and w are expressions of type REAL(kind), and z is an expression of type
INTEGER (kind7).

130

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from string formats.

converty_p(x) INT (x, kindi2) *
Ibl.a FORMAT (Bn) *(binary)
convertp _(f) READ (UNIT=#f,FMT=lbl_a) r *
converty_ () WRITE (UNIT=#h, FMT=[bl_a) x *
[bl.b FORMAT (On) *(octal)
convertpn_y(f) READ (UNIT=#f,FMT=Ibl_b) r *
convertr_(x) WRITE (UNIT=#h, FMT=lbl_b) x *
thtc— FORMAT —CEm) *(decimal)
convertp_y(f) READ (UNIT=#f,FMT=lbl_c) r *
converty_(x) WRITE (UNIT=#h, FMT=lbl_c) x *
Ibl.d FORMAT (Zn) *(hexafdecimal)
convertpn_(f) READ (UNIT=#f,FMT=Ibl_d) r *
converty_n(x) WRITE (UNIT=#h, FMT=lbl_d) x *
floorg_ 1 (y) FLOOR(y, kindi?) *
roundingr—.1(y) ROUND(y, kindi?) T
ceilingr—1(y) CEILING(y, kindi?) *
convertr_p(x) REAL(z, kind) or sonmletimes DBLE(z) *
convertp g (y) REAL(y, kind2) “Or sometimes DBLE(y) *
Ibl_e FORMAT (Fw,d) *
Ibl_f FORMAT ‘(Dw.d) *
Ibl_g FORMATS'(Ew.d) *
Ibl_h FORMAT (Ew.dEe) *
Ibl_i FORMAT (ENw.d) *
Ibl_j~-~FORMAT (ENw.dEe) *
[bl>k~ FORMAT (ESw.d) *
(bl_l FORMAT (ESw.dEe) *
convertpn _p(f) READ (UNIT=#f, FMT=lbl_z) t *
convertp_ g () WRITE (UNIT=#h, FMT=Ibl_z) y *
convert prsr (f) READ (UNIT=#f, FMT=Ibl_z) t *
wher¢ = is<an expression of type INTEGER(k%indi), y is an expression of type REAL(kind), f is
an input file with unit number #f, and h is an output file with unit number #h. w, d, and e are
literal digit (0-9) sequences. giving total, decimals. and exponent widths. bl x is one of |bl_e to

[bl_L; all of the [bl_s are labels for formats.

Fortran provides base 10 non-negative numerals for all of its integer and floating point types.

Numerals for floating point types must have a ‘.

(3]

in them. The details are not repeated in this

example binding, see ISO/TEC 1539-1:1997, clause 4.3.1.1 Integer type, and clause 4.3.1.2 Real

type.

Fortran does not specify numerals for infinities and NaNs. Suggestion:

C.5 Fortran

131

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

+00 INFINITY t
qNaN NAN 1
sNalN NANSIGNALLING 1

as well as string formats for reading and writing these values as character strings.

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA-2 preferred method. See ISO/IEC TR 15580:1998, Information technology —
Programming languages — Fortran — Floating-point exception handling [23]. absolute_precision_
underflow notifications are however ignored.

C.6 Haskell

The prpgramming language Haskell is defined by Report on the programming language(HdasKell 98
[65], together with Standard libraries for the Haskell 98 programming language [66},

An Jmplementation should follow all the requirements of LIA-2 unless otherwise specifipd by
this larjguage binding.
The|operations or parameters marked “i” are not part of the language and should be provided
by an jmplementation that wishes to conform to the LIA-2 for that operation. For each ¢f the
marked items a suggested identifier is provided.

The| Haskell datatype Bool corresponds to the LIA datatype ‘Boolean.

Evety implementation of Haskell has at least two integet)datatypes, Integer, which is un-
bounddd, and Int, and at least two floating point datapypes, Float, and Double. The notation
INT is|used to stand for the name of one of the integér datatypes, and FLT is used to stand for
the naine of one of the floating point datatypes in, what follows.

Haskell has a type class system that allows far,overloading, and allowing static type chdcking
of dyngmic overloading. But in contrast to object oriented programming languages, type classes
are not| types. E.g. + has the type (Num_ a)“=> a -> a -> a, where Num is a type class anf a is
a type variable.

The| LTA-2 integer operations are listed below, along with the syntax used to invoke thein:

axr(z,y) max £ y or I ‘max‘ y *
inr(x,y) min x y or z ‘min‘ y *
ax_seqr(xs) maximum s *
in_seqr(xs) minimum zs *
dymy(z,y) dimz y or =z ‘dim‘ y T
ppwery (24 y) x "~y or () zxy *
shift2r(Ey) shift2 x y or =z ‘shift2‘ y T
shiftd 0 (z,y) shift10 =z y or x ‘shiftl10‘ y T
Silij(d,) Tsqrt—r +
dividesr(z,y) divides y or 2z ‘divides‘ y
eveny(z) even x
oddy(x) odd x *
quot;(x,y) divzx y or z ‘div‘ y *
mody(x,y) mod x y or x ‘mod‘ y *

132 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ratior(z,y) ratio z y or =z ‘ratiof T
residuer(x,y) residue x y or 1z ‘residue‘ y T
groupr(,y) grp z y or 1z ‘grp‘ y T
padr(x,y) pad z y or x ‘pad‘ y T
gedr(z,y) gcd ¢y or x ‘ged‘ vy *
lemyp(z,y) lem z y or =z ‘lem‘ y *
gcd_seqr(zs) gcd_seq s T
lem_seqr(xs) lcm_seq xs T
add onrnplr('r :1/1\ r +r oy i
add_ovi(x,y) T ity T
sub_wrapr(z,y) x -y T
sub_ovr(z,y) T -ty T
mul_wrapy(z,y) T ¥k oy T
mul_ovr(z,y) T kit oy T

wher¢ = and y are expressions of type INT and where xs is an expressionnof type [INT].

Tle LIA-2 non-transcendental floating point operations are listed(below, along with the

used [to invoke them:

mazp(z,y) max x y or x ‘max‘ y *
ming(z,y) min z y or z ‘min‘cy *
mmazp(x,y) mmax r y or x ‘dmax‘ T
mming(z,y) mmin z y or x)%mmin‘ y T
maz_seqp(xs) maximum s *
min_seqp(xs) minimum zs *
mmax_seqr(zs) mmax imup TS T
mmin_seqp(xs) mminimim xs T
dimp(z,y) dim x y or z ‘dim‘ y T
floorp(x) fromInteger (floor z) *
floor _rest p(x) x - fromInteger (floor x) *
roundingp(x) fromInteger (round x) *
rounding_restp(x) x - fromInteger (round) *
ceilingp(x) fromInteger (ceiling) *
ceiling_rest g () x - fromInteger (ceiling x) *
residue g (@,) residue x y or x ‘residue‘ y T
sqrtp(af) sqrt x *
recsqrtp(x) rec_sqrt x T
Rt () prod—r—y T
add lop(z,y) T +i-y T
sub_lop(x,y) x -i-y T
mul_lop(z,y) T ki oy T
div_restp(z,y) x /i*xy T
sqrt_restp(x) sqrt_rest x T

where x and y are expressions of type FLT, and where xs is an expression of type [FLT].

C.6 Haskell

ISO/IEC 10967-2:2001(E)

syntax

133

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

The binding for the floor, round, and ceiling operations here take advantage of the unbounded
Integer type in Haskell, and that Integer is the default integer type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

maz_error_hypotp err_hypotenuse x 1

Max_error_expr err_exp o T

Max_error_power g err_power

big_angle_rp big radian angle x t
azx_error_radp errrad = T
ar_error_sing err_sin T
ax_error_tangp err_tan x i

npin_angular_unitp min_angle unit z T

blg_angle_up big angle x 1
az_error_sinup(u) err_sin cycle u T
ax_error_tanup(u) err_tan_cycle u T

ax_error_tanhpg err_tanh x 1

ax_error_convertp err_convert T
axr_error_convert g err_convert "" T
ax_error_convertp err_convert ' T

:[ax,ermr,smh F err_sinh z

where § and u are expressions of type FLT. Several of the parameter functions are constapt for
each type (and library), the argument is then used only to differentiate among the floating [point

types.

The| LTIA-2 elementary floating peifit operations are listed below, along with the syntax| used
to invoke them:

hypot p(z,y) hypotenuse z y T
ppwerg (b, z) b~z or ("7) bz *
efpr(x) exp *
egpm1 () expMl x T
efep2p () exp2 x T
efrp10p(2) expl0 T
ppwerge(b, y) b *x y or (x*x) by *
ppweripmly(b,y) powerlPM1 by or b ‘power1PMi‘ y 1
Inp(z) log x *
Inlpp(x) loglP z T
log2p(x) log2 x T
log105(x) logl0 x T
logbaser (b,) logBase b « or b ‘logBase‘ *
logbaselp1p (b, x) logBaselP1P b x T

134 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

radp(x) radians x T
azis_radp(z) axis_radians z T
sinp(z) sin x *
cosp(x) cos x *
tanp(x) tan z *
cotp(x) cot =z T
secp(x) sec x T
cscp(x) csc x T
cossing(a) cosSin o i
arcsing(x) asin x X
arccosp(x) acos *
arctanp () atan *
arccotp(x) acot x T
arccotcp(x) acotc = T
arcsecp(x) asec x T
arcescp(x) acsc T
arcr(x,y) atan2 y x *
cyclep(u, x) cycle u x T
azis_cyclep(u, x) axis_cycle u x T
sinup(u,) sinU u x T
cosup(u,x) cosU u x T
tanup(u,x) tanU u & T
cotup(u, x) cotU u\r T
secup(u, x) secUl x T
cscup(u,) escU u « T
cossinup(u,) cosSinU u x T
arcsinup (u, x) asinU u x T
arccosup(u, x) acosU u = T
arctanup(u, x) atanU u = T
arccotup (u, & acotU u x T
arccoteu gy x) acotcU u x T
arcsecdp(u, x) asecU u z T
arcescur (u,) acscU u x T
afeur(u, z,y) atan2U u y x T
rad_to_cyclep(z,w) rad_to_cycle w z T
cycle_to_radp(u,x) cycle_ torad u x T
cycle_to_cyclep(u,x,w) cycle to cycle u = w T
sinhp(x) sinh x *
coshp(x) cosh z *
tanhp(x) tanh x *

C.6 Haskell 135

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

cothp(z) coth x T
sechp(x) sech x T
cschp(x) csch x i
arcsinhp(x) asinh *
arccoshp(x) acosh z *
arctanhp(x) atanh x *
arccothp(z) acoth = T
arcsechp(x) asech z T
arceschp(x) acsch x T

1 . i oo 1 . . oy IALLL
where §;r; 7o, amdware eXpressions of type FL T, amd z 1S aIr eXpression of type v T

Arithmetic value conversions in Haskell are always explicit. They are done with the overlpaded
fromIntegral and fromFractional operations.

cpnvert;_p(x) fromIntegral x X
cpnvertr () read s *
cpnverty_p(x) show x *
Hoorp_ ;1 (y) floor y *
rpundingr—1(y) round y *
ceilingp—1(y) ceiling vy *
cpnvert;_p(x) fromIntegral x *
cpnvertp g (y) fromFractional\y *
cpnvertpn_,p(s) read s *
cpnvertp_pr(y) show y *
cpnvertp_p(s) read $ *
cpnvertp_.pr(y) show y *

where {r is an expression of type™NT, y is an expression of type FLT. show does not allgw for
format|control.

Haskell provides non=megative numerals for all its integer and floating point types in| base
10. THere is no differentiation between the numerals for different floating point datatypes, nor
betweeh numerals £or different integer datatypes, and integer numerals can be used for flgating
point vplues. Integer numerals stand for a value in Integer (the unbounded integer type) apd an
implici} fromInteger operation is applied to it. Fractional numerals stand for a value in Ratjonal
(the urfbounded type of rational numbers) and an implicit fromRational operation is applled to

1t.

Haskell does not specify any numerals for infinities and NaNs. Suggestion:

+o00 infinity T
qNaN quietNaN T
sNaN sigallingNaN T

as well as string formats for reading and writing these values as character strings.

136 Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Haskell has the notion of error, which results in a change of ‘control flow’, which cannot be
returned from, nor caught. An error results in the termination of the program. (There are
suggestions to improve this.) infinitary for integer types and invalid (in general) are considered
to be error. No notification results for underflow, and the continuation value (specified by
LIA-2) is used directly, since recording of indicators is not available and error is inappropriate
for underflow. The handling of integer overflow is implementation dependent. The handling
of floating point overflow and infinitary should be to return a suitable infinity (specified by
LIA-2), if possible, without any notification, since recording of indicators is not available.

C.7 Java

The programming language Java is defined by The Java Language Specification [64], plus.a-humber
of clgss libraries (exactly which vary depending on the Java ‘edition’ and version).

A implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

Tlhe operations or parameters marked “i” are not part of the language and should be provided
by arn implementation that wishes to conform to the LIA-2 for that ©peration. For eacl of the
marked items a suggested identifier is provided. The LIA-2 operatidns that are provided fin Java
2 (mgrked “x” below) are in the final class java.lang.Math.

The Java datatype boolean corresponds to the LIA datatype Boolean.

Eqery implementation of Java has the integer datatypes int and long. The notation INT will
be used to refer to either one of them.

Java has two floating point datatypes, float and double, which must conform to IEC] 60559.
The Iotation FLT will be used to refer to either*one of them.

Tle LIA-2 integer operations are listed below, along with the syntax used to invoke them:
ming(x,y) min (g5 y) *
mazr(x,y) max(x, y) *
min_seqr(xs) nin_arr(xs) T
max_seqr(xs) max_arr (zs) T
dimp(z,y) dim(x, y) T
powery(z,y) power (z, ¥) T
shift2;(z,y) shift2(z, y) T
shift10;(z,) shift10(z, y) T
sqrtr(z) sqrt () T
diyidesr(x,y) divides(x, y) T
dwpidesy(x,y) x 1=0&& y % x == *
eveny(x) x h 2 == *
oddr(x) xh2!'=0 *
quot(x,y) quot (z,) T
mody(x,y) mod(x, y) T
ratior(z,y) ratio(z, y) T
residuer(x,y) residue(x, y) T

C.7 Java

137

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

groupr(z,y) group(z, y) f
pad;(z,y) pad(z, y) T
ged(z,y) ged(z, y) T
lemy(z,y) lem(z, y) T
gcd_seqr(xs) gcd_arr (xs) T
lem_seqr(xs) lcm arr(zs) T
add_wrapr(z,y) add wrap(z, ¥) T
add_ovy(z,y) add_over(z, y) T
subwrap;(x 1) sub wrap(e q) t
spb_ovr(x,y) sub_over(zx, y) T
ZEULUJ?”GPI (x,y) mul wrap(z, y) T
ul_ovr(z,y) mul_over(z, y) il
where ¥ and y are expressions of type INT and where xs is an expression of type, INT[].
The|LIA-2 non-transcendental floating point operations are listed below, @long with the syntax
used td invoke them:
inp(x,y) min(z, ¥y) *
arp(x,y) max(z, y) *
maxp(x,y) mmax (x, y) T
ming(x,y) mmin(z, y) T
in_seqp(xs) min arr(xs) T
azr_seqp(xs) max_arr (xs) T
maz_seqp(xs) mmax (z5) T
min_seqp(xs) mmin (zs) T
dymp(x,y) dim(x, ¢ T
foorp(x) floor(@) *(only fgr double)
foor_rest () x ~ floor(x) *(only fgr double)
rpundingp(z) rint (x) *(only fgr double)
rpunding_restp(x) x - rint(x) *(only fqr double)
cpilingp(x) ceil(x) *(only fdr double)
cpiling_restp(x) x - ceil(x) *(only fqr double)
residuer(x,y) IEEEremainder(x, y) * (only for double)
sgrtp(x) sqrt (z) *
rec_sqrip () rec_sqrt(x) T
mul p=grlz, y) dprod(zx, y) T
afddlor(z,y) add_low(z, 1) T
sttt sub—tewte—i) +
mul_lop(z,y) mul_low(x, y) T
div_restp(x,y) div_rest(x, y) T
sqrt_restp(x) sqrt_rest (x) T

© ISO/IEC 2001 — All rights reserved

where = and y are expressions of type FLT, and where xs is an expression of type FLT[].

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

138

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

max_error_hypotp err_hypotenuse (x)]
Max_error_erpr err_exp(z) T
mazx_error_powerp(b,) err_power (1) T
big_angle_rp big_radian_angle(x) T
max_error_radp err_rad(z) T
Max_error_sing err_sin(x) T
max_error_tang err_tan(x) T
main nngw]nr unitp smallest angular unit () '!‘
big_angle_up big_angle(x) T
max_error_sinup(u) err_sin cycle(u) T
max_error_tanup(u) err_tan_cycle(u) T
max_error_sinhpg err_sinh(x) T
max_error_tanhp err_tanh (x)]
mazx_error_convertp err_convert (z) T
max_error_convert g err_convert_to_string T
mazx_error_convert p err_convert to_string T

wher¢ x and u are expressions of type FLT. Several of the\parameter functions are consfant for
each pype (and library), the argument is then used onlyfo differentiate among the floating point
typed
Tle LIA-2 elementary floating point operatiéns are listed below, along with the syntgx used

to inyoke them. These are defined only for double not for float.

hypotp(x,y) hypotenuse(z, y) T

powerr 1 (b, z) poweri(b, z) T

expr(zx) exp (x) *

expmlip(x) expml (z) T

exp2p(x) exp2(x) T

expl0p(x) expl10(x) T

powerp (b, y) power (b, y) T

powp (b, y) pow (b, y) * Not LIA-2!

power1pmA (D, y) poweripml (b, y) T

Inpfa) log(x) *

Indpp(z) loglip(x) T

i D[1 s WAV EY

O TOgZzTt7 I

log10p(z) log10(x) T

logbaser (b, x) log(b, x) T

logbaselp1p (b, x) loglplp(b, x) T

radp(x) radian(x) T

azris_radp(r) axis_rad(x) T
C.7 Java 139

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

140

© ISO/IEC 2001 — All rights reserved

sing(x) sin(x) *
cosp(x) cos(x) *
tanp(x) tan(x) *
cotp(x) cot(x) T
secp(x) sec(z) T
cscp(x) csc(x) T
arcsing(x) asin(x) *
arccosp(x) acos (x) *
arctanp(x) atan(z) *
a Pnnfp(fr\ acot (1) '!'
afccoterp(x) acotc(x) T
afrcsecp(x) asec(x)]
afrcesep(x) acsc(x) il
afcp(z,y) atan2(y, x) *
cyclep(u,) cycle(u, x) T
afris_cyclep(u, x) axis_cycle(u, x) T
stnup(u,) sinu(u, z) T
cpsup(u,x) cosu(u, x) T
tgnup(u,) tanu(u, x) t
cptup(u, x) cotulu, x) i
spcup (u, x) secu(u, x) T
ckeup(u, x) csculu, =) T
afcsinup (u, x) asinu(u, i) T
afrccosup(u, x) acosu(uy x) T
af-ctanup(u, x) atanu(¥, x) T
af-ccotup(u, x acotu(u,) T
afrccotcur (u, x) acotcu(u, x) T
afrcsecup(u, x) asecu(u, x) T
afrcescup(u,) acscu(u, x) t
afcup(u, x,y atan2u(u, y,) T
rpd_to_cycler (&, 360) toDegrees (x) *
cycle_to_radr(360, x) toRadians (x) *
rad_to_cycler (z, w) radian_to_cycle(z, w) T
cycle toradp (u, x) cycle_to_radian(u, x) T
cycleto_cyclep(u, x,w) cycle_to_cycle(u, z, w) T
sinhp(z) sinh(z) T
coshp(x) cosh(x) T
tanhp(x) tanh(z) T
cothp(z) coth(x) T
sechp(x) sech(x) T
cschp(x) csch(x) T

Ezxample bindings for specific languages

https://iecnorm.com/api/?name=1693c4a4d926c7dadc916d292da02420

