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This Guide establishes general rules for evaluating and expressing uncertainty in measurement that are
intended to be applicable to a broad spectrum of measurements. The basis of the Guide is
Recommendation 1 (CI-1981) of the Comité International des Poids et Mesures (CIPM) and Recommendation
INC-1 (1980) of the Working Group on the Statement of Uncertainties. The Working Group was convened by
the Bureau International des Poids et Mesures (BIPM) in response to a request of the CIPM. The CIPM
Recommendation is the only recommendation concerning the expression of uncertainty in measurement
adopted by an intergovernmental organization.

This Guide was prepared by a joint working group consisting of experts nominated by the BIPM, the
International Electrotechnical Commission (IEC), the International Organization for Standardization (ISO), and
the International Organization of Legal Metrology (OIML).

The foll wing-seven nrganl?ohr\ne_ ellppnr’fnd the. Ho\/nlnpmnnf of this f‘llmln, which is pllhluch d in their name:

BIPM: Bureau International des Poids et Mesures

IEG: International Electrotechnical Commission
IFCC: International Federation of Clinical Chemistry**
ISQ: International Organization for Standardization

IURAC: International Union of Pure and Applied Chemistry**
IUPAP: International Union of Pure and Applied Physics®*
OIML: International Organization of Legal Metrology

Users of this Guide are invited to send their comments and requests for clarification to apy of the seven
supportihg organizations, the mailing addresses of'\which are given on the inside front cover***,

*  Footnote to the 2008 version:
In 2005, the International Laboratory Accreditation Cooperation (ILAC) officially joined the seven founding international
organizations.

*%

Footnote to the 2008 version:

The names of these three organizations have changed since 1995. They are now:
IFCC: International Federation for Clinical Chemistry and Laboratory Medicine
IUPAC: International Organization for Pure and Applied Chemistry

IUPAP: International Organization for Pure and Applied Physics.

*** Footnote to the 2008 version:

Links to the addresses of the eight organizations presently involved in the JCGM (Joint Committee for Guides in Metrology)
are given on http://www.bipm.org/en/committees/jc/jcgm.
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Foreword

In 1977, recognizing the lack of international consensus on the expression of uncertainty in measurement, the
world's highest authority in metrology, the Comité International des Poids et Mesures (CIPM), requested the
Bureau International des Poids et Mesures (BIPM) to address the problem in conjunction with the national
standards laboratories and to make a recommendation.

The BIPM prepared a detailed questionnaire covering the issues involved and distributed it to 32 national

metrology laborfatories known to have an interest in the subject (and, for information, to five inte

organizations).

was important tp arrive at an internationally accepted procedure for expressing measurementmncertg
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| standards laboratories. This Working Group on the Statement of ‘Uncertainties de
n INC-1(1980), Expression of Experimental Uncertainties [2]:\Fhe CIPM appro
n in 1981 [3] and reaffirmed it in 1986 [4].
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| unions that represent chemistry and physics; and the International Federation ofi
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to provide a basis for the international comparison of measurement results.

This first edition of ISO/IEC Guide 98-3 cancels and replaces the Guide to the Expression of Uncertainty in
Measurement (GUM), BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1993, corrected and reprinted in 1995.

1) See the Bibliography.

*

Footnote to the 2008 version:

In producing this 2008 version of the GUM, necessary corrections only to the printed 1995 version have been introduced
by JCGM/WG 1. These corrections occur in Subclauses 4.2.2,4.2.4,5.1.2,B.2.17,C.3.2,C.3.4,E.4.3, H4.3, H.5.2.5 and

H.6.2.
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0 Introduction

0.1  When reporting the result of a measurement of a physical quantity, it is obligatory that some quantitative
indication of the quality of the result be given so that those who use it can assess its reliability. Without such
an indication, measurement results cannot be compared, either among themselves or with reference values
given in a specification or standard. It is therefore necessary that there be a readily implemented, easily
understood, and generally accepted procedure for characterizing the quality of a result of a measurement, that
is, for evaluating and expressing its uncertainty.

0.2 The concept of uncertainty as a quantifiable attribute is relatively new in the history of measurement,
although error and error analysis have long been a part of the practice of measurement scien¢e or metrology.
It is noWw widely recognized that, when all of the known or suspected components of efror have been
evaluatgd and the appropriate corrections have been applied, there still remains)an uncerfainty about the
correctniess of the stated result, that is, a doubt about how well the result of the measuremenit represents the
value of|the quantity being measured.

0.3 Juyst as the nearly universal use of the International System of Units (Sl) has brought ¢oherence to all
scientifi¢ and technological measurements, a worldwide consensus-On the evaluation and expression of
uncertaipnty in measurement would permit the significance of acvast spectrum of measurgment results in
science| engineering, commerce, industry, and regulation to befreadily understood and properly interpreted. In
this era [of the global marketplace, it is imperative that the method for evaluating and expresking uncertainty
be uniform throughout the world so that measurements<performed in different countries can be easily
compared.

0.4 The ideal method for evaluating and expressing the uncertainty of the result of a meaqurement should
be:

universal: the method should be applicable to all kinds of measurements and to all typges of input data
used in measurements.

The actdial quantity used to express.uncertainty should be:

intefrnally consistent: it should be directly derivable from the components that contribute [to it, as well as
indgpendent of how these components are grouped and of the decomposition of the domponents into
subcomponents;

transferable: it-should be possible to use directly the uncertainty evaluated for one result as a component
in evaluatingthe uncertainty of another measurement in which the first result is used.

Further,|in many industrial and commercial applications, as well as in the areas of health and safety, it is often
necessgry.to’ provide an interval about the measurement result that may be expected to engompass a large
fraction of the distribution of values that could reasonably be attributed 1o the quantity Subject to measurement.
Thus the ideal method for evaluating and expressing uncertainty in measurement should be capable of readily
providing such an interval, in particular, one with a coverage probability or level of confidence that
corresponds in a realistic way with that required.

0.5 The approach upon which this guidance document is based is that outlined in Recommendation
INC-1 (1980) [2] of the Working Group on the Statement of Uncertainties, which was convened by the BIPM in
response to a request of the CIPM (see Foreword). This approach, the justification of which is discussed
in Annex E, meets all of the requirements outlined above. This is not the case for most other methods
in current use. Recommendation INC-1 (1980) was approved and reaffirmed by the CIPM in its own
Recommendations 1 (CI-1981) [3] and 1 (CI-1986) [4]; the English translations of these CIPM Recommendations
are reproduced in Annex A (see A.2 and A.3, respectively). Because Recommendation INC-1 (1980) is the
foundation upon which this document rests, the English translation is reproduced in 0.7 and the French text,
which is authoritative, is reproduced in A.1.

© ISO/IEC 2008 — All rights reserved vii
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0.6 A succinct summary of the procedure specified in this guidance document for evaluating and
expressing uncertainty in measurement is given in Clause 8 and a number of examples are presented in detail
in Annex H. Other annexes deal with general terms in metrology (Annex B); basic statistical terms and
concepts (Annex C); “true” value, error, and uncertainty (Annex D); practical suggestions for evaluating
uncertainty components (Annex F); degrees of freedom and levels of confidence (Annex G); the principal
mathematical symbols used throughout the document (Annex J); and bibliographical references (Bibliography).

An alphabetical

index concludes the document.

0.7 Recomm

endation INC-1 (1980) Expression of experimental uncertainties

1) The uncertainty in the result of a measurement generally consists of several components which may
be grouped into two categories according to the way in which their numerical value is estimated:

A. th
B. th

There
the prg

uncertainty” can be misleading and should be avoided.

Any dg
for ead

2) The cq

“standard deviations” s;) and the number of degrees_of’ freedom v;. Where appropri

covarig

3) The cd
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u]2 ma
the co

4) The cq
usual 1
be exp

5) If, for g
an ove|

bse which are evaluated by statistical methods,

bse which are evaluated by other means.

s not always a simple correspondence between the classification into categories A ¢

viously used classification into “random” and “systematic” uncertainties, The term “sy|

tailed report of the uncertainty should consist of a complete list,of the components, sj

h the method used to obtain its numerical value.

mponents in category A are characterized by the estimated variances s,-z, (or the e

nces should be given.

mponents in category B should be characierized by quantities uj2 which may be co

roximations to the corresponding variances; the existence of which is assumed. The q
be treated like variances and the quantities u; like standard deviations. Where app,

ariances should be treated in a similar way.

mbined uncertainty should be/characterized by the numerical value obtained by app

hethod for the combination-of-wariances. The combined uncertainty and its component

ressed in the form of “standard deviations”.

articular applications;it is necessary to multiply the combined uncertainty by a factor {
rall uncertainty, the-multiplying factor used must always be stated.

r B and
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Uncertainty of measurement —

Part 3:
Guide to the expression of uncertainty in measurement
(GUM:1995)

1 Scppe

1.1 This Guide establishes general rules for evaluating and expressing uncertainty.in megasurement that
can be [followed at various levels of accuracy and in many fields — from the-shep floor|to fundamental
researchh. Therefore, the principles of this Guide are intended to be applicable’ to a bropd spectrum of
measur¢ments, including those required for:

maintaining quality control and quality assurance in production;
complying with and enforcing laws and regulations;
conducting basic research, and applied research and development, in science and enginegring;

caliprating standards and instruments and performing tests, throughout a national measur¢ment system in
order to achieve traceability to national standards;

devieloping, maintaining, and comparing internationaland national physical reference standards, including
refdrence materials.

1.2 This Guide is primarily concerned with\the expression of uncertainty in the measurement of a
well-defjned physical quantity — the measurand — that can be characterized by an essentiallyjunique value. If
the phehomenon of interest can be represented only as a distribution of values or is dependent on one or
more parameters, such as time, then the’measurands required for its description are the get of quantities
describing that distribution or that dependence.

1.3 This Guide is also applicable to evaluating and expressing the uncertainty assofiated with the
conceptpal design and theoretical analysis of experiments, methods of measurement] and complex
compongents and systems¢Because a measurement result and its uncertainty may be conceptual and based
entirely pn hypothetical data, the term “result of a measurement” as used in this Guide should be interpreted in
this brogder context.

1.4 This Guidé provides general rules for evaluating and expressing uncertainty in measurement rather
than defailed,.technology-specific instructions. Further, it does not discuss how the uncertainty of a particular
measu:}ment result, once evaluated, may be used for different purposes, for example, to draw conclusions
about the‘compatibility of that result with other similar results, to establish tolerance limits in @ manufacturing
process, or to decide if a certain course of action may be safely undertaken. It may therefore be necessary to
develop particular standards based on this Guide that deal with the problems peculiar to specific fields of
measurement or with the various uses of quantitative expressions of uncertainty.* These standards may be
simplified versions of this Guide but should include the detail that is appropriate to the level of accuracy and
complexity of the measurements and uses addressed.

NOTE There may be situations in which the concept of uncertainty of measurement is believed not to be fully
applicable, such as when the precision of a test method is determined (see Reference [5], for example).

*  Footnote to the 2008 version:

Several derivative general and specific applications documents have been published. Non-exhaustive compilations listing
these documents can be found on http://www.bipm.org/en/committees/jc/jcgm/wg1_bibliography.html. In addition, up-to-
date listings of documents that cite the Guide to the expression of uncertainty in measurement can be found by using the
full-text search options on http://www.iso.org/ and http://www.iec.ch/.
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2 Definitions

2.1 General metrological terms

The definition of a number of general metrological terms relevant to this Guide, such as “measurable quantity”,
“‘measurand”, and “error of measurement’, are given in Annex B. These definitions are taken from the
International vocabulary of basic and general terms in metrology (abbreviated VIM)* [6]. In addition, Annex C
gives the definitions of a number of basic statistical terms taken mainly from International Standard
ISO 3534-1 [7]. When one of these metrological or statistical terms (or a closely related term) is first used in
the text, starting with Clause 3, it is printed in boldface and the number of the subclause in which it is defined

is given in parentheses.

Because of its
measurement” i
Guide are giver
around certain
confusion.

2.2 The term “uncertainty”

The concept of

221 The wo
means doubt al
general concep
for example, thd

2.2.2 In this
uncertainty and
appropriate adje

2.2.3 The formal definition of the term “uncertainty of measurement” developed for use in this Guid

the VIM [6] (VIM

uncertainty (of|

parameter, associated with the result of a measurement, that characterizes the dispersion of the val

could reasonab

NOTE 1 The
interval having a

NOTE 2 Unce
evaluated from

importance to this Guide, the definition of the general metrological term “uncer
s given both in Annex B and 2.2.3. The definitions of the most important terms specif|
in 2.3.1 to 2.3.6. In all of these subclauses and in Annexes B and C, the userof_pare
words of some terms means that these words may be omitted if this iscunlikely {

Lincertainty is discussed further in Clause 3 and Annex D.
rd “uncertainty” means doubt, and thus in its broadest sense “uncertainty of measy
out the validity of the result of a measurement. Becausé of the lack of different word

f of uncertainty and the specific quantities that provide’ quantitative measures of the
standard deviation, it is necessary to use the ward “uncertainty” in these two different

to any or all quantitative measures of that' concept. When a specific measure is i
ctives are used.

:1993, definition 3.9) is as follows:

measurement)

v be attributed to the.measurand

arameter may be,_for example, a standard deviation (or a given multiple of it), or the half-wi
stated level of«confidence.

rtainty of measurement comprises, in general, many components. Some of these component

experimental sta

dafd“deviations. The other components, which also can be characterized by standard devia

ainty of
c to this
ntheses
O cause

rement”
5 for this
concept,
senses.

Guide, the word “uncertainty” without adjectives refers both to the general comcept of

ntended,

e and in

ues that

dth of an

5 may be

he statistical distribution of the results of series of measurements and can be charactgrized by

ions, are

evaluated from a!sumed probability distributions based on experience or other information.

NOTE 3 It is understood that the result of the measurement is the best estimate of the value of the measurand, and
that all components of uncertainty, including those arising from systematic effects, such as components associated with
corrections and reference standards, contribute to the dispersion.

2.2.4 The definition of uncertainty of measurement given in 2.2.3 is an operational one that focuses on the
measurement result and its evaluated uncertainty. However, it is not inconsistent with other concepts of
uncertainty of measurement, such as

*

Footnote to the 2008 version:

The third edition of the vocabulary was published in 2007, under the title ISO/IEC Guide 99, International vocabulary of
metrology — Basic and general concepts and associated terms (VIM).
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a measure of the possible error in the estimated value of the measurand as provided by the result of a
measurement;

an estimate characterizing the range of values within which the true value of a measurand lies (VIM:1984,
definition 3.09).

Although these two traditional concepts are valid as ideals, they focus on unknowable quantities: the “error” of
the result of a measurement and the “true value” of the measurand (in contrast to its estimated value),
respectively. Nevertheless, whichever concept of uncertainty is adopted, an uncertainty component is always
evaluated using the same data and related information. (See also E.5.)

2.3 Terms specific to this Guide

In genefal, terms that are specific to this Guide are defined in the text when first introduced. However, the
definitiops of the most important of these terms are given here for easy reference.

NOTE Further discussion related to these terms may be found as follows: for 2.3.2, sée 3.3.3 and §.2; for 2.3.3, see
3.3.3 and 4.3; for 2.3.4, see Clause 5 and Equations (10) and (13); and for 2.3.5 and 2.3.6;'see Clause 6

2.31
standarnd uncertainty
uncertaipty of the result of a measurement expressed as a standard deviation

23.2
Type A evaluation (of uncertainty)
method [of evaluation of uncertainty by the statistical analysis’of series of observations

233
Type B evaluation (of uncertainty)
method of evaluation of uncertainty by means other-than the statistical analysis of series of obgervations

234
combingd standard uncertainty
standard uncertainty of the result of asameasurement when that result is obtained from the vallies of a number
of other| quantities, equal to the positive square root of a sum of terms, the terms being the variances or
covariarjces of these other quantities weighted according to how the measurement result varig¢s with changes
in these|quantities

2.3.5
expanded uncertainty.
quantity|defining aminterval about the result of a measurement that may be expected to endompass a large
fraction pf the distribution of values that could reasonably be attributed to the measurand

NOTE 1 Thefraction may be viewed as the coverage probability or level of confidence of the interval.

NOTE 2 To associate a specific level of confidence with the interval defined by the expanded uncertainty requires
explicit or implicit assumptions regarding the probability distribution characterized by the measurement result and its
combined standard uncertainty. The level of confidence that may be attributed to this interval can be known only to the
extent to which such assumptions may be justified.

NOTE 3  Expanded uncertainty is termed overall uncertainty in paragraph 5 of Recommendation INC-1 (1980).

2.3.6

coverage factor

numerical factor used as a multiplier of the combined standard uncertainty in order to obtain an expanded
uncertainty

NOTE A coverage factor, £, is typically in the range 2 to 3.
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3 Basic concepts

Additional discussion of basic concepts may be found in Annex D, which focuses on the ideas of “true” value,
error and uncertainty and includes graphical illustrations of these concepts; and in Annex E, which explores
the motivation and statistical basis for Recommendation INC-1 (1980) upon which this Guide rests. Annex J is

a glossary of the principal mathematical symbols used throughout the Guide.

3.1

3.141

Measurement

The objective of a measurement (B.2.5) is to determine the value (B.2.2) of the measurand (B.2.9),

that is, the value of the particular quantity (B.2.1, Note 1) to be measured. A measurement therefore begins
with an appropriate specification of the measurand, the method of measurement (B.2.7), and the

measurement |

NOTE The t
of a measurand”

3.1.2 In geng
the value of the
(B.2.18) of that

3.1.3 In prac
accuracy of n
respect to the r
is unique. It is in

EXAMPLE

procedure (B.2.8).

or of a quantity) and “true value of a measurand” (or of a quantity) are viewed as equiyalent.

ral, the result of a measurement (B.2.11) is only an approximation or-estimate (Cj
measurand and thus is complete only when accompanied by a statement of the ung
bstimate.

ice, the required specification or definition of the measurand is dictated by the
easurement (B.2.14). The measurand should be defined«with sufficient completen
bquired accuracy so that for all practical purposes associated with the measurement
this sense that the expression “value of the measurand™ is used in this Guide.

f the length of a nominally one-metre long steel bariis to be determined to micrometre acc

specification shoyld include the temperature and pressure at which theé“length is defined. Thus the measurand s

specified as, for 4
necessary, such
accuracy, its speq

NOTE
must be included

3.14 In man
obtained under

3.1.5 Variatio
can affect the m

3.1.6 The mg
the measureme
various influeng
the measuremsg

xample, the length of the bar at 25,00 °C* and 104 325 Pa (plus any other defining parameters
as the way the bar is to be supported). However, if the length is to be determined to only
ification would not require a defining temperature or pressure or a value for any other defining p

Incomplete definition of the measurand can give rise to a component of uncertainty sufficiently lar

in the evaluation of the uncertainty 6f:the measurement result (see D.1.1, D.3.4, and D.6.2).

cases, the result of a measurement is determined on the basis of series of obsg
repeatability conditions (B.2.15, Note 1).

hs in repeated obsepvations are assumed to arise because influence quantities (B.2
easurement result’are not held completely constant.

thematical\model of the measurement that transforms the set of repeated observati
ht result.is/of critical importance because, in addition to the observations, it generally
e quantities that are inexactly known. This lack of knowledge contributes to the unce
nt{result, as do the variations of the repeated observations and any uncertainty as

erm “true value” (see Annex D) is not used in this Guide for the reasons given in D.3.5;the terms “value

2.26) of
ertainty

required
bss with
ts value

uracy, its
hould be
deemed
millimetre
arameter.

ge that it

rvations

10) that

ons into
ncludes
tainty of
sociated

with the mathematical-model-itselt

3.1.7 This Guide treats the measurand as a scalar (a single quantity). Extension to a set of related
measurands determined simultaneously in the same measurement requires replacing the scalar measurand
and its variance (C.2.11, C.2.20, C.3.2) by a vector measurand and covariance matrix (C.3.5). Such a
replacement is considered in this Guide only in the examples (see H.2, H.3, and H.4).

*

Footnote to the 2008 version:

According to Resolution 10 of the 22nd CGPM (2003) “... the symbol for the decimal marker shall be either the point on the
line or the comma on the line...”. The JCGM has decided to adopt, in its documents in English, the point on the line.
However, in this document, the decimal comma has been retained for consistency with the 1995 printed version.
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3.2 Errors, effects, and corrections

3.21 In general, a measurement has imperfections that give rise to an error (B.2.19) in the measurement
result. Traditionally, an error is viewed as having two components, namely, a random (B.2.21) component
and a systematic (B.2.22) component.

NOTE Error is an idealized concept and errors cannot be known exactly.

3.2.2 Random error presumably arises from unpredictable or stochastic temporal and spatial variations of
influence quantities. The effects of such variations, hereafter termed random effects, give rise to variations in

repeated observations of the measurand. Although it is not possible to compensate for the random error of a
measurement result, it can usually be reduced by increasing the number of observations; its expectation or

expected-value{c-2-9,-C3-1is=zero-

NOTE 1
is not thq
uncertain

be known.

NOTE 2
synonym

3.23
systema
termed

accurac
compen
arising f

NOTE
the syste
a measu
arising fr|
should bg

3.24
systema

EXAMPL
measura
arising fr
are used
uncertain
determin

NOTE 1

The experimental standard deviation of the arithmetic mean or average of a series of observ
e random error of the mean, although it is so designated in some publications. It is instead
ty of the mean due to random effects. The exact value of the error in the mean arising from thg

In this Guide, great care is taken to distinguish between the terms “errer” and “uncertain
S, but represent completely different concepts; they should not be confused with one another or

Systematic error, like random error, cannot be eliminated. but it too can often b
tic error arises from a recognized effect of an influence quantity on a measurement
h systematic effect, the effect can be quantified and, ifit is significant in size relative
y of the measurement, a correction (B.2.23) or<correction factor (B.2.24) carn

fom a systematic effect is zero.

The uncertainty of a correction applied to aumeasurement result to compensate for a syste
matic error, often termed bias, in the measurement result due to the effect as it is sometimes g

bm imperfect compensation of a systematic effect cannot be exactly known. The terms “error”
e used properly and care taken to distinguish between them.

tic effects and that every(effort has been made to identify such effects.

E A correction_due to the finite impedance of a voltmeter used to determine the potent
nd) across a high-impedance resistor is applied to reduce the systematic effect on the result of
bm the loading effect of the voltmeter. However, the values of the impedances of the voltmeter &

to estimate the" value of the correction and which are obtained from other measurements
. These uncertainties are used to evaluate the component of the uncertainty of the pg
btion arising)/from the correction and thus from the systematic effect due to the finite impedance

QOften, measuring instruments and systems are adjusted or calibrated using measureme

referencq

ations (see 4.2.3)
B measure of the
se effects cannot

ty”. They are not
misused.

e reduced. If a
result, hereafter
to the required
be applied to

sate for the effect. It is assumed that, after correction, the expectation or expected value of the error

matic effect is not
alled. It is instead

e of the uncertainty of the result due to incemplete knowledge of the required value of the cofrection. The error

and “uncertainty”

It is assumed that the result;of a measurement has been corrected for all recognized significant

al difference (the
the measurement
nd resistor, which
, are themselves
tential difference
bf the voltmeter.

ht standards and

materials to eliminate systematic effects; however, the uncertainties associated with theg

e standards and

materials must still be taken into account.

NOTE 2

The case where a correction for a known significant systematic effect is not applied is discus

6.3.1andin F.2.4.5.

3.3 Uncertainty

3.3.1

The uncertainty of the result of a measurement reflects the lack of exact knowledge of

sed in the Note to

the value of the

measurand (see 2.2). The result of a measurement after correction for recognized systematic effects is still
only an estimate of the value of the measurand because of the uncertainty arising from random effects and
from imperfect correction of the result for systematic effects.
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NOTE The result of a measurement (after correction) can unknowably be very close to the value of the measurand
(and hence have a negligible error) even though it may have a large uncertainty. Thus the uncertainty of the result of a
measurement should not be confused with the remaining unknown error.

3.3.2 In practice, there are many possible sources of uncertainty in a measurement, including:

a) incomplete definition of the measurand;

b) imperfect realization of the definition of the measurand;

c) nonrepresentative sampling — the sample measured may not represent the defined measurand;

d) inadequateﬁnm@guMh&a&W&MﬂMmWﬁnpeﬁect
measurement of environmental conditions;

e) personal bigs in reading analogue instruments;

f)  finite instrument resolution or discrimination threshold;

g) inexact vallles of measurement standards and reference materials;

h) inexact values of constants and other parameters obtained from externhal sources and usedl in the
data-reducfion algorithm;

i) approximatjons and assumptions incorporated in the measurementimethod and procedure;

j)  variations i

h repeated observations of the measurand under-apparently identical conditions.

These sources
course, an unre|
the result of a

3.3.3
uncertainty cormy
and 2.3.3). Thq
“systematic”. TH

Recomimmendation INC-1 (1980) of the Working Group on the Statement of Uncertainties

are not necessarily independent, and some 6f sources a) to i) may contribute to sour
cognized systematic effect cannot be takénsinto account in the evaluation of the unce
easurement but contributes to its error.

ponents into two categories based on their method of evaluation, “A” and “B” (see 0|
pse categories apply to uncertainty and are not substitutes for the words “randg
e uncertainty of a correction for a known systematic effect may in some cases be obt

ce j). Of
tainty of

groups

7, 2.3.2,

m” and

bined by

a Type A evaluption while in other cases by a Type B evaluation, as may the uncertainty charactgrizing a

random effect.

and are
zation of
certainty
result of
ts rather
ndividual
particular

NOTE In sgme publications, \uncertainty components are categorized as “random” and “systematic”
associated with ¢rrors arising from random effects and known systematic effects, respectively. Such categor
components of ufcertainty canbe ambiguous when generally applied. For example, a “random” component of u
in one measurement may.become a “systematic” component of uncertainty in another measurement in which th{
the first measurement is\used as an input datum. Categorizing the methods of evaluating uncertainty compone

than the comporients‘themselves avoids such ambiguity. At the same time, it does not preclude collecting
components that|have been evaluated by the two different methods into designated groups to be used for a

purpose (see 3.4.3).

3.3.4 The purpose of the Type A and Type B classification is to indicate the two different ways of evaluating
uncertainty components and is for convenience of discussion only; the classification is not meant to indicate
that there is any difference in the nature of the components resulting from the two types of evaluation. Both
types of evaluation are based on probability distributions (C.2.3), and the uncertainty components resulting
from either type are quantified by variances or standard deviations.

3.3.5 The estimated variance u? characterizing an uncertainty component obtained from a Type A
evaluation is calculated from series of repeated observations and is the familiar statistically estimated variance
s2 (see 4.2). The estimated standard deviation (C.2.12, C.2.21, C.3.3) u, the positive square root of 2, is
thus u=s and for convenience is sometimes called a Type A standard uncertainty. For an uncertainty
component obtained from a Type B evaluation, the estimated variance 2 is evaluated using available
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knowledge (see 4.3),
uncertainty.

and the estimated standard deviation u is sometimes called a Type B standard

Thus a Type A standard uncertainty is obtained from a probability density function (C.2.5) derived from an
observed frequency distribution (C.2.18), while a Type B standard uncertainty is obtained from an assumed
probability density function based on the degree of belief that an event will occur [often called subjective
probability (C.2.1)]. Both approaches employ recognized interpretations of probability.

NOTE

A Type B evaluation of an uncertainty component is usually based on a pool of comparatively reliable
information (see 4.3.1).

3.3.6 The standard uncertalnty of the result of a measurement when that result is obtalned from the values

of a nu
estimat
combin
what is {

3.3.7
areas o
uncertai

reasona
based o

NOTE

recovere
quantity.

34 P

3.4.1
evaluats

ermed in this Guide the law of propagation of uncertainty (see Clause 5).

To meet the needs of some industrial and commercial applications, as\well as requ
[ health and safety, an expanded uncertainty U is obtained by multiplying the co
hty u by a coverage factor k. The intended purpose of U is to providean interval ab

bly be attributed to the measurand. The choice of the factor &; which is usually in the

The coverage factor & is always to be stated, so that the standard uncertainty of the measure

ractical considerations

If all of the quantities on which the result-of a measurement depends are varied, its un

resourc

d by statistical means. However, because this is rarely possible in practice due to
s, the uncertainty of a measurement result is usually evaluated using a mathematid

measur¢ment and the law of propagation-of uncertainty. Thus implicit in this Guide is the as
measur¢ment can be modelled mathematically to the degree imposed by the required accuracy of the

measur

3.4.2

fullest p
data. W
data, an
control,
should 3
same m

ment.

Because the mathematical model may be incomplete, all relevant quantities should

racticable extent so that the evaluation of uncertainty can be based as much as possi
henever feasible,.the use of empirical models of the measurement founded on long-t
d the use of gheck standards and control charts that can indicate if a measurement is
should bepart of the effort to obtain reliable evaluations of uncertainty. The math
Iways be-revised when the observed data, including the result of independent deter
easurand, demonstrate that the model is incomplete. A well-designed experiment can

:

measur¢ment that may be expected to encompass a large fraction of-the“distribution of v

h the coverage probability or level of confidence required of, the-interval (see Clause 6).

¢valuated, using

irements in the
bined standard
t the result of a
lues that could
range 2 to 3, is

d quantity can be

H for use in calculating the combined standard uncertainty.of other measurement results that may depend on that

certainty can be
imited time and
al model of the
sumption that a

be varied to the
ble on observed
erm quantitative
under statistical
ematical model
minations of the
greatly facilitate

reliable gvaluations of uncertainty and is an important part of the art of measurement.

3.4.3 In order to decide if a measurement system is functioning properly, the experimentally observed
variability of its output values, as measured by their observed standard deviation, is often compared with the
predicted standard deviation obtained by combining the various uncertainty components that characterize the
measurement. In such cases, only those components (whether obtained from Type A or Type B evaluations)
that could contribute to the experimentally observed variability of these output values should be considered.

NOTE Such an analysis may be facilitated by gathering those components that contribute to the variability and those
that do not into two separate and appropriately labelled groups.

3.4.4 In some cases, the uncertainty of a correction for a systematic effect need not be included in the
evaluation of the uncertainty of a measurement result. Although the uncertainty has been evaluated, it may be
ignored if its contribution to the combined standard uncertainty of the measurement result is insignificant. If the
value of the correction itself is insignificant relative to the combined standard uncertainty, it too may be
ignored.
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3.4.5 It often occurs in practice, especially in the domain of legal metrology, that a device is tested through
a comparison with a measurement standard and the uncertainties associated with the standard and the
comparison procedure are negligible relative to the required accuracy of the test. An example is the use of a
set of well-calibrated standards of mass to test the accuracy of a commercial scale. In such cases, because
the components of uncertainty are small enough to be ignored, the measurement may be viewed as
determining the error of the device under test. (See also F.2.4.2.)

3.4.6 The estimate of the value of a measurand provided by the result of a measurement is sometimes
expressed in terms of the adopted value of a measurement standard rather than in terms of the relevant unit
of the International System of Units (SI). In such cases, the magnitude of the uncertainty ascribable to the
measurement result may be significantly smaller than when that result is expressed in the relevant Sl unit. (In
effect, the measurand has been redefined to be the ratio of the value of the quantity to be measured to the

adopted value

f the standard )

EXAMPLE

reference based
The relative com
standard is 2 - 1(
in terms of the S
value of the Jose

3.4.7 Blunder
measurement. |
masked by, or
such mistakes.

3.4.8 Althoug
thinking, intelleg
purely mathem
measurement.

ultimately depe
assignment of it

4 Evaluatir

\ high-quality Zener voltage standard is calibrated by comparison with a Josephson~effed
bn the conventional value of the Josephson constant recommended for international tse by t
bined standard uncertainty u.(Vs)/Vs (see 5.1.6) of the calibrated potential differenc¢e: Vg of {
~8 when Vg is reported in terms of the conventional value, but u(Vs)/Vs is 4 - 1075when Vg iS
| unit of potential difference, the volt (V), because of the additional uncertainty.associated wi
bhson constant.

s in recording or analysing data can introduce a significant unknown error in the re
L arge blunders can usually be identified by a proper review-of the data; small ones
bven appear as, random variations. Measures of uncertajnty are not intended to acqg

h this Guide provides a framework for assessing‘uncertainty, it cannot substitute fg
tual honesty and professional skill. The evaluation:of uncertainty is neither a routine t4
ptical one; it depends on detailed knowledgeof the nature of the measurand an
The quality and utility of the uncertainty \queted for the result of a measurement t
nd on the understanding, critical analysis, and integrity of those who contributg
S value.

g standard uncertainty

Additional guid@nce on evaluating uncertainty components, mainly of a practical nature, may be

Annex F.

4.1 Modellin

4.1.1 In most
X1, X5, ..., Xy th

g the measurement

cases, a~measurand Y is not measured directly, but is determined from N other q
rough a-functional relationship f:

Y = f(X3,

t voltage
ne CIPM.
he Zener
reported
th the Sl

sult of a
tould be
ount for

r critical
sk nor a
d of the
herefore

to the

found in

Lantities

5.5, X )

(1)

NOTE 1

For economy of notation, in this Guide the same symbol is used for the physical quantity (the measurand) and

for the random variable (see 4.2.1) that represents the possible outcome of an observation of that quantity. When it is
stated that X; has a particular probability distribution, the symbol is used in the latter sense; it is assumed that the physical

quantity itself can

NOTE 2

be characterized by an essentially unique value (see 1.2 and 3.1.3).

of a resistor, the kth observed value of the resistance is denoted by R,.

NOTE 3

The estimate of X; (strictly speaking, of its expectation) is denoted by x;.

In a series of observations, the kth observed value of X; is denoted by X; ;; hence if R denotes the resistance
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EXAMPLE If a potential difference 7 is applied to the terminals of a temperature-dependent resistor that has a
resistance R at the defined temperature 7, and a linear temperature coefficient of resistance o, the power P (the
measurand) dissipated by the resistor at the temperature ¢ depends on V, R, o, and ¢ according to

P= (VKo )=V *f{Ro 1+ r(r=10)])

NOTE Other methods of measuring P would be modelled by different mathematical expressions.

4.1.2 The input quantities X, X5, ..., Xy upon which the output quantity Y depends may themselves be
viewed as measurands and may themselves depend on other quantities, including corrections and correction
factors for systematic effects, thereby leading to a complicated functional relationship /' that may never be
written down explicitly. Further, f may be determined experimentally (see 5.1.4) or exist only as an algorithm
that must be evaluated numerically. The function f as it appears in this Guide is to be interpreted in this

broader
correcti

Thus, if
of the m
3.4.2). 1
affects {
known i
resistan

NOTE
comparis

413

qud
valy

context, in particular as that function which contains every quantity, including all
n factors, that can contribute a significant component of uncertainty to the measureme

data indicate that /' does not model the measurement to the degree imposed-by'the re
easurement result, additional input quantities must be included in f to eliminate the i

he measurand. In the example of 4.1.1, additional input quantities might be needed
onuniform temperature distribution across the resistor, a possible.nénlinear temperaty
Ce, or a possible dependence of resistance on barometric press(re.

Nonetheless, Equation (1) may be as elementary as Y= X; =X5! This expression models,
on of two determinations of the same quantity X.

The set of input quantities X, X5, ..., X;y may be categorized as:

ntities whose values and uncertainties are directly determined in the current meas

or jldgement based on experience, and may .involve the determination of corrections to inst

and

qud
as

corrections for influence quantities, suchias ambient temperature, barometric pressure,

quantities associated with calibrated measurement standards, certified reference

corrections and
nt result.

Quired accuracy
hadequacy (see

his may require introducing an input quantity to reflect incomplete knowledge of a pfhenomenon that

o account for a
re coefficient of

for example, the

urement. These

es and uncertainties may be obtained from,.for example, a single observation, repeatg¢d observations,

rument readings
and humidity;

ntities whose values and uncertainties are brought into the measurement from external sources, such

materials, and

refgrence data obtained from hafndbooks.
4.1.4 |An estimate of the measurand Y, denoted by y, is obtained from Equation (1) using|input estimates
X1, Xo, .|, X, for the values ofithe N quantities X, X5, ..., Xj. Thus the output estimate y, which is the result of
the measurement, is given-by
y:f(x1,x2,...,xN) (2)
NOTE In_séme cases, the estimate y may be obtained from
S 1<
vl S LY V== f(Xp Xpp o Xy g)
=1 =1

That is, y is taken as the arithmetic mean or average (see 4.2.1) of n independent determinations Y, of Y, each
determination having the same uncertainty and each being based on a complete set of observed values of the N input
quantities X; obtained at the same time. This way of averaging, rather than y = f(X1, Xo, oo XN), where

X;

1 n
;;Xi,k

is the arithmetic mean of the individual observations X; ,, may be preferable when f'is a nonlinear function of the input
quantities X4, X, ..., Xy, but the two approaches are identical if f'is a linear function of the X; (see H.2 and H.4).

41.5 The estimated standard deviation associated with the output estimate or measurement result y,
termed combined standard uncertainty and denoted by u.(y), is determined from the estimated standard
deviation associated with each input estimate x;, termed standard uncertainty and denoted by u(x;) (see 3.3.5
and 3.3.6).
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4.1.6 Each input estimate x; and its associated standard uncertainty «(x;) are obtained from a distribution of
possible values of the input quantity .X;. This probability distribution may be frequency based, that is, based on
a series of observations X;, of X;, or it may be an a priori distribution. Type A evaluations of standard
uncertainty components are founded on frequency distributions while Type B evaluations are founded on a
priori distributions. It must be recognized that in both cases the distributions are models that are used to

represent the st

ate of our knowledge.

4.2 Type A evaluation of standard uncertainty

4.21

In most cases, the best available estimate of the expectation or expected value <, of a quantity ¢ that

varies randomly [a random variable (C.2.2)], and for which » independent observations g, have been
obtained under the same conditions of measurement (see B.2.15), is the arithmetic mean or average ¢

(C.2.19) of the 4
1 n

7==>
=1

Thus, for an inf
X, obtained fro|
result y; that is,
other methods,

4.2.2 Theind
or random effeq
o2 of the proba

5% (ax) =

This estimate ¢
(B.2.17), charad
mean q.

4.2.3 The beq

The experimental variance of the mean sz(c_l) and the experimental standard deviation of the me

(B.2.17, Note 2
of ¢, and either

Thus, for an in

-1

observations.

m Equation (3) is used as the input estimate x; in Equation (2) to determine the meas
v; = X;. Those input estimates not evaluated from repeated observations must be obt
such as those indicated in the second category of 4.1.3.

vidual observations ¢, differ in value because of random variations in the influence qu

ts (see 3.2.2). The experimental variance of the observations, which estimates the
bility distribution of ¢, is given by

)2

f variance and its positive square roots(q,), termed the experimental standard d
terize the variability of the observed.values ¢, , or more specifically, their dispersion ab

n

(‘lj -
j=1

1

q

t estimate of 02((7) = az/n, the variance of the mean, is given by

(qx)

n

, equal to the'positive square root of s2(c7), quantify how well g estimates the expec
may be.used as a measure of the uncertainty of g.

pat quantity X; determined from » independent repeated observations X;,, the

®)

ut quantity X; estimated from » independent repeated observations X; ;;-the arithmetic mean

urement
hined by

antities,
variance

(4)

pviation
out their

®)

an s(q)

ation g

standard

£001 H 4 Y
Ul 1o Tollliatc A — A,

(5). For

uncertainty u(x;

H L ) L322 H L322 1 lotael P H Fy = 'H
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convenience, uz(x,-):sz()_(i) and u(x;)=s(X;) are sometimes called a Type A variance and a Type A
standard uncertainty, respectively.

NOTE 1
expectation o, of

the random variable ¢ and that s2(

The number of observations n should be large enough to ensure that ¢ provides a reliable estimate of the
g) provides a reliable estimate of the variance 0'2(6) = 0'2/n (see

4.3.2, note). The difference between sz(a) and 0'2(6) must be considered when one constructs confidence intervals (see
6.2.2). In this case, if the probability distribution of ¢ is a normal distribution (see 4.3.4), the difference is taken into account
through the ¢-distribution (see G.3.2).

NOTE 2

Although the variance s2(67) is the more fundamental quantity, the standard deviation s(g) is more

convenient in practice because it has the same dimension as ¢ and a more easily comprehended value than that of the

variance.
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4.2.4 For a well-characterized measurement under statistical control, a combined or pooled estimate of
variance sg (or a pooled experimental standard deviation sp) that characterizes the measurement may be
available. In such cases, when the value of a measurand ¢ is determined from » independent observations,
the experimental variance of the arithmetic mean g of the observations is estimated better by s n than by
s2(g;)/n and the standard uncertainty is u = sp/\/_ (See also the Note to H.3.6.)

4.2,5 Often an estimate x; of an input quantity X is obtained from a curve that has been fitted to
experimental data by the method of least squares. The estimated variances and resulting standard
uncertainties of the fitted parameters characterizing the curve and of any predicted points can usually be
calculated by well-known statistical procedures (see H.3 and Reference [8]).

4.2.6 The degrees of freedom (C.2.31) v; of u(x)) (see G.3), equal to n — 1 in the simple case where x; = X;

and u(x}

given w

4.2.7
the meg
estimat

statistical methods specially designed to treat a series of correlated, randomly*varying measur

NOTE
that as
assumpti
these meg

4.2.8
exhaust

importamt example is the use of calibration designs, often based on the method of least squa
the unce

material
of know

frequenfly be evaluated by the statistical \analysis of data obtained from designs consi

sequend
depends

NOTE

because
may be
characte

43 Ty

4.3.1

associafed esStimated vanance uz(x) or the standard uncertainty u(x;) is evaluated by scie

based o

)=s()?,-) are calculated from » independent observations as in 4.2.1 and 4.2.3,¢sh
nen Type A evaluations of uncertainty components are documented.

If the random variations in the observations of an input quantity are correlated, for e
n and experimental standard deviation of the mean as given in 4.2.1 and4.2.3 may
prs (C.2.25) of the desired statistics (C.2.23). In such cases, the observations should

Such specialized methods are used to treat measurements of frequency standards. Howse
bne goes from short-term measurements to long-term measuremeénts of other metrologic
on of uncorrelated random variations may no longer be valid and‘the specialized methods coul
asurements as well. (See Reference [9], for example, for a detailed discussion of the Allan varig

The discussion of Type A evaluation of standard{uncertainty in 4.2.1 to 4.2.7 is n
ve; there are many situations, some rather complex, that can be treated by statistig

briainties arising from both short- and long-térm random variations in the results of
artefacts of unknown values, such as gatige blocks and standards of mass, with refe
n values. In such comparatively simple measurement situations, components of

es of measurements of the measurand for a number of different values of the quantiti
— a so-called analysis of variance (see H.5).

At lower levels of the calibration chain, where reference standards are often assumed to
they have been calibrated by a national or primary standards laboratory, the uncertainty of g
a single Type A standard uncertainty evaluated from the pooled experimental standa
izes the measurement,

pe B evaluation of standard uncertainty
For an estimate x; of an input quantity .X; that has not been obtained from repeated o

h.all of the available information on the possible variability of X;. The pool of informatio

ould always be

xample, in time,
be inappropriate
be analysed by
ements.

ver, it is possible
Bl quantities, the
H be used to treat
nce.)

ot meant to be
al methods. An
res, to evaluate
comparisons of
rence standards
uncertainty can
s5ting of nested
s upon which it

be exactly known
calibration result
d deviation that

bservations, the
ntific judgement
n may include

previous measurement data;

experience with or general knowledge of the behaviour and properties of relevant materials and instruments;

manufacturer's specifications;

data provided in calibration and other certificates;

unc

ertainties assigned to reference data taken from handbooks.

For convenience, uz(xi) and u(x;) evaluated in this way are sometimes called a Type B variance and a Type B
standard uncertainty, respectively.

NOTE When x; is obtained from an a priori distribution, the associated variance is appropriately written as »2(X;), but
for simplicity, #2(x;) and u(x;) are used throughout this Guide.
© ISO/IEC 2008 — All rights reserved 11
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4.3.2 The proper use of the pool of available information for a Type B evaluation of standard uncertainty
calls for insight based on experience and general knowledge, and is a skill that can be learned with practice. It
should be recognized that a Type B evaluation of standard uncertainty can be as reliable as a Type A
evaluation, especially in a measurement situation where a Type A evaluation is based on a comparatively
small number of statistically independent observations.

NOTE If the probability distribution of ¢ in Note 1 to 4.2.3 is normal, then o[s(g)]/o(g), the standard deviation of s(g)
relative to o(7), is approximately [2(n — 1)]7"2. Thus, taking o[s(7)] as the uncertainty of s(7), for n =10 observations, the
relative uncertainty in s(¢) is 24 percent, while for n = 50 observations it is 10 percent. (Additional values are given in
Table E.1 in Annex E.)

4.3.3 If the estimate x; is taken from a manufacturer's specification, calibration certificate, handbook, or
other source and its uoted uncertainty is stated to be a particular multiple of a standard deviation, the
standard uncerfainty u(x;) is simply the quoted value divided by the multiplier, and the estimated. yariance
uz(xi) is the square of that quotient.

EXAMPLE
kilogram is 1 000,
standard uncerta
standard uncertai

A\ calibration certificate states that the mass of a stainless steel mass standard mg ofipeminal yalue one
000 325 g and that “the uncertainty of this value is 240 ug at the three standard-déviation Igvel”. The
nty of the mass standard is then simply u(mg) = (240 pg)/3 =80 ug. This corresponds to a relative
hty u(mg)/mg of 80 - 1079 (see 5.1.6). The estimated variance is u%(mg) = (80(ug)2 = 6,4 - 1079 g2

NOTE In ma
uncertainty has b

Guide since all
measurement res

434 Thequ

standard uncertainties are treated in the same way when the, cembined standard uncertaj
ult is calculated (see Clause 5).

pted uncertainty of x; is not necessarily given as a multiple of a standard deviation as |in 4.3.3.

Instead, one m

level of confidgnce (see 6.2.2). Unless otherwise indicated,<«one may assume that a normal dist
(C.2.14) was uged to calculate the quoted uncertainty, and recover the standard uncertainty of x; by

the quoted unc
above three lev

NOTE Therd
recommendations
to be given (see 4

EXAMPLE
10,000 742 . +1
confidence of 99
corresponds to

u*(Rg) = (50 p. )2

4.3.5 Considg
chance that the
lies within this i

y find it stated that the quoted uncertainty defines ‘an interval having a 90, 95, or 99 percent
ribution
dividing
rtainty by the appropriate factor for the normal distribution. The factors corresponding to the

bls of confidence are 1,64; 1,96; and 2,58.(see also Table G.1 in Annex G).

with the
is always

would be no need for such an assumption if the uncertainty had been given in accordance
of this Guide regarding the reporting.of uncertainty, which stress that the coverage factor used
.2.3).

A\ calibration certificate states that the resistance of a standard resistor Rg of nominal value terj ohms is
PO u. at 23 °C and that “the quoted uncertainty of 129 yu. defines an interval having g level of
bercent”. The standardiuncertainty of the resistor may be taken as u(Rg) = (129 . )/2,58 =50 |J. , which
a relative 9stazndard uncertainty u(Rg)/Rs of 5,0- 10°® (see 5.1.6). The estimated vafiance is
=25-1077. 4,

r the caseWwhere, based on the available information, one can state that “there is a
value ofthe input quantity X; lies in the interval a_ to a,” (in other words, the probabili
terval is 0,5 or 50 percent). If it can be assumed that the distribution of possible valuep
ormal then the best estimate x; ofX can be taken to be the mldpomt of the interval. F|

fifty-fifty
y that X;
B Of)(i is
urther, if

approximately n

449

the half-width

£ ] Al L 1D 1 k. £ |
ure IIILUIVGI o UGIIULUU vy = \M+ u_ }[L, urie udari l.al\c M\./L }— HL,=0uU, VoLAUOT TUI norma

distribution with expectation «and standard deviation ¢ the interval «+ /1,48 encompasses approximately
50 percent of the distribution.

EXAMPLE A machinist determining the dimensions of a part estimates that its length lies, with probability 0,5, in the
interval 10,07 mm to 10,15 mm, and reports that /= (10,11 + 0,04) mm, meaning that £ 0,04 mm defines an interval having
a level of confidence of 50 percent. Then « = 0,04 mm, and if one assumes a normal distribution for the possible values of
/, the standard uncertainty of the length is u(/)=1,48- 0,04 mm 0,06 mm and the estimated variance is
u?(l)=(1,48 - 0,04 mm)2=3,5- 1073 mm2.

4.3.6 Consider a case similar to that of 4.3.5 but where, based on the available information, one can state
that “there is about a two out of three chance that the value of X; lies in the interval a_ to a,” (in other words,
the probability that X; lies within this interval is about 0,67). One can then reasonably take u(x;) = a, because
for a normal distribution with expectation o and standard deviation ¢ the interval -+ ¢ encompasses about
68,3 percent of the distribution.
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NOTE It would give the value of u(x;) considerably more significance than is obviously warranted if one were to use
the actual normal deviate 0,967 42 corresponding to probability p=2/3, that is, if one were to write
u(x;) = al0,967 42 = 1,033a.

4.3.7 In other cases, it may be possible to estimate only bounds (upper and lower limits) for X;, in particular,
to state that “the probability that the value of X; lies within the interval a_ to a, for all practical purposes is
equal to one and the probability that X; lies outside this interval is essentially zero”. If there is no specific
knowledge about the possible values of X; within the interval, one can only assume that it is equally probable
for X; to lie anywhere within it (a uniform or rectangular distribution of possible values — see 4.4.5 and
Figure 2 a). Then x;, the expectation or expected value of .X;, is the midpoint of the interval, x; = (a_ + a,)/2,

with ass

ociated variance

If the dif

u2

NOTE
measure

EXAMPL
op0(Cu),
on this li
interval

variance
from H

u( o) =

EXAMPL
instrume
Consider
the arithr
standard
specifica
correctio

half-width

a=(14 -

The esti
V="V+.
Type A s
standard

4.3.8

ference between the bounds, a, — a_, is denoted by 24, then Equation (6) beconies
xi) = a2/3

When a component of uncertainty determined in this manner contribut€s"significantly to th
ment result, it is prudent to obtain additional data for its further evaluation.

E 1 A handbook gives the value of the coefficient of linear thermal expansion of pure
as 16,52 - 1076 °C~1 and simply states that “the error in this value should not exceed 0,40 -
Mmited information, it is not unreasonable to assume that thé/value of op(Cu) lies with equal
6,12- 1076°C™" to 16,92- 1076 °C", and that it is veryunlikely that apo(Cu) lies outside
of this symmetric rectangular distribution of possible values of o,¢(Cu) of half-width « = 0,40 -
Fquation (7),  u%(opo) = (0,40 - 1076 °C™12/3=533.)1071%°C2, and the standard
0,40 - 1076°C™1)/4/3=0,23. 1076 °C".

E 2 A manufacturer's specifications for_a:digital voltmeter state that “between one and tw

(6)

(7)

E uncertainty of a

copper at 20 °C,
076 °C~1". Based
probability in the
this interval. The
1076 °C~1 is then,
uncertainty  is

0 years after the

nt is calibrated, its accuracy on the 1 V.fange is 14 - 1078 times the reading plus 2 - 107%
that the instrument is used 20 months after calibration to measure on its 1 V range a potential
hetic mean of a number of independent repeated observations of Vis found to be ¥ =0,928 57
uncertainty u(V) =12 yV. Onetcan obtain the standard uncertainty associated with th

n to V, . 7, of expectation equal to zero and with equal probability of lying anywhere within
a of the syfmmetric rectangular distribution of possible values of
1076). (0,928 571 )+ (2 - 1076). (1V)=15pV, and from Equation (7), u?(. ¥)=75 uVv2 an
mate of the valle~0f the measurand 7, for simplicity denoted by the same symbol
¥ =0,928 571 V., One can obtain the combined standard uncertainty of this estimate by con
tandard uncertainty of 7 with the 8,7 pV Type B standard uncertainty of . /. The general met
uncertainty’"components is given in Clause 5, with this particular example treated in 5.1.5.

In 4:3.7, the upper and lower bounds a, and a_ for the input quantity .X; may not be

respect

times the range”.
difference V, and
1V with a Type A
e manufacturer's

ions from a Type B evaluation.by assuming that the stated accuracy provides symmetric bounds to an additive

the bounds. The
.V is  then
i u(. V)= 8,7 V.
V, is given by
hbining the 12 uv
hod for combining

symmetric with

to.its best estimate x; more specifically, if the lower bound is written as a_=x; — b/

and the upper

bound as a, =x; - b,, then b_. b,. Since in this case x; (assumed to be the expectation of X)) is not at the
centre of the interval a_ to a,, the probability distribution of X; cannot be uniform throughout the interval.
However, there may not be enough information available to choose an appropriate distribution; different
models will lead to different expressions for the variance. In the absence of such information, the simplest
approximation is

(by+6.)° _(a-a)’
12 12

u? (xi) =

(8)

which is the variance of a rectangular distribution with full width 5, + b_. (Asymmetric distributions are also
discussed in F.2.4.4 and G.5.3.)
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EXAMPLE I

f in Example1 of 4.3.7 the value of the coefficient is given in

the handbook as

o0(Cu) =16,52 - 1078 °C~1 and it is stated that “the smallest possible value is 16,40 - 1076 °C~" and the largest possible

value is

16,92 - 1076 °C",

then 5.=0,12- 106°C™', 5»,=0,40- 107%°C™'", and, from

u(opg) =0,15 - 1076 °C~1.

NOTE 1

Equation (8),

In many practical measurement situations where the bounds are asymmetric, it may be appropriate to apply a

correction to the estimate x; of magnitude (b, — 5-)/2 so that the new estimate x3 of X; is at the midpoint of the bounds:
x3=(a- + a4)/2. This reduces the situation to the case of 4.3.7, with new values b3 = b2 = (b, + b_)/2 = (ay — a_)2 = a.

NOTE 2

may be
. ={exp[. (b- + b,
forb, <b_,. <O0.

shown

to be pX)=dexp[-.(X;—x)], with

Based on the principle of maximum entropy, the probability density function in the asymmetric case
A=[b_exp(Ab_) + by exp(~ . by)]™
)] — 1}/{b- exp[. (b_ + b,)] + b.}. This leads to the variance u2(x;) = byb_ — (by — b_)l. ; for by > b_, .

and
>0 and

439 In4.3.7
bounds a_ to a
bounds, with Z
distribution are

less likely than

with a symmetr
a,—a_=2a, an

rectangular disfribution of 4.3.7, while for /=0, it is a triangular distribution-[see 4.4.6 and Figl

Assuming such
associated varid

u? (xl-) =a
which becomes

g

NOTE 1 For
approximately 99

bften unphysical. In many cases, it is more realistic to expect that values near the bo
hose near the midpoint. It is then reasonable to replace the symmetric rectangular dis
c trapezoidal distribution having equal sloping sides (an isosceles trapezoid), a base
d a top of width 2a¢, where 0 < ¢ < 1. As ¢ — 1, this trapezoidal. distribution approa

a trapezoidal distribution for X;, one finds that the expectation.ef X; is x; = (a_ + a,)/2
nce is

(1+42) f6
for the triangular distribution, ¢=0,
/6

normal distribution with expectation «2and standard deviation o, the interval «+ 3o encd
73 percent of the distribution. Thus, if.the upper and lower bounds a, and a_ define 99,73 perg

rather than 100 p
specific knowled
symmetric rectan
half-width a is a2
view of the large
NOTE2 The t
width of one of th
The convolved d
represented by a

exactly known. Biit eveniif a, is as large as 30 percent of a4, u exceeds a1/\/§ by less than 5 percent.

ercent limits, and X; can be assumed.to be approximately normally distributed rather than there
e about X; between the bounds-as in 4.3.7, then u2(x;) = 4%9. By comparison, the varia
ular distribution of half-width\zis «2/3 [Equation (7)] and that of a symmetric triangular distr
6 [Equation (9b)]. The magnitudes of the variances of the three distributions are surprisingly
ifferences in the amount.of'information required to justify them.

b triangular portions of the trapezoid, a, = a(1 — {)/2. The variance of the distribution is u? = a%

rectangular distribution of width 2a, and models the fact that the bounds on an input quantit

because there was no specific knowledge about the possible values of .X; within jts/estimated
L, one could only assume that it was equally probable for X; to take any value within those
ero probability of being outside them. Such step function discontinuities .in,a prpbability

nds are
tribution
of width
thes the
re 2 b)].

P and its

(9a)

(9b)

mpasses
ent limits
being no
hce of a
bution of
similar in

rapezoidal distribution”is equivalent to the convolution of two rectangular distributions [10], ope with a
half-width a4 equal to the mean half-width of the trapezoid, a4 = a(1 + {)/2, the other with a half-width 4, equal to

he mean
3+d3/3.

stribution”can be interpreted as a rectangular distribution whose width 2a4 has itself an upcertainty

y are not

4.3.10

It is important not 1o "double-Count” uncertainty components. 1T a component of uncertainty arising

from a particular effect is obtained from a Type B evaluation, it should be included as an independent
component of uncertainty in the calculation of the combined standard uncertainty of the measurement result
only to the extent that the effect does not contribute to the observed variability of the observations. This is
because the uncertainty due to that portion of the effect that contributes to the observed variability is already
included in the component of uncertainty obtained from the statistical analysis of the observations.

4.3.11 The discussion of Type B evaluation of standard uncertainty in 4.3.3 to 4.3.9 is meant only to be
indicative. Further, evaluations of uncertainty should be based on quantitative data to the maximum extent
possible, as emphasized in 3.4.1 and 3.4.2.
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4.4 Graphical illustration of evaluating standard uncertainty

4.4.1 Figure 1 represents the estimation of the value of an input quantity X; and the evaluation of the
uncertainty of that estimate from the unknown distribution of possible measured values of X;, or probability
distribution of X}, that is sampled by means of repeated observations.

4.4.2 In Figure 1a), it is assumed that the input quantity X; is a temperature ¢ and that its unknown
distribution is a normal distribution with expectation o, =100 °C and standard deviation o=1,5°C. Its

probability density function (see C.2.14) is then

o= izoe 3|

L

NOTE The definition of a probability density function p(z) requires that the relation [p(z)dz = 1.is satisfied.

4.4.3 [igure 1Db) shows a histogram of n=20 repeated observations ¢, of the-temperature ¢ that are
assumefl to have been taken randomly from the distribution of Figure 1 a). Te-obtain the| histogram, the
20 obsefvations or samples, whose values are given in Table 1, are grouped into interyals 1°C wide.
(Preparation of a histogram is, of course, not required for the statistical analysis of the data.)

Table 1 — Twenty repeated observations of\the temperature ¢
grouped in 1 °C intervals

Interval Temperature
<t<ty
141°C t21°C t/°C
94,5 95,5 —
95,5 96,5 —
96,5 97,5 96,90
97,5 98,5 98,18; 98,25
98,5 99,5 98,61; 99,03; 99,49
99,5 100,5 99,56; 99,74; 99,89; 100,07; 100,33; 100,42
100,5 101,5 100,68; 100,95; 101,11; 101,20
101,5 102,5 101,57; 101,84; 102,36
102,5 103,5 102,72
103,5 104,5 —
104,5 105,5 —

The arithmetic mean or average ¢ of the »=20 observations calculated according to Equation (3) is
t =100,145°C 100,14 °C and is assumed to be the best estimate of the expectation o, of  based on the

available data. The experimental standard deviation s(z) calculated from Equation (4) is
s(t,)=1,489°C 1,49°C, and the experimental standard deviation of the mean s(7) calculated
from  Equation (5), which is the standard uncertainty u(f) of the mean f, s
u(t)=s(r)= s(tk)/@ =0,333°C 0,33 °C. (For further calculations, it is likely that all of the digits would be
retained.)

NOTE Although the data in Table 1 are not implausible considering the widespread use of high-resolution digital

electronic thermometers, they are for illustrative purposes and should not necessarily be interpreted as describing a real
measurement.
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Figure 1 — Graphical illustration of evaluating the standard uncertainty of an input quantity

from repeated observations
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Figure 2 — Graphical illustration of evaluating the standard uncertainty of an input quantity

from an a priori distribution
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4.4.4 Figure 2 represents the estimation of the value of an input quantity X; and the evaluation of the
uncertainty of that estimate from an a priori distribution of possible values of .X;, or probability distribution of X,
based on all of the available information. For both cases shown, the input quantity is again assumed to be a
temperature .

44,5 For the case illustrated in Figure 2 a), it is assumed that little information is available about the input
quantity ¢ and that all one can do is suppose that ¢ is described by a symmetric, rectangular a priori probability
distribution of lower bound a_=96 °C, upper bound a, =104 °C, and thus half-width a =(a, —a_)/2=4°C

(see 4.3.7). The probability density function of ¢ is then

p(t)=1/(2a), a_<t<a,

p(t)=0, otherwise.
As indicated in[4.3.7, the best estimate of ¢ is its expectation o; = (a, + a_)/2 =100 °C, which follows from
C.3.1. The stapdard uncertainty of this estimate is u(oct)=a/\/§ 2,3 °C, which follows from C.B.2 [see
Equation (7)].
4.4.6 For the|case illustrated in Figure 2 b), it is assumed that the available information concerning|¢ is less
limited and that|t can be described by a symmetric, triangular a priori probability. distribution of the same lower
bound a_ =96 °[C, the same upper bound a, = 104 °C, and thus the same, half-width a = (a, — a_)/2H4 °C as
in 4.4.5 (see 4.3.9). The probability density function of 7 is then

_ 2
p(t)—(t—z_)/a , a_gtg(a++a_)/2
_ 2

p(t)=(a, F1)/a®,  (ay+a )/2<i<a,

p(1)=0, otherwise.
As indicated in §.3.9, the expectation of ¢ is o; = (a, + a_)/2 = 100 °C, which follows from C.3.1. The $tandard
uncertainty of tHis estimate is u( ;)= a/\/g 1,6 °C, which follows from C.3.2 [see Equation 9 b)].
The above valye, u(e)=1,6 °C, may be.compared with u(-)=2,3 °C obtained in 4.4.5 from a regtangular
distribution of the same 8 °C width; with- o= 1,5 °C of the normal distribution of Figure 1 a) whose —P,58¢ to
+2,580 width, which encompasses\99 percent of the distribution, is nearly 8 °C; and with u(7)=0,33 °C
obtained in 4.4.3 from 20 obseryations assumed to have been taken randomly from the same normal
distribution.
5 Determining combined standard uncertainty
5.1 Uncorrelated input quantities

This subclause treats the case where all input quantities are independent (C.3.7). The case where two or
more input quantities are related, that is, are interdependent or correlated (C.2.8), is discussed in 5.2.

5.1.1

The standard uncertainty of y, where y is the estimate of the measurand Y and thus the result of the

measurement, is obtained by appropriately combining the standard uncertainties of the input estimates
X4, Xo, ..., Xy (8€€ 4.1). This combined standard uncertainty of the estimate y is denoted by u(y).

NOTE

For reasons similar to those given in the note to 4.3.1, the symbols u.(y) and ug(y) are used in all cases.

18
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5.1.2 The combined standard uncertainty u.(y) is the positive square root of the combined variance ug(y),
which is given by
2
2
[ )

)

i=1
where f'is the function given in Equation (1). Each u(x;) is a standard uncertainty evaluated as described in 4.2
(Type A evaluation) or as in 4.3 (Type B evaluation). The combined standard uncertainty u.(y) is an estimated
standard deviation and characterizes the dispersion of the values that could reasonably be attributed to the

a

- X

(10)

measurand Y (see 2.2.3).

Equatio 3 partforco =1% - 0 share based on a
first-order Taylor series approximation of Y= f(X,, X5, ..., Xy), express what is termed in this-Guide the law of
propagdtion of uncertainty (see E.3.1 and E.3.2).
NOTE When the nonlinearity of fis significant, higher-order terms in the Taylor series.expansion must be included in
the exprgssion for ug(y), Equation (10). When the distribution of each X; is normal, the‘most important terms of next
highest grder to be added to the terms of Equation (10) are

N S ’ £ 32 2

ZL 5 |+ P (v )u (xj)

i=1 =1 - X Xj .Xi'xi xj
See H.1 for an example of a situation where the contribution of higher<order terms to ug(y) needs to be ¢onsidered.
5.1.3 [The partial derivatives df/ox; are equal to df/dX;<evaluated at X;=x; (see Note 1| below). These
derivatiyes, often called sensitivity coefficients, describe ‘fiow the output estimate y varies wit changes in the
values of the input estimates xq, x,, ..., x). In particular, the change in y produced by a small change . x; in
input estimate x; is given by (. y); = (df/ox;)(. x;). lfthis change is generated by the standard upcertainty of the
estimate x;, the corresponding variation in y is«{df/dx,)u(x;). The combined variance ug(y) can therefore be
viewed @s a sum of terms, each of which.represents the estimated variance associated |with the output
estimatg y generated by the estimated variance associated with each input estimate x,. This $uggests writing
Equation (10) as

2 S 2 <o
ug ()= [em(x;)]" =D i) (11a)
i=1 i<l

where

c; ::.f/.xi, ui(y)=|cl~|u(xi) (11b)
NOTE 1 Strictly.speaking, the partial derivatives are df/dx; = 9f/dX; evaluated at the expectations of the X;. However, in
practice, [the partial derivatives are estimated by

VAIRNA

. xi Xl | X1 x x

15 X250, Xy
NOTE 2  The combined standard uncertainty us(y) may be calculated numerically by replacing c;u(x;) in Equation (11a)
with
1
Z; :E{f[aq, o X u(x;), xN]—f[)q, o X = (x;), xNJ}

That is, u;(y) is evaluated numerically by calculating the change in y due to a change in x; of +u(x;) and of —u(x;). The value

of u;(y)

may then be taken as | Z,-| and the value of the corresponding sensitivity coefficient ¢; as Z;/u(x;).

© ISO/IEC 2008 — All rights reserved
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EXAMPLE For the example of 4.1.1, using the same symbol for both the quantity and its estimate for simplicity of
notation,

er=-Pl.v=2v/{Ro[1+a(t-1) ]| = 2PV

= P/. Ro = _VZ/{Rg [1+a(t-10) ]} =-P/Ro

C3=.P/.a=

—Vz(t—to)/{RO [1+a(r—t0)]2} =—P(t-10)/[1+a(t-1)]

cy :.P/, t :—Vza/{RO [1+a(t—t0)J2} = —Pa/[1+a(r—t0)]

and
2 2 2 2
uz(P)z(:—l;;J u2(V)+[%] uz(R0)+[%J u2(a)+(§j ¥ ()
2 2 2 2

=[c1z (V)] +[02u(R0)J +|:C3M(0{)} +[c4u(t)J

=uf (P)+uf (P)+ud (P)+uf (P)
5.1.4 |Instead| of being calculated from the function f, sensitivity coefficients df/dx; are sometimes
determined experimentally: one measures the change in Y produced by acchange in a particular |X; while

holding the rem
when only seve
Taylor series eX

5.1.5 |If Equa

ral sensitivity coefficients are so determined) is accordingly)reduced to an empirical fi
pansion based on the measured sensitivity coefficients:

ion (1) for the measurand Y is expanded about hiominal values X; 5 of the input quan

aining input quantities constant. In this case, the knowledge ofthe function f (or a poftion of it

rst-order

tities X,

then, to first order (which is usually an adequate approximation), Y=Y, + ¢4 5‘1 +cp0p +... + ¢y 0y, Where
Yo =/f(Xq,0, X0 -+ Xy 0)s ¢;=(9f/0X;) evaluated at X; =X, gi7and 6, = X; - X; o. Thus, for the purposgs of an
analysis of ungertainty, a measurand is usually approximated by a linear function of its varigbles by
transforming its input quantities from X; to o, (see E.3.1).

EXAMPLE -rom  Example 2 of 4.3.7, the estimate of the value of the measurand 7 is V_::l7+. v,
where V' =0,928(571V, u(V)=12pV, the additivecorrection . V= 0, and u(. V)= 8,7pV. Since .V/ V[=1, and
. VI (. V)=1, the combined variance associated with V'is given by

u2()=u?(7)+u?(. 7)=(12uV)° +(87uV)* =219 10712 v2

and the combine
uc(V)/vVof 16 - 1
quantities on whig
if the constants ¢;

516 |IfYiso
having negligibl

D6 (see 5.1.6). This)is an example of the case where the measurand is already a linear funct
h it depends,with coefficients ¢; = +1. It follows from Equation (10) that if ¥ = c1Xy + coXp +... +
=+1or -1, 80en u3(y)=> Xyu?(x)).

f the(form Y = cX/1X52.. X{¥ and the exponents p; are known positive or negative
b.(incertainties, the combined variance, Equation (10), can be expressed as

| standard uncertainty)is uc(7) =15 pV, which corresponds to a relative combined standard ufcertainty

on of the
yXy and

humbers

[”c (y)/sz

S )

i=1

(12)

This is of the same form as Equation (11a) but with the combined variance ug(y) expressed as a relative
combined variance [uc(y)/y]2 and the estimated variance uz(xl-) associated with each input estimate expressed
as an estimated relative variance [u(xi)/xi]z. [The relative combined standard uncertainty is uc(y)/l y| and the
relative standard uncertainty of each input estimate is u(x,)/| x;|, || . 0and |x,| . 0.

NOTE 1 When Y has this form, its transformation to a linear function of variables (see 5.1.5) is readily achieved by
setting X; = X; o(1 + &), for then the following approximate relation results: (Y—Yy)/Yy = Z i]\; p; 6;. On the other hand, the
logarithmic transformation Z=InY and W,=InX; leads to an exact linearization in terms of the new variables:
Z=In c+z ,]-\;1piW,--
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NOTE 2  If each p; is either +1 or —1, Equation (12) becomes [uc(y)/y]z = f\; [u(xl-)/xi]z, which shows that, for this
special case, the relative combined variance associated with the estimate y is simply equal to the sum of the estimated
relative variances associated with the input estimates x;.

5.2 Correlated input quantities

5.2.1 Equation (10) and those derived from it such as Equations (11a) and (12) are valid only if the input
quantities X; are independent or uncorrelated (the random variables, not the physical quantities that are
assumed to be invariants — see 4.1.1, Note 1). If some of the X; are significantly correlated, the correlations
must be taken into account.

5.2.2 d d,variance ug(y)
associated W|th the result of a measurement is

2
N N : N : N-1 N
2 S S o2 S-S
ug y)=zz— u(xi,xj)ZZ(—) u (xi)+2 z — u(x,-,xj) (13)
i=1 =i X =\ X i=1 =it Ni Y
where xf and x; are the estimates of .x; and X; and u(x;, x)— u(x;, x;) is the estimated covariance associated

with x; and x The degree of correlatlon between X; and X; is characterlzed by the estimated correlation
coefflm ent (é

r(Xﬂ,-FM (14)

i xj)= 0,and a
3.7 for further

where r{x;, x)— r(x x;), and =1 < r(x;, x) < +1. If the estimates x; and x; are independent, »(k
change [in one does not imply an expected change,in the other. (See C.2.8, C.3.6, and (.
discussipn.)

In termq of correlation coefficients, which aremore readily interpreted than covariances, the govariance term
of Equation (13) may be written as

2% 3 L L atalo ) (19

il j=i+1" Yj

Equatiofn (13) then becomes, with the aid of Equation (11b),

N

ug|y) = +22 Z ciCj u ( j)r(x,,xj) (16)

i=1 j=i+1

I\
a

NOTE 1 Far jthe very special case where all of the input estimates are correlated with correlation coefficients
r(x;, x;) =|+I¥Equation (16) reduces to

] 2 2
:[;%u(x,):l

N

ug(y)z{z:ciu(xi)

i=1

The combined standard uncertainty uc(y) is thus simply a linear sum of terms representing the variation of the output
estimate y generated by the standard uncertainty of each input estimate x; (see 5.1.3). [This linear sum should not be
confused with the general law of error propagation although it has a similar form; standard uncertainties are not errors
(see E.3.2).]
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EXAMPLE Ten resistors, each of nominal resistance R;=1000. , are calibrated with a negligible uncertainty of
comparison in terms of the same 1 000 . standard resistor Ry characterized by a standard uncertainty u(Rs) =100 m. as
given in its calibration certificate. The resistors are connected in series with wires having negligible resistance in order to
obtain a reference resistance R¢s of nominal value 10 k. . Thus R = f(R;) = ,1»21R,». Since r(x;, x;) = r(R;, R;) = +1 for
each resistor pair (see F.1.2.3, Example 2), the equation of this note applies. Since for each resistor df/dx; = dRe/OR; = 1,
and u(x;) = u(R;) = u(Rs) (see F.1.2.3, Example 2), that equatlon yields for the comblned standard uncertainty of R,

C(Rref)—z ,101u( R,)=10- (100 m. )=1. . The result uy(R ) = [Z 201 u?(R } 2_ 0,32. obtained from Equation (10)
is incorrect because it does not take into account that all of the calibrated values of the ten resistors are correlated.

NOTE 2  The estimated variances u2(x;) and estimated covariances u(x;, x ;) may be considered as the elements of a
covariance matrix with elements ;. The diagonal elements u;; of the matrix are the variances u2(x;), while the off-diagonal
elements u;(i. jlare the covarances w(v, v)=w(c. v,) If two input estimates are uncaorrelated_ their associated
covariance and the corresponding elements u; and u; of the covariance matrix are 0. If the input estimatgs are all
uncorrelated, all of the off-diagonal elements are zero and the covariance matrix is diagonal. (See also C.3.5))

NOTE 3  For the purposes of numerical evaluation, Equation (16) may be written as

N
b (v)=2 02,2 (%1 x;)
i=1 =1

where Z; is given |n 5.1.3, Note 2.

NOTE 4 If the LX; of the special form considered in 5.1.6 are correlated, then the terms

25 3 [t [l ] ()

i=1 j=i+1

must be added to|the right-hand side of Equation (12).

5.2.3 Consider two arithmetic means ¢ and r that estimate the expectations % and o, of two randomly
varying quantities ¢ and r, and let ¢ and r be calculated from n independent pairs of simultaneous
observations of|¢g and » made under the same conditions of measurement (see B.2.15). Then the coyariance
(see C.3.4) of ¢q and 7 is estimated by

(@)= Y =) 7) (1)

n k=1

where ¢, and r;|are the individual observations of the quantities g and » and ¢ and 7 are calculated from the
observations adcording to Equation”(3). If in fact the observations are uncorrelated, the calculated coyariance
is expected to be near 0.

Thus the estimated covariance of two correlated input quantities X; and X; that are estimated by the means
X and X de termmed frgm independent pairs of repeated S|multaneous observations is gjven by
.), with s (X;, X ;) calculated accordlng to Equatlon (_) This apphca’uon of Equation (17) is
s : imed from

Equation(ﬁ):r(xi,xj)=r()_(i, j)=s( g j)/[s(x,.)s(xj)].

NOTE Examples where it is necessary to use covariances as calculated from Equation (17) are given in H.2 and H.4.

5.2.4 There may be significant correlation between two input quantities if the same measuring instrument,
physical measurement standard, or reference datum having a significant standard uncertainty is used in their
determination. For example, if a certain thermometer is used to determine a temperature correction required in
the estimation of the value of input quantity X;, and the same thermometer is used to determine a similar
temperature correction required in the estimation of input quantity XJ the two input quantities could be
significantly correlated. However, if X; and X; in this example are redefined to be the uncorrected quantities
and the quantities that define the calibration curve for the thermometer are included as additional input
quantities with independent standard uncertainties, the correlation between X; and Xj is removed. (See F.1.2.3
and F.1.2.4 for further discussion.)
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5.2.5 Correlations between input quantities cannot be ignored if present and significant. The associated
covariances should be evaluated experimentally if feasible by varying the correlated input quantities (see
C.3.6, Note 3), or by using the pool of available information on the correlated variability of the quantities in
question (Type B evaluation of covariance). Insight based on experience and general knowledge (see 4.3.1
and 4.3.2) is especially required when estimating the degree of correlation between input quantities arising
from the effects of common influences, such as ambient temperature, barometric pressure, and humidity.
Fortunately, in many cases, the effects of such influences have negligible interdependence and the affected
input quantities can be assumed to be uncorrelated. However, if they cannot be assumed to be uncorrelated,
the correlations themselves can be avoided if the common influences are introduced as additional
independent input quantities as indicated in 5.2.4.

6 De

ade - e
uriceriairity

6.1 Introduction

6.1.1
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approvir
uncertai
Indeed,
standarg
other wq

6.1.2
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expecte

Recommendation INC-1 (1980) of the Working Group on the Statement oftyncertainti
5 based (see the Introduction), and Recommendations 1 (CI-1981)-and 1 (CI-198¢
g and reaffirming INC-1 (1980) (see A.2 and A.3), advocate the,‘use of the com
Nty u.(v) as the parameter for expressing quantitatively the uncertainty of the result of
in the second of its recommendations, the CIPM has requestedthat what is now te
i uncertainty u(y) be used “by all participants in giving the results of all international
rk done under the auspices of the CIPM and Comités Consuiltatifs”.

Although u.(v) can be universally used to express the)uncertainty of a measurement
cial, industrial, and regulatory applications, and.when health and safety are conce
ry to give a measure of uncertainty that defines an'interval about the measurement re
 to encompass a large fraction of the distribution of values that could reasonably be

measurand. The existence of this requirement was(recognized by the Working Group and led
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may be
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mmendation INC-1 (1980). It is also reflected in Recommendation 1 (CI-1986) of the C

Kpanded uncertainty

The additional measure of uncertainty that meets the requirement of providing an int
1 in 6.1.2 is termed expanded uncertainty and is denoted by U. The expanded |
by multiplying the combined standard uncertainty u.(y) by a coverage factor k:

kue(y)

LIt of a meaSurement is then conveniently expressed as Y=y * U, which is interpret
estimate-of the value attributable to the measurand Yis y, and that y— Uto y + U is
expected’ to encompass a large fraction of the distribution of values that could

d to (Y.)Such an interval is also expressedasy - U< Y <y + U.

es on which this
5) of the CIPM
bined standard
h measurement.
rmed combined
comparisons or

result, in some
rmed, it is often
sult that may be
attributed to the
to paragraph 5
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prval of the kind
ncertainty U is

(18)

bd to mean that
an interval that
reasonably be

6.2.2

) have specific

definitions in statistics and are only applicable to the interval defined by U when certain conditions are met,
including that all components of uncertainty that contribute to u.(y) be obtained from Type A evaluations. Thus,
in this Guide, the word “confidence” is not used to modify the word “interval” when referring to the interval
defined by U; and the term “confidence level” is not used in connection with that interval but rather the term
“level of confidence”. More specifically, U is interpreted as defining an interval about the measurement result
that encompasses a large fraction p of the probability distribution characterized by that result and its combined
standard uncertainty, and p is the coverage probability or level of confidence of the interval.

6.2.3 Whenever practicable, the level of confidence p associated with the interval defined by U should be
estimated and stated. It should be recognized that multiplying u.(») by a constant provides no new information
but presents the previously available information in a different form. However, it should also be recognized
that in most cases the level of confidence p (especially for values of p near 1) is rather uncertain, not only
because of limited knowledge of the probability distribution characterized by y and u.(y) (particularly in the
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extreme portions), but also because of the uncertainty of u(y) itself (see Note 2 to 2.3.5, 6.3.2, 6.3.3 and
Annex G, especially G.6.6).

NOTE

itis U, see 7.2.2 and 7.2.4, respectively.

6.3 Choosing a coverage factor

6.3.1

For preferred ways of stating the result of a measurement when the measure of uncertainty is uc(y) and when

The value of the coverage factor k is chosen on the basis of the level of confidence required of the

interval y — U to y + U. In general, k£ will be in the range 2 to 3. However, for special applications £ may be
outside this range. Extensive experience with and full knowledge of the uses to which a measurement result
will be put can facilitate the selection of a proper value of k.
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.4 and summarized in G.6.4. However;, a simpler approach, discussed in G.6.6,
easurement situations where the probability distribution characterized by y and
ormal and the effective degrees of freedom of u(y) is of significant size. When this is

occurs in practice, one can assume that taking £ =2 produces an interval having 4
Bpproximately 95 percent, , and- that taking £=3 produces an interval having a
pproximately 99 percent.

thod for estimating the_effective degrees of freedom of u(y) is given in G.4. Table G.2 of Ann
Elp decide if this solution is appropriate for a particular measurement (see G.6.6).
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7 Reporting uncertainty
7.1 General|guidance
711 In general, as one moves up the measurement hierarchy, more details are required on how a

measurement result and its uncertainty were obtained. Nevertheless, at any level of this hierarchy, including
commercial and regulatory activities in the marketplace, engineering work in industry, lower-echelon
calibration facilities, industrial research and development, academic research, industrial primary standards
and calibration laboratories, and the national standards laboratories and the BIPM, all of the information
necessary for the re-evaluation of the measurement should be available to others who may have need of it.
The primary difference is that at the lower levels of the hierarchical chain, more of the necessary information
may be made available in the form of published calibration and test system reports, test specifications,
calibration and test certificates, instruction manuals, international standards, national standards, and local
regulations.

7.1.2 When the details of a measurement, including how the uncertainty of the result was evaluated, are
provided by referring to published documents, as is often the case when calibration results are reported on a
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certificate, it is imperative that these publications be kept up-to-date so that they are consistent with the
measurement procedure actually in use.

7.1.3 Numerous measurements are made every day in industry and commerce without any explicit report of
uncertainty. However, many are performed with instruments subject to periodic calibration or legal inspection.
If the instruments are known to be in conformance with their specifications or with the existing normative
documents that apply, the uncertainties of their indications may be inferred from these specifications or from
these normative documents.

7.1.4 Although in practice the amount of information necessary to document a measurement result depends
on its intended use, the basic principle of what is required remains unchanged: when reporting the result of a
measurement and its uncertainty, it is preferable to err on the side of providing too much information rather

than toodittle—Forexample—one-should

a) describe clearly the methods used to calculate the measurement result and itscunceftainty from the
experimental observations and input data;

b) list pll uncertainty components and document fully how they were evaluated;

c) present the data analysis in such a way that each of its important steps Can be readily fpllowed and the
calgulation of the reported result can be independently repeated if necessary;

d) qive all corrections and constants used in the analysis and their sources.

A test of the foregoing list is to ask oneself “Have | provided enéugh information in a sufficienfly clear manner
that my fesult can be updated in the future if new informatiafy or data become available?”

7.2 Specific guidance

7.21 |When reporting the result of a measurement, and when the measure of uncertainty |s the combined
standard uncertainty u.(y), one should

a) give a full description of how the medsurand Y is defined;

b) give the estimate y of the measurand Y and its combined standard uncertainty u(y); the units of y and
u() should always be given;

c) include the relative combined standard uncertainty u,(»)/|»|, |»| . 0, when appropriate;
d) give the informatign-outlined in 7.2.7 or refer to a published document that contains it.

If it is gdeemed (useful for the intended users of the measurement result, for example, 1o aid in future
calculations ef‘Coverage factors or to assist in understanding the measurement, one may indicate

the lestimated effective degrees of freedom v g (see G.4);

the Type A and Type B combined standard uncertainties u.5(y) and u.g(») and their estimated effective
degrees of freedom vgs and vggg (see G.4.1, Note 3).

7.22 When the measure of uncertainty is u.(y), it is preferable to state the numerical result of the
measurement in one of the following four ways in order to prevent misunderstanding. (The quantity whose
value is being reported is assumed to be a nominally 100 g standard of mass mg; the words in parentheses
may be omitted for brevity if u is defined elsewhere in the document reporting the resuilt.)

1) “mg=100,021 47 g with (a combined standard uncertainty) u, = 0,35 mg.”

2) “mg=100,02147(35) g, where the number in parentheses is the numerical value of (the combined
standard uncertainty) u referred to the corresponding last digits of the quoted result.”

© ISO/IEC 2008 — All rights reserved 25


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUIDE 98-3:2008(E)

3) “mg=100,021 47(0,000 35) g, where the number in parentheses is the numerical value of (the combined
standard uncertainty) u. expressed in the unit of the quoted result.”

4) “mg=(100,021 47 + 0,000 35) g, where the number following the symbol * is the numerical value of (the
combined standard uncertainty) . and not a confidence interval.”

NOTE The * format should be avoided whenever possible because it has traditionally been used to indicate an

interval corresponding to a high level of confidence and thus may be confused with expanded uncertainty (see 7.2.4).
Further, although the purpose of the caveat in 4) is to prevent such confusion, writing Y=y u(y) might still be
misunderstood to imply, especially if the caveat is accidentally omitted, that an expanded uncertainty with k= 1 is intended
and that the interval y — u(y) < Y < y + uc(y) has a specified level of confidence p, namely, that associated with the normal

distribution (see G.1.3). As indicated in 6.3.2 and Annex G, interpreting uc(y) in this way is usually difficult to justify.

7.2.3 Whenr
uncertainty U =

a) givea fulld

b) state the re

c) include the

d) give the v3

uc(l;

e) give the a

determined;

f)
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“mg = (100,

expanded yncertainty) U = kug, with Ohdetermined from (a combined standard uncertainty) u; =

and (a cov
interval est

eporting the result of a measurement, and when the measure of uncertainty Is the-g
fcu (), one should

escription of how the measurand Y is defined;
sult of the measurement as Y=y = U and give the units of y and U;
relative expanded uncertainty U/|y|, |»| . 0, when appropriate;

lue of k used to obtain U [or, for the convenience of the user/of the result, give bo

pproximate level of confidence associated with the)interval y+ U and state how

brmation outlined in 7.2.7 or refer to a published*document that contains it.

he measure of uncertainty is U, it is preferable, for maximum clarity, to state the n
asurement as in the following exampley (The words in parentheses may be omitted fg
021 47 £ 0,000 79) g, where the number following the symbol + is the numerical vall

prage factor) k= 2,26 based on the rdistribution for v =9 degrees of freedom, and dg
mated to have a levelof confidence of 95 percent.”

panded

h k and

it was

Limerical

r brevity

e of (an
0,35 mg
fines an

5 two or
variance
2) (and

7.2.5 If a measurement detefmines simultaneously more than one measurand, that is, if it provide]
more output esfimates y; (see'H.2, H.3, and H.4), then, in addition to giving y; and u(y,), give the co
matrix elements u(y;, yj) or/the elements r(y;, yj) of the correlation coefficient matrix (C.3.6, Notg
preferably both).

7.26 The nu tainty U

efical values of the estimate y and its standard uncertainty u.(y) or expanded unce
should not be gwwmwmw@mﬂ Il as the

standard uncertainties u(x;) of the input estimates x;] to at most two significant digits, although in some cases it
may be necessary to retain additional digits to avoid round-off errors in subsequent calculations.

In reporting final results, it may sometimes be appropriate to round uncertainties up rather than to the nearest
digit. For example, u(y) = 10,47 m. might be rounded up to 11 m. . However, common sense should prevail
and a value such as u(x;) = 28,05 kHz should be rounded down to 28 kHz. Output and input estimates should
be rounded to be consistent with their uncertainties; for example, if y=10,057 62. with u.(y)=27m. ,
y should be rounded to 10,058 . . Correlation coefficients should be given with three-digit accuracy if their
absolute values are near unity.
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7.2.7 In the detailed report that describes how the result of a measurement and its uncertainty were
obtained, one should follow the recommendations of 7.1.4 and thus

a) give the value of each input estimate x; and its standard uncertainty u(x;) together with a description of
how they were obtained;

b) give the estimated covariances or estimated correlation coefficients (preferably both) associated with all
input estimates that are correlated, and the methods used to obtain them;

c) give the degrees of freedom for the standard uncertainty of each input estimate and how it was obtained;

d) give the functional relationship Y=f(X;, X,, ..., X)) and, when they are deemed useful, the partial
derivatives—or-sensitivity-coetfieients—oHox chcwr, any-such—ecoefficients—determined experimentally
shauld be given.

NOTE Since the functional relationship f'may be extremely complex or may not exist explicitly-but only as a computer

program, it may not always be possible to give fand its derivatives. The function f may then be described in general terms
or the program used may be cited by an appropriate reference. In such cases, it is important that it |be clear how the

estimate |y of the measurand Y and its combined standard uncertainty u(y) were obtained.

8

Summary of procedure for evaluating and expressing ‘uncertainty

The steps to be followed for evaluating and expressing the uncertainty of the result of a njeasurement as

presentgd in this Guide may be summarized as follows:

1)

Exgress mathematically the relationship between the.measurand Y and the input quantities .X; on which
Ydgpends: Y= f(X;, X, ..., Xy). The function f'should contain every quantity, including all[corrections and
corfection factors, that can contribute a significant component of uncertainty to the result of the
measurement (see 4.1.1 and 4.1.2).

Determine x;, the estimated value of input quantity X;, either on the basis of the statisfical analysis of
series of observations or by other means (see 4.1.3).

Evgluate the standard uncertainty u(x;) of each input estimate x;. For an input estimate obtained from the
stafjstical analysis of series(ofi'0observations, the standard uncertainty is evaluated as described in 4.2
(Type A evaluation of standard uncertainty). For an input estimate obtained by other means, the standard
ungertainty u(x;) is evaluated as described in 4.3 (Type B evaluation of standard uncertainty).

Evdluate the covariances associated with any input estimates that are correlated (see 5.2).

Caltulate the~tesult of the measurement, that is, the estimate y of the measurand Y, from the functional
relgtionshipyf-Gsing for the input quantities X; the estimates x; obtained in step 2 (see 4.1.4)).

Determine the combined standard uncertainty uy(y) of the measurement result y from the standard
uncertamties and covariances associated wWith the nput estimates, as described In Clause 5. If the
measurement determines simultaneously more than one output quantity, calculate their covariances (see
7.2.5,H.2,H.3, and H.4).

If it is necessary to give an expanded uncertainty U, whose purpose is to provide an interval y — U to
y+ U that may be expected to encompass a large fraction of the distribution of values that could
reasonably be attributed to the measurand Y, multiply the combined standard uncertainty u(y) by a
coverage factor k, typically in the range 2 to 3, to obtain U = ku.(y). Select k on the basis of the level of
confidence required of the interval (see 6.2, 6.3, and especially Annex G, which discusses the selection of
a value of £, that produces an interval having a level of confidence close to a specified value).

Report the result of the measurement y together with its combined standard uncertainty u () or expanded
uncertainty U as discussed in 7.2.1 and 7.2.3; use one of the formats recommended in 7.2.2 and 7.2.4.
Describe, as outlined also in Clause 7, how y and u.(y) or U were obtained.
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Annex A

Recommendations of Working Group and CIPM

A.1 Recommendation INC-1 (1980)

The Working Group on the Statement of Uncertainties (see Foreword) was convened in October 1980 by the
Bureau International des Poids et Mesures (BIPM) in response to a request of the Comité International des

Poids et Mesur
Recommendatiq
Guide and the H

Expression

Recomma

1) L'incer
étre gr

A. ce¢
B. ce¢

lIn'ya

caractére «aléatoire» ou «systématique» utilisé™ antérieurement pour classer les incs

L'exprg
elle do

Toute
compo

2) Les cq
«écart{
estimé

3) Lesco
consid
Les te
Le cas

es (CIPM). It prepared a detailed report for consideration by the CIPM that conclu
n INC-1(1980) [2]. The English translation of this Recommendation is given _.ifn 0]
rench text, which is authoritative, is as follows [2]:

des incertitudes expérimentales
ndation INC-1 (1980)

itude d'un résultat de mesure comprend généralement plusieurs composantes qui
bupées en deux catégories d'aprés la méthode utilisée pour estimer leur valeur numeér

lles qui sont évaluées a l'aide de méthodes statistiques;
lles qui sont évaluées par d'autres moyens.
pas toujours une correspondance simple entre le classement dans les catégories A o

ssion «incertitude systématique» est susceptible de conduire a des erreurs d'interp
t étre évitée.

description détaillée de lincertitude devrait comprendre une liste compléte
santes et indiquer pour chacuhe la méthode utilisée pour lui attribuer une valeur numé
mposantes de la catégorie A sont caractérisées par les variances estimées s,~2
types» estimés s;) et\les nombres v, de degrés de liberté. Le cas échéant, les cov
es doivent étre données.

mposantes de\la catégorie B devraient étre caractérisées par des termes uj2 qui puiss
Brés comme des approximations des variances correspondantes dont on admet l'e
mes uj2 peuvent étre traités comme des variances et les termes u; comme des écar
échéant, les covariances doivent étre traitées de fagcon analogue.

led with
¥ of this

peuvent
que:

U B etle
rtitudes.
rétation;

de ses
rique.

(ou les
ariances

sent étre
istence.
s-types.

4) L'incer

ftodeCompoUsee devrait etrecaracterisee par ta vateur obtenue em apptiquarnt ta

néthode

usuelle de combinaison des variances. L'incertitude composée ainsi que ses composantes devraient
étre exprimées sous la forme d'«écart-types».

5) Si pour des utilisations particulieres on est amené a multiplier par un facteur l'incertitude composée
afin d'obtenir une incertitude globale, la valeur numérique de ce facteur doit toujours étre donnée.
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A.2 Recommendation 1 (CI-1981)

The CIPM reviewed the report submitted to it by the Working Group on the Statement of Uncertainties and
adopted the following recommendation at its 70th meeting held in October 1981 [3]:

Recommendation 1 (CI-1981)
Expression of experimental uncertainties
The Comité International des Poids et Mesures

considering

the need to find an agreed way of expressing measurement uncertainty in metrology,
the effort that has been devoted to this by many organizations over many years;

the encouraging progress made in finding an acceptable solution, which has repulted from the
discussions of the Working Group on the Expression of Uncertainties.which met at BIPM in 1980,

recpgnizes

that the proposals of the Working Group might form the\basis of an eventual agfeement on the
expression of uncertainties,

recommends
that the proposals of the Working Group be diffused widely;

that BIPM attempt to apply the principles therein to international comparisons carried out under its
auspices in the years to come;

that other interested organizations be encouraged to examine and test these propogals and let their
comments be known to BIPM;

that after two or three years BIPM report back on the application of these proposals.

A.3 Recommendation 1 (CI-1986)

The CIAM further considered the matter of the expression of uncertainties at its 75th meeting|held in October
1986 and adopted the following recommendation [4]:

Regommendation 1 (C1-1986)

Expression of uncertainties in work carried out under the auspices of the CIPM
The Comité International des Poids et Mesures,

considering the adoption by the Working Group on the Statement of Uncertainties of
Recommendation INC-1 (1980) and the adoption by the CIPM of Recommendation 1 (CI-1981),

considering that certain members of Comités Consultatifs may want clarification of this Recommendation
for the purposes of work that falls under their purview, especially for international comparisons,
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recognizes that paragraph 5 of Recommendation INC-1 (1980) relating to particular applications,
especially those having commercial significance, is now being considered by a working group of the
International Standards Organization (ISO) common to the ISO, OIML and IEC, with the concurrence and
cooperation of the CIPM,

requests that paragraph 4 of Recommendation INC-1 (1980) should be applied by all participants in
giving the results of all international comparisons or other work done under the auspices of the CIPM and
the Comités Consultatifs and that the combined uncertainty of type A and type B uncertainties in terms of
one standard deviation should be given.
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Annex B

General metrological terms

B.1 Source of definitions

The definitions of the general metrological terms relevant to this Guide that are given here have been taken
from the International vocabulary of basic and general terms in metrology (abbreviated VIM), second edition,
1993* [6], published by the International Organization for Standardization (ISO), in the nanme of the seven
organizgtions that supported its development and nominated the experts who prepared| it: the Bureau
International des Poids et Mesures (BIPM), the International Electrotechnical Gommission (IEC), the
International Federation of Clinical Chemistry (IFCC), I1SO, the International Union-"of Pure and Applied
Chemisfry (IUPAC), the International Union of Pure and Applied Physics (IUPAP), and the International
Organization of Legal Metrology (OIML). The VIM should be the first source.consulted for the definitions of
terms not included either here or in the text.

NOTE Some basic statistical terms and concepts are given in Annex C,(while the terms “true value”, “error”, and
“uncertainty” are further discussed in Annex D.

B.2 Definitions

As in Clause 0, in the definitions that follow, the use of parentheses around certain words| of some terms
means that the words may be omitted if this is unlikely. to cause confusion.

The terms in boldface in some notes are additional’ metrological terms defined in those notes| either explicitly
or impligitly (see Reference [6]).

B.2.1
(measufable) quantity
attributel of a phenomenon, body\er substance that may be distinguished qualitatively and determined
quantitafively

NOTE 1 The term quantity’may refer to a quantity in a general sense (see Example 1) or to a particylar quantity (see
Example(2).

EXAMPLE 1 Quantities in a general sense: length, time, mass, temperature, electrical resistance, amount-of-substance
concentration.

EXAMPLE 2 Particular quantities:

— lendthef a given rod

— electrical resistance of a given specimen of wire

— amount-of-substance concentration of ethanol in a given sample of wine.

NOTE 2  Quantities that can be placed in order of magnitude relative to one another are called quantities of the same
kind.

*  Footnote to the 2008 version:

The third edition of the vocabulary was published in 2007, under the title ISO/IEC Guide 99, International vocabulary of
metrology — Basic and general concepts and associated terms (VIM).
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NOTE 3  Quantities of the same kind may be grouped together into categories of quantities, for example:
— work, heat, energy
— thickness, circumference, wavelength.

NOTE 4  Symbols for quantities are given in ISO 317,
[VIM:1993, definition 1.1]
B.2.2

value (of a quantity)
magnitude of a particular quantity generally expressed as a unit of measurement multiplied by a number

EXAMPLE 1 [engtiy of a rod: 9,34 m or 534 CI.

EXAMPLE 2 Mass of a body: 0,152 kg or 152 g.

EXAMPLE 3 Amount of substance of a sample of water (H,O): 0,012 mol or 12 mmol.
NOTE 1 The vialue of a quantity may be positive, negative or zero.

NOTE 2  The value of a quantity may be expressed in more than one way.

NOTE 3  The values of quantities of dimension one are generally expressed as pure-numbers.

NOTE 4 A quantity that cannot be expressed as a unit of measurement multiplied by a number may be expressed by
reference to a copventional reference scale or to a measurement procedure orto both.

[VIM:1993, definition 1.18]

B.2.3
true value (of g quantity)
value consistent with the definition of a given particular,quantity

NOTE 1 This is a value that would be obtained by a-perfect measurement.
NOTE 2  True yalues are by nature indeterminate:

NOTE 3 The indefinite article “a”, rather.than the definite article “the”, is used in conjunction with “true value” because
there may be ma:[y values consistent with\the definition of a given particular quantity.

[VIM:1993, defipition 1.19]

Guide Comment: See Annéx.D, in particular D.3.5, for the reasons why the term “true value” is not used in this
Guide and why|the terms ftrue value of a measurand” (or of a quantity) and “value of a measurand’| (or of a
quantity) are vigwed,as equivalent.

B.2.4
conventional true value (of a quantity)

value attributed to a particular quantity and accepted, sometimes by convention, as having an uncertainty
appropriate for a given purpose

EXAMPLE 1 At a given location, the value assigned to the quantity realized by a reference standard may be taken as
a conventional true value.

EXAMPLE 2 The CODATA (1986) recommended value for the Avogadro constant: 6,022 136 7 - 1023 mol™".

*

Footnote to the 2008 version:

The ISO 31 series is under revision as a series of ISO 80000 and IEC 80000 documents. (Some of these documents have
already been published.)
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NOTE 1 “Conventional true value” is sometimes called assigned value, best estimate of the value, conventional
value or reference value. “Reference value”, in this sense, should not be confused with “reference value” in the sense
used in the Note to VIM:1993, definition 5.7.

NOTE 2 Frequently, a number of results of measurements of a quantity is used to establish a conventional true value.
[VIM:1993, definition 1.20]

Guide Comment: See the Guide Comment to B.2.3.

B.2.5
measurement
set of operations having the object of determining a value of a quantity

NOTE The operations may be performed automatically.
[VIM:1993, definition 2.1]

B.2.6
principle of measurement
scientifi¢ basis of a measurement

EXAMPLE 1 The thermoelectric effect applied to the measurement of temperature.

EXAMPLE 2 The Josephson effect applied to the measurement ofélectric potential difference.
EXAMPLE 3 The Doppler effect applied to the measurement ofivelocity.

EXAMPLE 4 The Raman effect applied to the measurement of the wave number of molecular vibratigns.
[VIM:1993, definition 2.3]

B.2.7
method of measurement
logical sequence of operations, described generically, used in the performance of measurements

NOTE Methods of measurement.may be qualified in various ways such as:
— substitution method
— diffgrential method

— nulljmethod.
[VIM:1993, definition 2.4]

B.2.8
measurgment procedure
set of operations, described specifically, used in the performance of particular measurements according to a
given method

NOTE A measurement procedure is usually recorded in a document that is sometimes itself called a “measurement
procedure” (or a measurement method) and is usually in sufficient detail to enable an operator to carry out a
measurement without additional information.

[VIM:1993, definition 2.5]
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B.2.9
measurand

particular quantity subject to measurement

EXAMPLE

NOTE
pressure.

Vapour pressure of a given sample of water at 20 °C.

[VIM:1993, definition 2.6]

B.2.10

influence quantity

The specification of a measurand may require statements about quantities such as time, temperature and

quantity that is Mot the measurand but that affects the result of the measurement

EXAMPLE 1
EXAMPLE 2

EXAMPLE 3
plasma.

Temperature of a micrometer used to measure length.

Frequency in the measurement of the amplitude of an alternating electric potential difference.

Bilirubin concentration in the measurement of haemoglobin concentration/in~a sample of huni

[VIM:1993, definpition 2.7]

Guide Comme
measurement s
may depend, ag
as ambient tem

B.2.11

nt: The definition of influence quantity is understoed 1o include values associa
tandards, reference materials, and reference data_dpon which the result of a meas
well as phenomena such as short-term measuringinstrument fluctuations and quantit
perature, barometric pressure and humidity.

result of a measurement

value attributed

NOTE 1 Wher
— the indicatio
the uncorreg

the correcte

and whether sevg

NOTE 2 A co
measurement.

to a measurand, obtained by measurement

a result is given, it should be made«¢lear whether it refers to:
1
ted result
I result

ral values are averaged.

mplete statement” of the result of a measurement includes information about the unce

[VIM:1993, definition-3:1]

an blood

ed with
urement
es such

tainty of

B.2.12

uncorrected re

sult

result of a measurement before correction for systematic error

[VIM:1993, definition 3.3]

B.2.13
corrected resu

It

result of a measurement after correction for systematic error

[VIM:1993, definition 3.4]
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B.2.14

accuracy of measurement

closeness of the agreement between the result of a measurement and a true value of the measurand
NOTE 1 “Accuracy” is a qualitative concept.

NOTE 2  The term precision should not be used for “accuracy’.

[VIM:1993, definition 3.5]

Guide Comment: See the Guide Comment to B.2.3.

B.2.15
repeatability (of results of measurements)
closeness of the agreement between the results of successive measurements of the same.mdasurand carried
out undgr the same conditions of measurement

NOTE 1 These conditions are called repeatability conditions.

NOTE 2| Repeatability conditions include:

— the pame measurement procedure

— the pame observer

— the pame measuring instrument, used under the same conditions
— the pame location

— repetition over a short period of time.

NOTE 3| Repeatability may be expressed quantitatively in‘terms of the dispersion characteristics of the results.
[VIM:1993, definition 3.6]

B.2.16
reprodycibility (of results of measurements)
closeness of the agreement between.theresults of measurements of the same measurand carried out under
changed conditions of measurement

NOTE 1 A valid statement of reproducibility requires specification of the conditions changed.

NOTE 2| The changed conditions may include:
— pringiple of measurément

— method of measurement

— observer

— meagsuring-instrument

— refekence-standard

— location
— conditions of use

— time.
NOTE 3 Reproducibility may be expressed quantitatively in terms of the dispersion characteristics of the results.

NOTE 4  Results are here usually understood to be corrected results.

[VIM:1993, definition 3.7]

© ISO/IEC 2008 — Al rights reserved 35


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUIDE 98-3:2008(E)

B.2.17
experimental s

tandard deviation

for a series of n» measurements of the same measurand, the quantity s(q,) characterizing the dispersion of the

results and give

n by the formula:

q; being the result of the kth measurement and g being the arithmetic mean of the » results considered

NOTE 1

and s2(¢,) is an uibiased estimate of the variance ¢2, of that distribution.

NOTE 2 The 4

experimental stgndard deviation of the mean.

NOTE3  “Expq

NOTE4  Adap

Guide Commen

with the notation used in 4.2 of this Guide.

B.2.18

uncertainty (of|
parameter, ass(
could reasonab

NOTE 1 The §
interval having a

NOTE 2 Unce
evaluated from

evaluated from ag

NOTE 3 Itis

corrections and r¢g

[VIM:1993, defitition 3.9]

Guide Commer]
Guide (see 2.2.]

Considering the series of n values as a sample of a distribution, g is an unbiased estimate of the mean o,

xpression s(qk)/JZ is an estimate of the standard deviation of the distribution of ¢ @and is d

rimental standard deviation of the mean” is sometimes incorrectly called standard)error of the

ed from VIM:1993, definition 3.8.

t: Some of the symbols used in the VIM have been changed-in order to achieve con

measurement)
pciated with the result of a measurement, that characterizes the dispersion of the va
y be attributed to the measurand

arameter may be, for example, a standard deviation (or a given multiple of it), or the half-wi
stated level of confidence.

[tainty of measurement comprises, in~general, many components. Some of these component

sumed probability distributions\based on experience or other information.

ference standards, ¢ontribute to the dispersion.

t: It jsSpointed out in the VIM that this definition and the notes are identical to thos

B).

alled the

mean.

sistency

ues that

dth of an

5 may be

he statistical distribution of the results of series of measurements and can be charactgrized by
experimental stagdard deviations. The other components, which can also be characterized by standard devia

ions, are

nderstood that the result.of the measurement is the best estimate of the value of the measufand, and
that all components of uncertainty, inCluding those arising from systematic effects, such as components associ

ated with

e in this

B.2.19

error (of measurement)
result of a measurement minus a true value of the measurand

NOTE 1

definitions 1.19 (B.2.3) and 1.20 (B.2.4)].

NOTE 2
of measurement

. This should not be confused with absolute value of error, which is the modulus of the error.

[VIM:1993, definition 3.10]

Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993,

When it is necessary to distinguish “error” from “relative error”, the former is sometimes called absolute error
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Guide Comment: If the result of a measurement depends on the values of quantities other than the
measurand, the errors of the measured values of these quantities contribute to the error of the result of the
measurement. Also see the Guide Comment to B.2.22 and to B.2.3.

B.2.20
relative error
error of measurement divided by a true value of the measurand

NOTE Since a true value cannot be determined, in practice a conventional true value is used [see VIM:1993,
definitions 1.19 (B.2.3) and 1.20 (B.2.4)].

[VIM:1993, definition 3.12]

Guide Gomment: See the Guide Comment to B.2.3.
B.2.21
random error
result of a measurement minus the mean that would result from an infinite numbéer of measpurements of the
same masurand carried out under repeatability conditions

NOTE 1 Random error is equal to error minus systematic error.

NOTE 2| Because only a finite number of measurements can be made; it\is’possible to determine only an estimate of
random error.

[VIM:1993, definition 3.13]

Guide Jomment: See the Guide Comment to B.2.22.
B.2.22
systematic error
mean that would result from an infinite number of measurements of the same measurand carried out under
repeatability conditions minus a true value of‘the measurand

NOTE 1 Systematic error is equal to errr minus random error.

NOTE 2 Like true value, systematie-error and its causes cannot be completely known.
NOTE 3| For a measuring instrument, see “bias” (VIM:1993, definition 5.25).
[VIM:1993, definition 3:14]

Guide Qomment:_The error of the result of a measurement (see B.2.19) may often be consiiered as arising

from a numberof random and systematic effects that contribute individual components of err¢r to the error of
the resujt. Alse see the Guide Comment to B.2.19 and to B.2.3.

B.2.23

correction

value added algebraically to the uncorrected result of a measurement to compensate for systematic error
NOTE 1 The correction is equal to the negative of the estimated systematic error.

NOTE 2  Since the systematic error cannot be known perfectly. the compensation cannot be complete.

[VIM:1993, definition 3.15]
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B.2.24

correction factor

numerical factor by which the uncorrected result of a measurement is multiplied to compensate for systematic
error

NOTE Since the systematic error cannot be known perfectly, the compensation cannot be complete.

[VIM:1993, definition 3.16]
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Annex C

Basic statistical terms and concepts

C.1 Source of definitions

The definitions of the basic statistical terms given in this annex are taken from International Standard
ISO 3534-1:1993* [7]. This should be the first source consulted for the definitions of terms not included here.

Some o
their for|
includeg

f these terms and their underlying concepts are elaborated upon in C.3 following the
mal definitions in C.2 in order to facilitate further the use of this Guide. Howeyer;
the definitions of some related terms, is not based directly on ISO 3534-1:1993y

C.2 Definitions

As in C
words

Terms (
C.2.314

C.21

probabllity

arealn

NOTE
For a hig

[ISO 35

C.22
random
variate
a variaj
probabi

NOTE 1
take any

NOTE 2

ause 0 and Annex B, the use of parentheses around certain words of some terms
ay be omitted if this is unlikely to cause confusion.

.2.1 to C.2.14 are defined in terms of the properties of populations. The definitions of
re related to a set of observations (see Reference [7])-

mber in the scale 0 to 1 attached to a randomevent

It can be related to a long-run relative frequency of occurrence or to a degree of belief that a
h degree of belief, the probability is near 1}

B4-1:1993, definition 1.1]

variable

le that may take(any of the values of a specified set of values and with which
ity distribution [ISO 3534-1:1993, definition 1.3 (C.2.3)]

A random variable that may take only isolated values is said to be “discrete”. A random v4
value withip’a finite or infinite interval is said to be “continuous”.

The probability of an event A is denoted by Pr(A) or P(A).

presentation of
C.3, which also

means that the

terms C.2.15 to

h event will occur.

s associated a

riable which may

[ISO 3534-1:1993, definition 1.2]

Guide Comment: The symbol Pr(A) is used in this Guide in place of the symbol P (A) used in

ISO 353

4-1:1993.

*

Footnote to the 2008 version:

ISO 3534-1:1993 has been cancelled and replaced by ISO 3534-1:2006. Note that some of the terms and definitions have
been revised. For further information, see the latest edition.
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C.23

probability distribution (of a random variable)

a function giving the probability that a random variable takes any given value or belongs to a given set of
values

NOTE The probability on the whole set of values of the random variable equals 1.
[ISO 3534-1:1993, definition 1.3]
C.24

distribution function
a function giving, for every value x, the probability that the random variable X be less than or equal to x:

F(x) = Pr(X < x)
[1ISO 3534-1:1993, definition 1.4]
C.2.5

probability density function (for a continuous random variable)
the derivative (when it exists) of the distribution function:

f(x) =dF x)/dx

NOTE f(x)dy is the “probability element”:
f(x)dx:Pr(x <X< x+dx)

[ISO 3534-1:1993, definition 1.5]

C.2.6
probability mass function
a function giving, for each value x; of a discrete random'variable X, the probability p; that the random|variable
equals x;.

p; = Pr(X = xi)
[1ISO 3534-1:1993, definition 1.6]
Cc.2.7
parameter
a quantity used [in describing the: probability distribution of a random variable
[ISO 3534-1:1993, definition 1.12]
Cc.2.8

correlation
the relationship between two or several random variables within a distribution of two or more random variables

NOTE Most statistical measures of correlation measure only the degree of linear relationship.

[ISO 3534-1:1993, definition 1.13]
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C.29

expectation (of a random variable or of a probability distribution)
expected value

mean

1) For a discrete random variable X taking the values x; with the probabilities p;, the expectation, if it exists, is

"‘:E(X):Zpixi

the sum being extended over all the values x; which can be taken by X.

2) For a continuous random variable X having the probability density function f(x), the expectation, if it exists, is

v [ertde

ASAP AN KA A

the integral being extended over the interval(s) of variation of X.

[ISO 3584-1:1993, definition 1.18]
Cc.2.10
centred random variable
a random variable the expectation of which equals zero
NOTE If the random variable X has an expectation equal to o the corresponding centred random vgriable is (X — o).
[ISO 3584-1:1993, definition 1.21]
C.2.11

variancg (of a random variable or of a probability distribution)
the expectation of the square of the centred random variable [ISO 3534-1:1993, definition 1.21((C.2.10)]:

N

c?l=V(X)= E{[X—E(X)]Z}

[ISO 3534-1:1993, definition 1.22]

C.212
standard deviation (of a random variable or of a probability distribution)
the positive square root of the\variance:

o3,V (X)
[ISO 3584-1:1993;definition 1.23]

C.213
central moment 2) of order ¢
in a univariate distribution, the expectation of the gth power of the centred random variable (X — o

e

NOTE The central moment of order 2 is the variance [ISO 3534-1:1993, definition 1.22 (C.2.11)] of the random
variable X.

[ISO 3534-1:1993, definition 1.28]

2) If, in the definition of the moments, the quantities X, X—a, Y, Y — b, etc. are replaced by their absolute values, i.e. |X|
| X=al, | 7|, | Y- b|, etc., other moments called “absolute moments” are defined.
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C.2.14

normal distribution

Laplace-Gauss distribution

the probability distribution of a continuous random variable X, the probability density function of which is

9|4

o\2m o

for-8 <x<+8.

NOTE o< is the expectation and ¢ is the standard deviation of the normal distribution.

[1SO 3534-1:1993-definttion4-37

C.2.15
characteristic
a property which helps to identify or differentiate between items of a given population

NOTE The dharacteristic may be either quantitative (by variables) or qualitative (by attributes).
[1ISO 3534-1:1993, definition 2.2]

C.2.16
population
the totality of items under consideration

NOTE In the case of a random variable, the probability distribution [ISO 3534-1:1993, definition 1.3 ({
considered to def|lne the population of that variable.

2.3)] is

CJ

[1ISO 3534-1:1993, definition 2.3]

C.217
frequency
the number of occurrences of a given type of event or the number of observations falling into a specifigd class

[ISO 3534-1:1993, definition 2.11]

C.218
frequency distribution
the empirical relationship between the values of a characteristic and their frequencies or their| relative
frequencies

NOTE The distribution may be graphically presented as a histogram (1SO 3534-1:1993, definition 2.17), par chart
(1SO 3534-1:1993, definition 2.18), cumulative frequency polygon (1ISO 3534-1:1993, definition 2.19), or as a| two-way
table (1ISO 3534-1:1998, definition 2.22).

[ISO 3534-1:1993; definition 2-15]

C.2.19

arithmetic mean

average

the sum of values divided by the number of values

NOTE 1 The term “mean” is used generally when referring to a population parameter and the term “average” when
referring to the result of a calculation on the data obtained in a sample.

NOTE 2  The average of a simple random sample taken from a population is an unbiased estimator of the mean of this

population. However, other estimators, such as the geometric or harmonic mean, or the median or mode, are sometimes
used.

[ISO 3534-1:1993, definition 2.26]
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C.2.20

variance

a measure of dispersion, which is the sum of the squared deviations of observations from their average
divided by one less than the number of observations

EXAMPLE For n observations x4, xy, ..., x, with average
x =(1/n) Z x;
the variance is
2 1 —\2
sT = 1 Z(xi—x)

NOTE 1 The sample variance is an unbiased estimator of the population variance.
NOTE 2| The variance is n/(n — 1) times the central moment of order 2 (see note to ISO 3534:1:1993, Hefinition 2.39).

[ISO 3534-1:1993, definition 2.33]

Guide Gomment: The variance defined here is more appropriately desighated the “sample |estimate of the
populatipn variance”. The variance of a sample is usually defined to be the central moment o¢f order 2 of the
sample (see C.2.13 and C.2.22).

c.2.21
standard deviation
the positive square root of the variance

NOTE The sample standard deviation is a biased estimator of the population standard deviation.
[1ISO 3584-1:1993, definition 2.34]

C.2.22
central moment of order ¢
in a distribution of a single characteristic,”the arithmetic mean of the ¢gth power of the differerjce between the
observef values and their average X

1 _
;zd(xl _x)q

where nlis the number, of-ebservations

NOTE The central moment of order 1 is equal to zero.

[ISO 3534-1(1993, definition 2.37]

C.2.23
statistic
a function of the sample random variables

NOTE A statistic, as a function of random variables, is also a random variable and as such it assumes different
values from sample to sample. The value of the statistic obtained by using the observed values in this function may be
used in a statistical test or as an estimate of a population parameter, such as a mean or a standard deviation.

[ISO 3534-1:1993, definition 2.45]

C.2.24

estimation

the operation of assigning, from the observations in a sample, numerical values to the parameters of a
distribution chosen as the statistical model of the population from which this sample is taken
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NOTE

A result of this operation may be expressed as a single value [point estimate; see 1SO 3534-1:1993,

definition 2.51 (C.2.26)] or as an interval estimate [see ISO 3534-1:1993, definitions 2.57 (C.2.27) and 2.58 (C.2.28)].

[ISO 3534-1:1993, definition 2.49]

C.2.25
estimator

a statistic used to estimate a population parameter

[1SO 3534-1:1993, definition 2.50]

C.2.26
estimate

the value of an
[ISO 3534-1:19

C.2.27

two-sided conflidence interval
are two functions of the observed values such that, § being a population parameter to be

when 7y and 7,
estimated, the ¢
and less than 1]

NOTE1 Thel
such will generall

NOTE 2 Inal
is covered by the

[ISO 3534-1:19

C.2.28

one-sided confidence interval

when T is a fun
probability Pr(T
positive and les
the largest poss

NOTE1  Thel
generally assume

NOTE 2 See N
[1ISO 3534-1:19

C.2.29

bstimator obtained as a result of an estimation

b3, definition 2.51]

robability Pr(T; <. < T,)is at least equal to (1 — &) [where (1 =a)\is a fixed number,
, the interval between Ty and T, is a two-sided (1 — &) confidence-interval for .

mits 7'y and 75 of the confidence interval are statistics [ISO 3534-1:1993, definition 2.45 (C.2.23
assume different values from sample to sample.

ng series of samples, the relative frequency of cases whére the true value of the population pa
confidence interval is greater than or equal to (1 — @),

D3, definition 2.57]

ction of the observed values such’that, . being a population parameter to be estima
> . ) [or the probability Pr(7 x&-)] is at least equal to (1 — &) [where (1 — ) is a fixed

ible value of . ) is a one-sided (1 — «) confidence interval for .

mit 7 of the confidencteninterval is a statistic [ISO 3534-1:1993, definition 2.45 (C.2.23)] and as
different values fromsample to sample.

lote 2 of IS@)3534-1:1993, definition 2.57 (C.2.27).

D3, definition 2.58]

positive

)] and as

ameter .

ted, the
number,

5 than 1], the interval from-the’smallest possible value of . up to T (or the interval fromp T up to

such will

confidence coefficient
confidence level

the value (1 — a) of the probability associated with a confidence interval or a statistical coverage interval
[See ISO 3534-1:1993, definitions 2.57 (C.2.27), 2.58 (C.2.28) and 2.61 (C.2.30).]

NOTE

(1 — o) is often expressed as a percentage.

[ISO 3534-1:1993, definition 2.59]

C.2.30

statistical coverage interval
an interval for which it can be stated with a given level of confidence that it contains at least a specified
proportion of the population
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NOTE 1 When both limits are defined by statistics, the interval is two-sided. When one of the two limits is not finite or
consists of the boundary of the variable, the interval is one-sided.

NOTE 2  Also called “statistical tolerance interval”. This term should not be used because it may cause confusion with
“tolerance interval” which is defined in ISO 3534-2:1993.

[ISO 3534-1:1993, definition 2.61]
C.2.31
degrees of freedom

in general, the number of terms in a sum minus the number of constraints on the terms of the sum

[1ISO 3534-1:1993, definition 2.85]

C.3 Elaboration of terms and concepts

C.3.1 Expectation
The explectation of a function g(z) over a probability density function p(z) ofithie’random variablg z is defined by
()= [ 2(2) p(2)az

where, from the definition of p(z), [p(z)dz = 1. The expectation of the random variable z, denpted by -, and
which is|also termed the expected value or the mean of z, is given by

o, FE(z)= Izp(z)dz

E

1

It is esfmated statistically by z, the arithmetic m@&an or average of »n independent observiations z; of the
random |variable z, the probability density function, of which is p(z):

E=122i

C.3.2 Variance

The varfance of a random(variable is the expectation of its quadratic deviation about its expedtation. Thus the
variance of random variable z with probability density function p(z) is given by

o?|2)= [(:<&) p(z)a:

where of, is theexpectation of z. The variance 02(z) may be estimated by

2 1 2
K (zl)zn_1L(zj—z)
J=1
where
I
Z:;ZZI'

and the z; are n independent observations of z.

NOTE 1 The factor n — 1 in the expression for s2(z;) arises from the correlation between z; and z and reflects the fact
that there are only n — 1 independent items in the set {z; -z }.
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NOTE2 Ifthe

$2(z;) =

I | =

1

expectation o, of z is known, the variance may be estimated by

n
2
(Zi - ‘XZ)
=1

The variance of the arithmetic mean or average of the observations, rather than the variance of the individual
observations, is the proper measure of the uncertainty of a measurement result. The variance of a variable z
should be carefully distinguished from the variance of the mean z. The variance of the arithmetic mean of a
series of n independent observations z; of z is given by 02(2) = az(zi )/n and is estimated by the experimental

variance of the m

s2

ean

~

n

(z:) 1 _\2

52 (E) =

C.3.3 Standa

The standard d

obtained by tak

determining a T
then to obtain th

C.3.4 Covarid

The covariance
variables y and

cov(y, z) 5

which leads to

cov(y, z) 5

where p(y, z) is
denoted by . (|

— N/ —
n(n—1)é1‘\ ! J

n

Fd deviation
bviation is the positive square root of the variance. Whereas a Type A standard unce

ype B standard uncertainty to evaluate a nonstatistical equivalent\standard deviation
e equivalent variance by squaring the standard deviation.

nce

- is defined by

cov(z, y) = E{[y—E(y)J[Z_E(Z)]}

COV(Z, y)

”(y— ‘xy)(z_ o )p(y, z)dydsz

”yzp(y, z)dydz— o<,

ocC.
z

,z)] may be estimated by s(y, z;) obtained from n independent pairs of simu

ing the square root of the statistically evaluated variance, it is oftén-more convenie

of two random variables is a measure of their mutdal"dependence. The covariance of

the joint probability-density function of the two variables y and z. The covariance cov(y

tainty is
nt when
first and

random

z) [also
taneous

observations y; and z; of y andyz,
1 n
s(virzi) :':Z(yj - y)(zj - Z)
7=1
where
_ 1%
y= —Z%‘
n*
i=1
and
.
zZ = ;Z Zi
i=1
NOTE The estimated covariance of the two means » and z is given by s(¥,z)=s(y;, z;)/n.
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C.3.5 Covariance matrix
For a multivariate probability distribution, the matrix ¥ with elements equal to the variances and covariances

of the variables is termed the covariance matrix. The diagonal elements, . (z, z) = 62(z) or S(zp, z;) = sz(zi), are
the variances, while the off-diagonal elements, . (y, z) or s(y;, z;), are the covariances.

C.3.6 Correlation coefficient

The correlation coefficient is a measure of the relative mutual dependence of two variables, equal to the ratio
of their covariances to the positive square root of the product of their variances. Thus

(e (e - )
777 ) Gz 90l

with estimates

s(ir zi) _ s(vizi)
s(yi,yi)s(zi,zi) S(yi)s(zi)

r(}i,zi)=r(zi,yl-)=\/

The correlation coefficient is a pure number such that -1 <. < +1 or-1x¥(y;, z;) < +1.

NOTE 1 Because . and r are pure numbers in the range —1 to +1 inclusive, while covariances are [usually quantities
with incpnvenient physical dimensions and magnitudes, correlation( ¢oefficients are generally more useful than
covarianges.

NOTE 2| For multivariate probability distributions, the correlation coefficient matrix is usually givep in place of the
covarian¢e matrix. Since . (y, y) =1 and r(y;, y;) = 1, the diagenal‘elements of this matrix are unity.

NOTE 3| If the input estimates x; and x; are correlated(see 5.2.2) and if a change &; in x; produces [a change &; in x;,
then the forrelation coefficient associated with x; and y; is"estimated approximately by

r (g x ) ”(xi)‘s_//[”(x.i)ai}

This relafion can serve as a basis for estimating correlation coefficients experimentally. It can also be usgd to calculate the
approximate change in one input estimaté due to a change in another if their correlation coefficient is known.

=

C.3.7 Independence

Two rarl[dom variables are-statistically independent if their joint probability distribution is the [product of their
individual probability distributions.

NOTE If two(random variables are independent, their covariance and correlation coefficient gre zero, but the
converse is notnecessarily true.

C.3.8 The-distribution; Student's distribution

The rdistribution or Student's distribution is the probability distribution of a continuous random variable ¢
whose probability density function is

] r(vz”j 2 )2
+

where T is the gamma function and v > 0. The expectation of the sdistribution is zero and its variance is
vi(v=2) for v>2. As v — 8, the t-distribution approaches a normal distribution with «=0 and o =1 (see
C.2.14).
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The probability distribution of the variable (z — ,)/s(z) is the #distribution if the random variable z is normally
distributed with expectation o, where z is the arithmetic mean of » independent observations z; of z, s(z;) is
the experimental standard deviation of the n observations, and s(z) =s(z,-)/\/; is the experimental standard
deviation of the mean z with v=n — 1 degrees of freedom.
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Annex D

“True” value, error, and uncertainty

The term true value (B.2.3) has traditionally been used in publications on uncertainty but not in this Guide for
the reasons presented in this annex. Because the terms “measurand”, “error”, and “uncertainty” are frequently
misunderstood, this annex also provides additional discussion of the ideas underlying them to supplement the
discussion given in Clause 3. Two figures are presented to illustrate why the concept of uncertainty adopted in
this Guide is based on the measurement result and its evaluated uncertainty rather than on the unknowable
quantitigs™“troe*vatueand-error:

D.1 The measurand

D.1.1
the mea

The first step in making a measurement is to specify the measurand — the quantity t
surand cannot be specified by a value but only by a description of a quantity. Howevs

measurand cannot be completely described without an infinite amount of \infermation. Thus, t

it leaveg
result o
accurac

D.1.2

EXAMPL
and CO,

room for interpretation, incomplete definition of the measurand_introduces into the u
f a measurement a component of uncertainty that may or’may not be significant
y required of the measurement.

Commonly, the definition of a measurand specifies cértain physical states and conditig

E The velocity of sound in dry air of composition(mole fraction) N, = 0,780 8, O, = 0,209
= 0,000 35 at the temperature 7= 273,15 K and pressure p = 101 325 Pa.

D.2 The realized quantity

D.2.1

Ideally, the quantity realized for>measurement would be fully consistent with the

measurand. Often, however, such. a-quantity cannot be realized and the measurement is

quantity,

that is an approximation of the measurand.

D.3 The “true” value.and the corrected value

D.3.1

quantity
quantity
realized
correctel

The result of<the measurement of the realized quantity is corrected for the differeng
and theqmeasurand in order to predict what the measurement result would have beg
had in~fact fully satisfied the definition of the measurand. The result of the meag
quantity is also corrected for all other recognized significant systematic effects. Al
durésult is sometimes viewed as the best estimate of the “true” value of the measura

o be measured;
r, in principle, a
b the extent that
ncertainty of the

relative to the

ns.

5, Ar=0,009 35,

jefinition of the
performed on a

e between that
n if the realized
urement of the
hough the final
nd, in reality the

result is SImply the best estimate of the value of the quantity intended (0 be measured.

D.3.2 As an example, suppose that the measurand is the thickness of a given sheet of material at a
specified temperature. The specimen is brought to a temperature near the specified temperature and its
thickness at a particular place is measured with a micrometer. The thickness of the material at that place and
temperature, under the pressure applied by the micrometer, is the realized quantity.

D.3.3 The temperature of the material at the time of the measurement and the applied pressure are
determined. The uncorrected result of the measurement of the realized quantity is then corrected by taking
into account the calibration curve of the micrometer, the departure of the temperature of the specimen from
the specified temperature, and the slight compression of the specimen under the applied pressure.
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D.3.4 The corrected result may be called the best estimate of the “true” value, “true” in the sense that it is
the value of a quantity that is believed to satisfy fully the definition of the measurand; but had the micrometer
been applied to a different part of the sheet of material, the realized quantity would have been different with a
different “true” value. However, that “true” value would be consistent with the definition of the measurand
because the latter did not specify that the thickness was to be determined at a particular place on the sheet.
Thus in this case, because of an incomplete definition of the measurand, the “true” value has an uncertainty
that can be evaluated from measurements made at different places on the sheet. At some level, every
measurand has such an “intrinsic” uncertainty that can in principle be estimated in some way. This is the
minimum uncertainty with which a measurand can be determined, and every measurement that achieves such
an uncertainty may be viewed as the best possible measurement of the measurand. To obtain a value of the
quantity in question having a smaller uncertainty requires that the measurand be more completely defined.
NOTE 1 In the !
affect the thickne
supported, etc.

nceivably

5s: the barometric pressure, the humidity, the attitude of the sheet in the gravitational field, thg way it is

complete
this may
bters that
met and
of sound
bet these

NOTE 2  Althotigh a measurand should be defined in sufficient detail that any uncertainty arising from its in
definition is negligible in comparison with the required accuracy of the measurement, it must be reCegnized that
not always be practicable. The definition may, for example, be incomplete because it does not'specify param
may have been agsumed, unjustifiably, to have negligible effect; or it may imply conditions that can never be fully
whose imperfect frealization is difficult to take into account. For instance, in the example 0f{D.1.2, the velocity
implies infinite plane waves of vanishingly small amplitude. To the extent that the megasurement does not m
conditions, diffradtion and nonlinear effects need to be considered.

NOTE 3 Inadsg ments of

ostensibly the sar

quate specification of the measurand can lead to discrepancies between the results of measure
he quantity carried out in different laboratories.

oided in
articular

D.3.5 The ter
this Guide bec

m “true value of a measurand” or of a quantity (eften truncated to “true value”) is ay
huse the word “true” is viewed as redundant.Measurand” (see B.2.9) means “g

quantity subject
to measuremen
(see B.2.1, Not
unnecessary —|
quantity). In add

D.4 Error

A corrected me
imperfect meas
inadequate det

physical phenomena (also-systematic effects). Neither the value of the realized quantity nor the vall

measurand can

the measured thickness:of the sheet may be in error, that is, may differ from the value of the measur

thickness of thd

to measurement”, hence “value of a measurand” means “value of a particular quantity
t”. Since “particular quantity” is generallysunderstood to mean a definite or specified
e 1), the adjective “true” in “true valuevof a measurand” (or in “true value of a qua
the “true” value of the measurand.{or quantity) is simply the value of the measu
ition, as indicated in the discussion above, a unique “true” value is only an idealized cq

asurement result jstnot the value of the measurand — that is, it is in error — bec
iIrement of the realized quantity due to random variations of the observations (random
brmination of «the” corrections for systematic effects, and incomplete knowledge of
ever be known exactly; all that can be known is their estimated values. In the exampls

sheet), because each of the following may combine to contribute an unknown err

measurement rerult:

subject
quantity
ntity”) is
rand (or
ncept.

ause of
effects),

certain
e of the
e above,
and (the
br to the

a) slight differences between the indications of the micrometer when it is repeatedly applied to the same
realized quantity;

b) imperfect calibration of the micrometer;

c) imperfect measurement of the temperature and of the applied pressure;

d) incomplete knowledge of the effects of temperature, barometric pressure, and humidity on the specimen
or the micrometer or both.
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D.5 Uncertainty

D.5.1 Whereas the exact values of the contributions to the error of a result of a measurement are unknown
and unknowable, the uncertainties associated with the random and systematic effects that give rise to the
error can be evaluated. But, even if the evaluated uncertainties are small, there is still no guarantee that the
error in the measurement result is small; for in the determination of a correction or in the assessment of
incomplete knowledge, a systematic effect may have been overlooked because it is unrecognized. Thus the
uncertainty of a result of a measurement is not necessarily an indication of the likelihood that the
measurement result is near the value of the measurand; it is simply an estimate of the likelihood of nearness
to the best value that is consistent with presently available knowledge.

D.5.2 Uncertainty of measurement is thus an expression of the fact that, for a given measurand and a given

result of
that are
with var

D.5.3
does no|

are calibbrated using well-known reference standards that are traceable to national standards

uncertai
effects ¢
incompl
uncertai

nmreasurcIiiic It Uf It, thcl < ;D I IUt Ul va:uc but all ;I Iﬁl Iitc Tart |bc| Uf VG:UUD d;bpcl Dcd
consistent with all of the observations and data and one's knowledge of the physical
ing degrees of credibility can be attributed to the measurand.

It is fortunate that in many practical measurement situations, much of the discussig
F apply. Examples are when the measurand is adequately well defined; when standard

hties of the calibration corrections are insignificant compared to the\dncertainties arisi
n the indications of instruments, or from a limited number of observations (see E.4.3

about the result
world, and that

n of this annex
5 or instruments
; and when the
ng from random
). Nevertheless,

bte knowledge of influence quantities and their effects canyoften contribute significantly to the

hty of the result of a measurement.

D.6 Graphical representation
D.6.1 [Figure D.1 depicts some of the ideas discussed in Clause 3 of this Guide and in this annex. It
illustratgs why the focus of this Guide is uncertainty and not error. The exact error of a result of a

measur¢ment is, in general, unknown and unknowable. All one can do is estimate the

quantitie
(estimat

s, including corrections for recognized;systematic effects, together with their standg
pd standard deviations), either from\unknown probability distributions that are sampl

repeate
and the

standard uncertainty of that result from the standard uncertainties of those estimated values.

sound bpsis for believing that all‘of’this has been done properly, with no significant systemati
been overlooked, can one assume that the measurement result is a reliable estimate of t
measurand and that its combined standard uncertainty is a reliable measure of its possible err

NOTE 1
Figure 1|

NOTE 2
Figure D|
to the ar

I observations, or from subjectivé_ or a priori distributions based on the pool of availg
calculate the measurement result from the estimated values of the input quantities ar

In Figure D4.a), the observations are shown as a histogram for illustrative purposes

p)].

Thexcarrection for an error is equal to the negative of the estimate of the error. Thus in F
2 aslwell, an arrow that illustrates the correction for an error is equal in length but points in the
fow(that would have illustrated the error itself, and vice versa. The text of the figure makes ¢

values of input
rd uncertainties
ed by means of
ble information;
d the combined
Dnly if there is a
c effects having
he value of the
DI,

[see 4.4.3 and
igure D.1, and in

ppposite direction
ear if a particular

arrow ill

s i
UdlCo a CUINTTuUuUuUIT Ul arr ©irrur.

D.6.2 Figure D.2 depicts some of the same ideas illustrated in Figure D.1 but in a different way. Moreover, it
also depicts the idea that there can be many values of the measurand if the definition of the measurand is
incomplete [entry g) of Figure D.2]. The uncertainty arising from this incompleteness of definition as measured
by the variance is evaluated from measurements of multiple realizations of the measurand, using the same
method, instruments, etc. (see D.3.4).

NOTE In the column headed “Variance”, the variances are understood to be the variances ulz(y) defined in
Equation (11a) in 5.1.3; hence they add linearly as shown.
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Uncorrected arithmetic Corrected arithmetic
mean of observations mean of observations

| ] The corrected mean is

} } the estimated value of the
measurand and the result of
the measurement

_— | Combined standard
Standard uncertainty of the _ _ uncertainty of the corregted
uncorrecled mean due to the | Correction for all recognized mean

dispersion|of the observations systematic effects

(for illustratiye purposes, shown It comprises the-uncertginty
here as an interval) of the uncorrected mean due
to the dispersion of the
observations and the
uncertainty of the applig
correction

st <

o

a) Concepts based on observable quantities
|

|
|
Unknown distribution Unknown distribution
(hefe assumed to be of the entire population
approximately a normal : : of possible corrected
distribution) of the observations
entire population of
possible yncorrected

observiations Q
il
Unknowr| population mean..\} | ._ Unknown error in the
(expectation) with unknown . corrected mean due to the
standard deviation (indicated Unknown error due to all unknown "random” error |n

by edge of darker shading) recognized systematic effects | the uncorrected mean and
’ i an unknown error in the

Unknown "random" error =~ . applied correction
in the uncorrected mean ;
of-the-observations—: ~—1 Remaining unknown\error

in the corrected mean
due to an unrecognized
systematic effect

Unknown

VALUE OF
MEASURAND

b) Ideal concepts based on unknowable quantities

Figure D.1 — Graphical illustration of value, error, and uncertainty
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Quantity Value Variance
(not to scale) (not to scale)
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observations X (single observation)
\
|
b) Uncorrected arithmetic ‘ "
mean of observations
(arithmetic mean)
c)|Correction for all >
recognized systematic |
effects

d)[Result of measurement

—
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f) Value of measurand I
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gue to incomplete definition
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h) Einal rocult of
oSttt ot

measurement

Figure D.2 — Graphical illustration of values, error, and uncertainty
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Annex E

Motivation and basis for Recommendation INC-1 (1980)

This annex gives a brief discussion of both the motivation and statistical basis for Recommendation
INC-1 (1980) of the Working Group on the Statement of Uncertainties upon which this Guide rests. For further

discussion, see

E.1 “Safe”,

E.1.1 This G
measurement. |
is no inherentd
a correction for
older methods t

E.1.2 The firs
never err on the

result is problematic, it was often made deliberately large.

E.1.3 The seq
“random” or “sy
to be combined

the safety requi

E.2 Justification for realistic uncertainty evaluations

E.21 When t
the uncertainty
decide in which
to be placed in
deliberate overs
measuring equi
costly products

E.2.2 Thatis
to its stated ung
level of confide
measurement r

References [1, 2, 11, 12].

‘random”, and “systematic”

ide presents a widely applicable method for evaluating and expressing uAcerd
k provides a realistic rather than a “safe” value of uncertainty based on the Cencept th
fference between an uncertainty component arising from a random effect @nd one aris
a systematic effect (see 3.2.2 and 3.2.3). The method stands, therefore;%in contrast t
nat have the following two ideas in common.

t idea is that the uncertainty reported should be “safe” or “conservative”, meaning tha
side of being too small. In fact, because the evaluation of the/uncertainty of a meas

stematic” with the two being of different natures;.thé uncertainties associated with ea

ement.

of that estimate must be given, for if the uncertainty is to err, it is not normally po
direction it should err_“safely”. An understatement of uncertainties might cause too m

the values reported; with sometimes embarrassing or even disastrous consequsg
tatement of uncertainties could also have undesirable repercussions. It could cause
pment to purchase instruments that are more expensive than they need, or it coul
fo be discarded unnecessarily or the services of a calibration laboratory to be rejected.

hot to say-that those using a measurement result could not apply their own multiplicati
ertainty in order to obtain an expanded uncertainty that defines an interval having a g
nce/and that satisfies their own needs, nor in certain circumstances that institutions g

ainty in
at there
ing from
b certain

t it must
urement

ond idea is that the influences that give rise to uncertainty were always recognizable as either

ch were

in their own way and were to be reported separately (or when a single number was required,
combined in some specified way). In fact, the method of combining uncertainties was often designed {

o satisfy

ne value of a measurand is reported, the best estimate of its value and the best evalliation of

5sible to
ich trust
nces. A
users of
d cause

e factor
pecified
roviding

14 1ol 4+ rH ] ] £ % ‘b ot 1l H H daal Py
Colultlo CUUIU TIULU |UuLIIIUIy apvly a 1aLtuln Uuiat PruviluTo A olftindl TAPAridcu  urivoitd

nty that

meets the needs of a particular class of users of their results. However, such factors (always to be stated)
must be applied to the uncertainty as determined by a realistic method, and only after the uncertainty has
been so determined, so that the interval defined by the expanded uncertainty has the level of confidence
required and the operation may be easily reversed.

E.2.3 Those engaged in measurement often must incorporate in their analyses the results of measurements
made by others, with each of these other results possessing an uncertainty of its own. In evaluating the
uncertainty of their own measurement result, they need to have a best value, not a “safe” value, of the
uncertainty of each of the results incorporated from elsewhere. Additionally, there must be a logical and
simple way in which these imported uncertainties can be combined with the uncertainties of their own
observations to give the uncertainty of their own result. Recommendation INC-1 (1980) provides such a way.
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E.3 Justification for treating all uncertainty components identically

The focus of the discussion of this subclause is a simple example that illustrates how this Guide treats
uncertainty components arising from random effects and from corrections for systematic effects in exactly the
same way in the evaluation of the uncertainty of the result of a measurement. It thus exemplifies the viewpoint
adopted in this Guide and cited in E.1.1, namely, that all components of uncertainty are of the same nature
and are to be treated identically. The starting point of the discussion is a simplified derivation of the
mathematical expression for the propagation of standard deviations, termed in this Guide the law of
propagation of uncertainty.

E.3.1 Let the output quantity z = f(w4, wy, ..., wy) depend on N input quantities wy, w,, ..., wy, where each w;
is described by an appropriate probability distribution. Expansion of f about the expectations of the w,

E(w;) = 4, T a first-order T ayfor serfes yrefds for smattdeviations of z about =, i terms of small deviations of
w; abou o,
A
z—oczzz (wi— 07) (E.1)
~ . w

i=1

where gll higher-order terms are assumed to be negligible and o = (o425, ..., =<). The square of the
deviation z — « is then given by

N 2
(1 )° {zi(w,- - o?)] (E20)

i=1 !

which mlay be written as

N 2 N-1 N
(24 )2 =z[i) (w; og)2+2_ > .‘_f_'_f(w,._x,.)(wj-xj) (E.2b)

=t Wi i=1 jmirt NV
The expectation of the squared deviation (z% ocz)2 is the variance of z, that is, E[(z— ocz)z] = 0'3, and thus
Equation (E.2b) leads to
2
N N-1 N
022 = [—f] aiz +22 DS 0;0;. (E.3)
=\ Wi i=1 j=iet iV
. . 2 2. . 2 12 .
In this gxpression, o7 =E[(l; — o;)“] is the variance of w; and . ;; = (wi, wj)/(ai aj) i$ the correlation
coefficignt of w, and Wi where . (w;, wj) =E[(w; - ‘xi)(Wj - 05.)] is the covariance of w; and w;.

NOTE 1 o-f and o-,2 are, respectively, the central moments of order 2 (see C.2.13 and C.2.22) [of the probability
distributipns of z-and w;. A probability distribution may be completely characterized by its expectatipn, variance, and
higher-onder,central moments.

NOTE 2 —Eguationt43-in-5-22ftogetherwith-Equation-{15-which-is-used-tocatettate-eembinred-stahdard uncertainty,
is identical to Equation (E.3) except that Equation (13) is expressed in terms of estimates of the variances, standard
deviations, and correlation coefficients.

E.3.2 In the traditional terminology, Equation (E.3) is often called the “general law of error propagation”, an
appellation that is better applied to an expression of the form . z= Z ?Q(.f/. w;). w;, where . z is the change
in z due to (small) changes . w; in the w; [see Equation (E.8)]. In fact, it is appropriate to call Equation (E.3) the
law of propagation of uncertainty as is done in this Guide because it shows how the uncertainties of the input
quantities w;, taken equal to the standard deviations of the probability distributions of the w;, combine to give
the uncertainty of the output quantity z if that uncertainty is taken equal to the standard deviation of the
probability distribution of z.
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E.3.3 Equation (E.3) also applies to the propagation of multiples of standard deviations, for if each standard
deviation o; is replaced by a multiple ko;, with the same k for each o;, the standard deviation of the output
quantity z is replaced by ko,. However, it does not apply to the propagation of confidence intervals. If each o;
is replaced with a quantity J; that defines an interval corresponding to a given level of confidence p, the
resulting quantity for z, ., will not define an interval corresponding to the same value of p unless all of the w;
are described by normal distributions. No such assumptions regarding the normality of the probability
distributions of the quantities w; are implied in Equation (E.3). More specifically, if in Equation (10) in 5.1.2
each standard uncertainty «(x;) is evaluated from independent repeated observations and multiplied by the
t-factor appropriate for its degrees of freedom for a particular value of p (say p = 95 percent), the uncertainty of
the estimate y will not define an interval corresponding to that value of p (see G.3 and G.4).

NOTE The requirement of normality when propagating confidence intervals using Equation (E.3) may be one of the
reasons for the Iistoricseparationm of thecomponents—of uncertamty derived fronT Tepeated opservations, wtich were
assumed to be ngrmally distributed, from those that were evaluated simply as upper and lower bounds.

E.3.4 Considgr the following example: z depends on only one input quantity w, z=/(w); where w is
estimated by gveraging »n values w;, of w; these n values are obtained from » independent repeated
observations g, [of a random variable ¢; and w, and ¢, are related by

Wy = o+ [/qk (E4)

Here « is a conptant “systematic” offset or shift common to each observation,(and ¥/ is a common scale factor.
The offset and|the scale factor, although fixed during the course of the%observations, are assumgd to be
characterized by a priori probability distributions, with o and ¢ the best-estimates of the expectations |of these
distributions.

The best estimdte of w is the arithmetic mean or average w obtained from
1% 13
w=—> wy=—> (a+{dq) (E.5)
=1 =

The quantity z i$ then estimated by f(w)= f(e, £, d1, 42, - q,) and the estimate »2(z) of its variancel 02(z) is
obtained from Equation (E.3). If for simplicity “it“is assumed that z=w so that the best estimatq of z is
z = f(w) = w, then the estimate u2(z) can be readily found. Noting from Equation (E.5) that

denoting the estimated variances of o and ¢ by u2(c) and u?({), respectively, and assuming that the
individual observations are uncorrelated, one finds from Equation (E.3)

2
u2(z)=u2(a)+a2u2(z/)+z/2L‘“f) (E.6)

where sz(qk) is the experimental variance of the observations ¢, calculated according to Equation (4) in 4.2.2,
and s2(qk)/n 252((7) is the experimental variance of the mean ¢ [Equation (5) in 4.2.3].
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E.3.5 In the traditional terminology, the third term on the right-hand side of Equation (E.6) is called a
“random” contribution to the estimated variance u2(z) because it normally decreases as the number of
observations n increases, while the first two terms are called “systematic” contributions because they do not
depend on n.

Of more significance, in some traditional treatments of measurement uncertainty, Equation (E.6) is questioned
because no distinction is made between uncertainties arising from systematic effects and those arising from
random effects. In particular, combining variances obtained from a priori probability distributions with those
obtained from frequency-based distributions is deprecated because the concept of probability is considered to
be applicable only to events that can be repeated a large number of times under essentially the same
conditions, with the probability p of an event (0 < p < 1) indicating the relative frequency with which the event

will occur.

In contri

measur
winning
p=0,5i
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E.3.6
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of the degree of belief that an event will occur [13, 14]. For example, suppose-one
a small sum of money D and one is a rational bettor. One's degree of belief' in-ever
one is indifferent to these two betting choices:

biving D if event 4 occurs but nothing if it does not occur;

biving D if event 4 does not occur but nothing if it does occur.

nendation INC-1 (1980) upon which this Guide rests implicitly-adopts such a viewpo
Views expressions such as Equation (E.6) as the appropriate way to calculate the con
hty of a result of a measurement.

There are three distinct advantages to adopting.an interpretation of probability basg
e standard deviation (standard uncertainty), and‘the law of propagation of uncertainty

law of propagation of uncertainty allows the combined standard uncertainty of one resg
rporated in the evaluation of the combined standard uncertainty of another result in
d;

combined standard uncertainty_can serve as the basis for calculating intervals that
istic way to their required levels of confidence; and

unnecessary to classify components as “random” or “systematic” (or in any other
uating uncertainty, because all components of uncertainty are treated in the same wayj

c) is highly advantageous because such categorization is frequently a source o
hty component'is not either “random” or “systematic”. Its nature is conditioned by the
nding quantity, or more formally, by the context in which the quantity appears in th

st to this frequency-based point of view of probability, an equally valid viewpoint is thelt probability is a

has a chance of
t 4 occurring is

nt of probability
hbined standard

d on degree of
[Equation (E.3)]

psis for evaluating and expressing uncertainty.in measurement, as has been done in this Guide:

ult to be readily
which the first is

correspond in a

manner) when

f confusion; an
Ise made of the
e mathematical

model tH
“random

at describes the measurement. Thus, when its corresponding quantity is used in a different context, a

” component may become a “systematic” component, and vice versa.

E.3.7 For the reason given In c] above, Recommendation INC-T (1980) does not classity components of
uncertainty as either “random” or “systematic”. In fact, as far as the calculation of the combined standard
uncertainty of a measurement result is concerned, there is no need to classify uncertainty components and
thus no real need for any classificational scheme. Nonetheless, since convenient labels can sometimes be
helpful in the communication and discussion of ideas, Recommendation INC-1 (1980) does provide a scheme
for classifying the two distinct methods by which uncertainty components may be evaluated, “A” and “B” (see
0.7,2.3.2, and 2.3.3).

Classifying the methods used to evaluate uncertainty components avoids the principal problem associated
with classifying the components themselves, namely, the dependence of the classification of a component on
how the corresponding quantity is used. However, classifying the methods rather than the components does
not preclude gathering the individual components evaluated by the two methods into specific groups for a
particular purpose in a given measurement, for example, when comparing the experimentally observed and
theoretically predicted variability of the output values of a complex measurement system (see 3.4.3).
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E.4 Standard deviations as measures of uncertainty

E.4.1 Equation (E.3) requires that no matter how the uncertainty of the estimate of an input quantity is
obtained, it must be evaluated as a standard uncertainty, that is, as an estimated standard deviation. If some
“safe” alternative is evaluated instead, it cannot be used in Equation (E.3). In particular, if the “maximum error
bound” (the largest conceivable deviation from the putative best estimate) is used in Equation (E.3), the
resulting uncertainty will have an ill-defined meaning and will be unusable by anyone wishing to incorporate it
into subsequent calculations of the uncertainties of other quantities (see E.3.3).

E.4.2 When the standard uncertainty of an input quantity cannot be evaluated by an analysis of the results
of an adequate number of repeated observations, a probability distribution must be adopted based on
knowledge that is much less extensive than might be desirable. That does not, however, make the distribution

H H IHI L loralatlib ali-adiailo ks H H £ Joandl | ol Hy
invalid or unreak-tike-=att Prooaotty arStHoTtoONS TS am e XpPreSSIomoT WAt KMOWICTGgCCXISTS,

E.4.3 Evaluatjons based on repeated observations are not necessarily superior to those obtained py other
means. Considgr s(g), the experimental standard deviation of the mean of » independent observations ¢, of a
normally distribfited random variable ¢ [see Equation (5) in 4.2.3]. The quantity s(g) is a statistic (seq C.2.23)
that estimates ¢(g), the standard deviation of the probability distribution of g, that is, the“standard deviation
of the distributipn of the values of g that would be obtained if the measurement, were repeated an infinite
number of timeg. The variance 0'2[s(c7)] of s(g) is given, approximately, by

o?[s(7)] | o%(@)/(2v) (E.7)

where v=n — 1|is the degrees of freedom of s(g) (see G.3.3). Thus the\relative standard deviation|of s(g),
which is given by the ratio o[s(7)]/o(g) and which can be taken as-a‘measure of the relative unce}ainty of

s(g), is approximately [2(n — 1)]""2. This “uncertainty of the uncettainty” of g, which arises from the purely
statistical reason of limited sampling, can be surprisingly large;>for n = 10 observations it is 24 percgnt. This
and other valugs are given in Table E.1, which shows that thé.standard deviation of a statistically estimated
standard deviation is not negligible for practical values~0f n. One may therefore conclude that| Type A
evaluations of gtandard uncertainty are not necessarily more reliable than Type B evaluations, and that in
many practical neasurement situations where the number of observations is limited, the components pbtained
from Type B evaluations may be better known than-the components obtained from Type A evaluations,

E.4.4 It has been argued that, whereas thé- uncertainties associated with the application of a particular
method of measurement are statistical parameters characterizing random variables, there are instances of a
“truly systematit effect” whose uncertainty must be treated differently. An example is an offset having an
unknown fixed Yalue that is the samefor every determination by the method due to a possible imperfection in
the very principje of the method itself or one of its underlying assumptions. But if the possibility of [such an
offset is acknoledged to exist and its magnitude is believed to be possibly significant, then it| can be
described by a [probability distribution, however simply constructed, based on the knowledge that Igd to the
conclusion that|it could exist~and be significant. Thus, if one considers probability to be a measune of the
degree of belief that an(event will occur, the contribution of such a systematic effect can be includegd in the
combined standard uncertainty of a measurement result by evaluating it as a standard uncertainty of an
a priori probabillty distribution and treating it in the same manner as any other standard uncertainty of [an input
quantity.

EXAMPLE The specification of a particular measurement procedure requires that a certain input quantity be
calculated from a specific power-series expansion whose higher-order terms are inexactly known. The systematic effect
due to not being able to treat these terms exactly leads to an unknown fixed offset that cannot be experimentally sampled
by repetitions of the procedure. Thus the uncertainty associated with the effect cannot be evaluated and included in the
uncertainty of the final measurement result if a frequency-based interpretation of probability is strictly followed. However,
interpreting probability on the basis of degree of belief allows the uncertainty characterizing the effect to be evaluated from
an a priori probability distribution (derived from the available knowledge concerning the inexactly known terms) and to be
included in the calculation of the combined standard uncertainty of the measurement result like any other uncertainty.
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Table E.1 — o[s(q)]/0(7), the standard deviation
of the experimental standard deviation of the mean g
of n independent observations of a normally distributed random variable ¢,
relative to the standard deviation of that mean (2 (b)

Number of observations ols(q)l/o(q)
n (percent)
2 76
3 52
4 42
5 36
10 24
20 16
30 13
50 10

(@) The values given have been calculated from the exact expression for
o[s())/o(g), not the approximate expression [2(n — 1)]~1/2,

(b) In the expression o[s(¢)l/o(q), the denominator o(g)\is’the expectation
E[S/\/Z] and the numerator o[s(g)] is the square “roet of the variance
V[S/\/;], where § denotes a random variable equal tg'the standard deviation
of n independent random variables Xj,...,%,, €ach having a normal
distribution with mean value ~and variance o%

The expectation and variance of § aré.given by:

2 r'(n/2) 2 2
E[S]=,|— ———==o0, V[S]=0" - E[S]",
51757 Togye]” E-

where T'(x) is the gamma function. Note that £[S] < o for a finite number .

E.5 A|comparison of two views of uncertainty

E.5.1 [The focus of this-Guide is on the measurement result and its evaluated uncertainty rather than on the
unknowable quantities.“true” value and error (see Annex D). By taking the operational views that the result of
a measlirement is simply the value attributed to the measurand and that the uncertainty of| that result is a
measur¢ of the dispersion of the values that could reasonably be attributed to the measurand, this Guide in
effect uhcouples-the often confusing connection between uncertainty and the unknowable guantities “true”
value arjd error.

E.5.2 his connection may be understood by interpreting the derivation of Equation (E.3), the law of
propagation of uncertainty, from the standpoint of “true” value and error. In this case, o is viewed as the
unknown, unique “true” value of input quantity w; and each w; is assumed to be related to its “true” value o;
by w; = o + g;, where ¢; is the error in w;. The expectation of the probability distribution of each ¢; is assumed
to be zero, E(g;) = 0, with variance E(siz) = 0',2. Equation (E.1) becomes then

N
g, = zigi (E.8)

where ¢, =z — «_is the error in z and «_is the “true” value of z. If one then takes the expectation of the square
of ¢,, one obtains an equation identical in form to Equation (E.3) but in which af = E(ef) is the variance of ¢,

and . ;= (g,-,ej)/(aizojz-)”2 is the correlation coefficient of & and T where . (g, ej)=E(eiej) is the
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covariance of ¢; and ¢;. The variances and correlation coefficients are thus associated with the errors of the

input quantities

NOTE
that a systematic

E.5.3

rather than with the input quantities themselves.

error may be treated in the same way as a random error and that &; represents either kind.

measurement result or of the uncertainty assigned to that result.

It is assumed that probability is viewed as a measure of the degree of belief that an event will occur, implying

In practice, the difference in point of view does not lead to a difference in the numerical value of the

First, in both cases, the best available estimates of the input quantities w; are used to obtain the best estimate
of z from the function f; it makes no difference in the calculations if the best estimates are viewed as the
values most likely to be attributed to the quantities in question or the best estimates of their “true” values.

Second, becau
uncertainty, the
the standard u

standard uncertainty of the measurement result are identical and will yield the same numerical valug

uncertainty. Aga
of the dispersio
probability distri

NOTE If the
apply unless all d
statistical analysig

E.5.4 While t
approach taken
of uncertainty ¢
operational ap
observed (or es

Se & =w,— e, and because the o
variances and standard deviations of the & and w; are identical. This means that(if-bo

ncertainties used as the estimates of the standard deviations o; to obtain (the ¢

h of the probability distribution of an input quantity or as a measure of the dispersig
bution of the error of that quantity.

assumption of the note of E.5.2 had not been made, then the discussion of this subclause
f the estimates of the input quantities and the uncertainties of those estimates were obtained
of repeated observations, that is, from Type A evaluations.

he approach based on “true” value and error yields the same numerical results
in this Guide (provided that the assumption of the note of E.5.2 is made), this Guide's
liminates the confusion between error and uncertainty (see Annex D). Indeed, this
roach, wherein the focus is on the obseryed (or estimated) value of a quantity
limated) variability of that value, makes any.mention of error entirely unnecessary.

represent unique, fixed values and hence lLave no

th cases,
bmbined
for that

in, it makes no difference in the calculations if a standard uncertainty is(viewed as a measure

n of the

vould not
from the

as the
concept
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and the
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Annex F

Practical guidance on evaluating uncertainty components

This annex gives additional suggestions for evaluating uncertainty components, mainly of a practical nature,

that are

intended to complement the suggestions already given in Clause 4.

F.1 Components evaluated from repeated observations: Type A evaluation of

standa

F.1.1 K

F.1.1.1

by othe
evaluate
not requ

F.1.1.2

repetitio
is part o
property
an evall
the obse

If zeroin
every re
potentia

Similarly
(prefera
indicatig

F.1.1.3
random
an unmd
of obse
experim
judge w
time.

ird uncertainty

Randomness and repeated observations

Uncertainties determined from repeated observations are often coftrasted with

[ means as being “objective”, “statistically rigorous”, etc. That incofrectly implies th
d merely by the application of statistical formulae to the observatiens and that their
ire the application of some judgement.

It must first be asked, “To what extent are the repeated observations complet
hs of the measurement procedure?” If all of the observations are on a single sample,
f the measurement procedure because the measurandiis the property of a material (as
of a given specimen of the material), then the observations have not been indepen
ation of a component of variance arising from possible differences among samples m
rved variance of the repeated observations made on the single sample.

g an instrument is part of the measurement'procedure, the instrument ought to be rez
petition, even if there is negligible drift:during the period in which observations are m
ly a statistically determinable uncertainty attributable to zeroing.

, if a barometer has to be read, it should in principle be read for each repetition of th
bly after disturbing it and .allowing it to return to equilibrium), for there may be a
n and in reading, even if the*barometric pressure is constant.

Second, it mustibe asked whether all of the influences that are assumed to be rg
Are the means and/variances of their distributions constant, or is there perhaps a dri
pasured influence“quantity during the period of repeated observations? If there is a s
vations, the “afithmetic means of the results of the first and second halves of the
ental standard deviations may be calculated and the two means compared with each

hose evaluated
at they can be
evaluation does

ely independent
and if sampling
opposed to the
ently repeated,;
ust be added to

eroed as part of
ade, for there is

e measurement
ariation both in

ndom really are
t in the value of
Lifficient number
beriod and their
bther in order to

netherthedifference between them is statistically significant and thus if there is an effect varying with

F.1.1.4

IT the values oI comimon services In the laboralory (electric-supply voltage and T

equency, water

pressure and temperature, nitrogen pressure, etc.) are influence quantities, there is normally a strongly

nonrand

F.1.1.5

om element in their variations that cannot be overlooked.

If the least significant figure of a digital indication varies continually during an observation due to
“noise”, it is sometimes difficult not to select unknowingly personally preferred values of that digit. It is better to
arrange some means of freezing the indication at an arbitrary instant and recording the frozen result.
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F.1.2 Correlations
Much of the discussion in this subclause is also applicable to Type B evaluations of standard uncertainty.

F.1.21 The covariance associated with the estimates of two input quantities .X; and X may be taken to be
zero or treated as insignificant if

a) X; and X; are uncorrelated (the random variables, not the physical quantities that are assumed to be
mvanants — see 4.1.1, Note 1), for example, because they have been repeatedly but not simultaneously
measured in different mdependent experiments or because they represent resultant quantities of different
evaluations that have been made independently, or if

b) either of the—qumﬂ&iesﬂ?orﬁ;carbe—treated—as—a—cmstant,—mﬁf—

c) there is insyfficient information to evaluate the covariance associated with the estimates of X;and(X;.

NOTE 1 On the other hand, in certain cases, such as the reference-resistance example of-Note 1 to 5[2.2, it is
apparent that the input quantities are fully correlated and that the standard uncertainties of their estimates combirle linearly.

NOTE 2  Different experiments may not be independent if, for example, the same instrument is used in gach (see
F.1.2.3).

F.1.2.2 Whether or not two repeatedly and simultaneously observed input quantities are correlated may
be determined| by means of Equation (17) in 5.2.3. For example, (if* the frequency of an ¢scillator
uncompensated or poorly compensated for temperature is an input quantity, if ambient temperature i also an
input quantity, gnd if they are observed simultaneously, there may,be.a significant correlation revealed by the
calculated covafiance of the frequency of the oscillator and the ambient temperature.

F.1.2.3 In practice, input quantities are often correlated because the same physical measurement
standard, measuring instrument, reference datum, orxeven measurement method having a significant
uncertainty is uged in the estimation of their values. Without loss of generality, suppose two input glantities
X; and X, esfimated by x; and x, depend on:x@ set of uncorrelated variables Q4, O,, ..., d;. Thus
X1=F(0Qq, 0o, .., O;) and X5 = G(04, Oo, ..., O;),-although some of these variables may actually appear only
in one function jand not in the other. If uz(ql) is the estimated variance associated with the estimate|q; of O,
then the estimated variance associated with x'is, from Equation (10) in 5.1.2,

2

2 (. F o
u (x1)=§d['_] u (‘11) (F.1)
AN
with a similar eXpression for u2(x2). The estimated covariance associated with x4 and x, is given by
L
.F .(G
u(x1,x2)=z——u2(ql) (F.2)
=1 " qi- 9]

Because only um, the

covariance is zero if no varlable is common to both F and G

The estimated correlation coefficient (x4, x,) associated with the two estimates x4 and x, is determined from
u(xq, x5) [Equation (F.2)] and Equation (14) in 5.2.2, with u(x4) calculated from Equation (F.1) and u(x,) from a
similar expression. [See also Equation (H.9) in H.2.3.] It is also possible for the estimated covariance
associated with two input estimates to have both a statistical component [see Equation (17) in 5.2.3] and a
component arising as discussed in this subclause.

EXAMPLE 1 A standard resistor Rg is used in the same measurement to determine both a current 7 and a temperature .
The current is determined by measuring, with a digital voltmeter, the potential difference across the terminals of the
standard; the temperature is determined by measuring, with a resistance bridge and the standard, the resistance R(¢) of a
callbrated resistive temperature sensor whose temperature-resistance relation in the range 15°C <r<30°C is
t=aR} ( )—tg, where a and ¢y are known constants Thus the current is determined through the relation 7= VS/RS and the
temperature through the relation ¢ = al?(t (¢ )RS tg, where Y1) is the measured ratio Ry(r)/Rg provided by the bridge.

62 © ISO/IEC 2008 — All rights reserved


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUIDE 98-3:2008(E)

Since only the quantity Rg is common to the expression for 7 and ¢, Equation (F.2) yields for the covariance of 7 and ¢

¢ (t+1) 5

u?(Rg) :[—Z—S%}[Zaﬂz(t)RsJuz(Rs) __A pr

u(ni)=—1 -

Re. (rg)

Rs

(For simplicity of notation, in this example the same symbol is used for both the input quantity and its estimate.)

To obtain the numerical value of the covariance, one substitutes into this expression the numerical values of the measured
quantities 7 and ¢, and the values of Rg and u(Rs) given in the standard resistor's calibration certificate. The unit of u(Z, ) is
clearly A-°C since the dimension of the relative variance [u(Rg)/Rg]? is one (that is, the latter is a so-called dimensionless
quantity).

Further, let a quantity P be related to the input quantities 7 and ¢ by P = Cy72/(T + 1), where Cy and Tj are known constants

with negligible-ureeraintestCr—Bni—ol—Equatond3-n-b2 2 theryieldsferthe-varance-ef /” in terms of the
variances of 7 and ¢ and their covariance
uz P) u2(1) u([, t) uz(t)
b =4 * 2
P 1 H(To+t)  (1y+1)

The varlances u2(I) and u2(f) are obtained by the application of Equation (10) of 5.1.2"%o the relatigns 7= Vg/Rg and

t = alP()R% - 1. The results are
u?(1)/12 =u?(Vs)[v3 +u?(Rs)/R%
u? ()= 4(t+10)°u? (4)] P+ 4t +10) u? (Rg) [ RE

where fo
can be 1
voltmete
measure

EXAMPL
u(a,) the
resistor,

u*(R;) =
coefficier

d

Since u(]
as u()

=

NOTE

correlate
of the ref
the unce
the sams

- 0, r; — 1, and u(R))=> u(Rs).

[ simplicity it is assumed that the uncertainties of the constants'sy and a are also negligible. T
eadily evaluated since u%(Vg) and u%(¥) may be determined; respectively, from the repeate
and of the resistance bridge. Of course, any uncertaiities” inherent in the instruments them
ment procedures employed must also be taken into acceunt when u2(Vg) and #%({) are determin

E 2 In the example of Note 1 to 5.2.2, let the’calibration of each resistor be represented
standard uncertainty of the measured ratio ¢; as\obtained from repeated observations. Further,
nd Iet u(oy) be essentially the same for each-calibration so that u(¢;) u(e). Then Equations (F|
R2 (a)+u (Rg) and u(R;, R;) = u2(Rg)OThis implies through Equation (14) in 5.2.2 thg
t of any two resistors (i . j)is

s

(Rs)/Rg
bo)/Rs = 1074, if u(c) =400 - 1076, r

-1

=7 =41+

i'RJ) ij

1078, 1, 1. 1079

0,5; if u(a) = 10 - ; 0,990; and if u(a) =

i

In general,“ins comparison calibrations such as this example, the estimated values of the ca
H, with the-degree of correlation depending upon the ratio of the uncertainty of the comparison
erence standard. When, as often occurs in practice, the uncertainty of the comparison is negligi
[tainty”of the standard, the correlation coefficients are equal to +1 and the uncertainty of each
as that of the standard.

hese expressions
I readings of the
selves and in the
ed.

by R[ = al‘RS, with
let ; 1 for each

11) and (F.2) yield

t the correlation

1,000. Thus

b Tij

librated items are
to the uncertainty
ble with respect to
calibrated item is

F.1.2.4

quantities X4, Xy, ...,

The need to introduce the covariance u(x;, xj) can be bypassed if the original set of input

X,y upon which the measurand Y depends [see Equation (1) in 4.1] is redefined in such a

way as to include as additional independent input quantities those quantities O, that are common to two or
more of the original X,. (It may be necessary to perform additional measurements to establish fully the
relationship between Q; and the affected X;.) Nonetheless, in some situations it may be more convenient to
retain covariances rather than to increase the number of input quantities. A similar process can be carried out
on the observed covariances of simultaneous repeated observations [see Equation (17) in 5.2.3], but the
identification of the appropriate additional input quantities is often ad hoc and nonphysical.
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EXAMPLE
for P, the result is

CoV'§

P=
R%[T0+a//2(t)R§—t0}

If, in Example 1 of F.1.2.3, the expressions for 7 and ¢ in terms of Rg are introduced into the expression

and the correlation between 7 and ¢ is avoided at the expense of replacing the input quantities 7 and ¢ with the quantities 7,

Rg, and ¥ Since t

hese quantities are uncorrelated, the variance of P can be obtained from Equation (10) in 5.1.2.

F.2 Components evaluated by other means: Type B evaluation of standard

uncertainty

F.2.1 The neld for Type B evaluations

If a measurem
investigation of
of instruments,
approximations
causes could th
each cause wo
uncertainty conf
economic practi

F.2.2 Mathematically determinate distributions

F.2.21 Ther
One source of |
the repeated in
would not be z€¢

give the same indication. If the resolution of the.jindicating device is 6x, the value of the stimulus that g

a given indicatig
thus described

u? = (8x)2/12, implying a standard uncertainty of « = 0,293x for any indication.

Thus a weighing
to the resolution

F.2.2.2 Hystsg

Certain kinds of
by a fixed and

bent laboratory had limitless time and resources, it could conduct an exhaustive §
every conceivable cause of uncertainty, for example, by using many differént makes a
different methods of measurement, different applications of the.method, and

in its theoretical models of the measurement. The uncertainties associated with all

en be evaluated by the statistical analysis of series of observations and the uncen
lld be characterized by a statistically evaluated standard deviation. In other words, @
ponents would be obtained from Type A evaluations. Sincesuch an investigation i
cality, many uncertainty components must be evaluated by-whatever other means is p

bsolution of a digital indication
ncertainty of a digital instrument is the reselution of its indicating device. For examplg
ro, for there is a range of input signals to the instrument spanning a known interval th

n X can lie with equal probability anywhere in the interval X — dx/2 to X + 8x/2. The sti
by a rectangular probability”’ distribution (see 4.3.7 and 4.4.5) of width dx with

) instrument with antindicating device whose smallest significant digit is 1 g has a varig
of the device of u? = (1/12) g2 and a standard uncertainty of u = (1 /\/ﬁ) g=0,29g.

resis

hysteresis can cause a similar kind of uncertainty. The indication of an instrument m
kaown amount according to whether successive readings are rising or falling. The

tatistical
nd kinds
different
of these
tainty of
Il of the
5 not an
ractical.

, even if

dications were all identical, the uncertainty of the measurement attributable to repgatability

At would
roduces
mulus is
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ay differ
prudent

operator takes
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But the

direction of the hysteresis is not always observable: there may be hidden oscillations within the instrument
about an equilibrium point so that the indication depends on the direction from which that point is finally
approached. If the range of possible readings from that cause is 8x, the variance is again 12 = (6x)2/12, and
the standard uncertainty due to hysteresis is u = 0,299x.

F.2.2.3 Finite-precision arithmetic

The rounding or truncation of numbers arising in automated data reduction by computer can also be a source
of uncertainty. Consider, for example, a computer with a word length of 16 bits. If, in the course of
computation, a number having this word length is subtracted from another from which it differs only in the
16th bit, only one significant bit remains. Such events can occur in the evaluation of “ill-conditioned”
algorithms, and they can be difficult to predict. One may obtain an empirical determination of the uncertainty
by increasing the most important input quantity to the calculation (there is frequently one that is proportional to
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the magnitude of the output quantity) by small increments until the output quantity changes; the smallest
change in the output quantity that can be obtained by such means may be taken as a measure of the

uncertainty; if it is dx, the variance is «2 = (8x)2/12 and u = 0,295x.

NOTE

One may check the uncertainty evaluation by comparing the result of the computation c

arried out on the

limited word-length machine with the result of the same computation carried out on a machine with a significantly larger
word length.

F.2.3 Imported input values

F.2.3.1

An imported value for an input quantity is one that has not been estimated in

the course of a

given measurement but has been obtained elsewhere as the result of an independent evaluation. Frequently

such an
uncertai
interval

informat
their ow
reliabilit

NOTE
evaluatio
obtained
unneces:
standard

F.2.3.2
upper a

convertd
given, i
assessn

F.2.3.3

H t ol ] H -~ ™ leiaal £ tat + b + it ot =
MTPYUnicu vadiuT 1o avlunimipariicu vy oUITIC NTTU UT SLAITTTITTIU AUUUL Tto UTiovTridairity. 1

nty may be given as a standard deviation, a multiple of a standard deviation, or the
having a stated level of confidence. Alternatively, upper and lower bounds_fmay |

ion may be provided about the uncertainty. In the latter case, those who use the val
n knowledge about the likely magnitude of the uncertainty, given the nature of
of the source, the uncertainties obtained in practice for such quantities,cete.

The discussion of the uncertainty of imported input quantities is included in this subg
h of standard uncertainty for convenience; the uncertainty of such a quantity could be compos
from Type A evaluations or components obtained from both Type-A and Type B evalua
bary to distinguish between components evaluated by the two different' methods in order to cald

Some calibration laboratories have adopted the-practice of expressing “uncertaint

d to a standard uncertainty without a knowledge of how it was calculated. If sufficie
may be recalculated in accordance with” the rules of this Guide; otherwise
nent of the uncertainty must be made by whatever means are available.

Some uncertainties are given simply as maximum bounds within which all value

are said
rectang

to lie. It is a common practice to.assume that all values within those bounds are equ
lar probability distribution), but-such a distribution should not be assumed if there is r|

uncertainty, it is unnecessary to know the composition of the uncertainty of an imported quantity.

r example, the
half-width of an
be given, or no
e must employ
he quantity, the

lause on Type B
ed of components
tions. Since it is
ulate a combined

y” in the form of

nd lower limits that define an interval having a “minimum” level of confidence, for example, “at least”
95 percent. This may be viewed as an example of a sp-called “safe” uncertainty (see E.1.2),

and it cannot be
ht information is
hn  independent

5 of the quantity
ally probable (a
eason to expect

that vallies within but close to thetbounds are less likely than those nearer the centre of the bounds. A
rectangylar distribution of half-width « has a variance of «2/3; a normal distribution for which «|is the half-width
of an interval having a level of.confidence of 99,73 percent has a variance of ¢2/9. It may be prudent to adopt
a compromise between those-values, for example, by assuming a triangular distribution for whiich the variance
is a2/6 (pee 4.3.9 and 44.6).

F.2.4 Measuredinput values

F.2.4.1 | Single observation, calibrated instruments

If an input estimafe has been obtained from a single observafion with a parficular instrument that has been
calibrated against a standard of small uncertainty, the uncertainty of the estimate is mainly one of repeatability.
The variance of repeated measurements by the instrument may have been obtained on an earlier occasion,
not necessarily at precisely the same value of the reading but near enough to be useful, and it may be
possible to assume the variance to be applicable to the input value in question. If no such information is
available, an estimate must be made based on the nature of the measuring apparatus or instrument, the
known variances of other instruments of similar construction, etc.

F.2.4.2 Single observation, verified instruments

Not all measuring instruments are accompanied by a calibration certificate or a calibration curve. Most
instruments, however, are constructed to a written standard and verified, either by the manufacturer or by an
independent authority, to conform to that standard. Usually the standard contains metrological requirements,
often in the form of “maximum permissible errors”, to which the instrument is required to conform. The
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compliance of the instrument with these requirements is determined by comparison with a reference
instrument whose maximum allowed uncertainty is usually specified in the standard. This uncertainty is then a
component of the uncertainty of the verified instrument.

If nothing is known about the characteristic error curve of the verified instrument it must be assumed that there
is an equal probability that the error has any value within the permitted limits, that is, a rectangular probability
distribution. However, certain types of instruments have characteristic curves such that the errors are, for
example, likely always to be positive in part of the measuring range and negative in other parts. Sometimes

such information can be deduced from a study of the written standard.

F.2.4.3 Controlled quantities

Measurements
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the course of a series of measurements. For example, measurements may be perfo
stirred oil bath whose temperature is controlled by a thermostat. The temperature of
red at the time of each measurement on a specimen, but if the temperature \6f th
tantaneous temperature of the specimen may not be the temperature indicate
the bath. The calculation of the temperature fluctuations of the (specimen b
bory, and of their variance, is beyond the scope of this Guide, but it must start from a K
brature cycle for the bath. That cycle may be observed by a’fine thermocoupl¢ and a

order, but failing that, an approximation of it may be deduced from a knowledge of th

metric distributions of possible values
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lue. For

measuring the fixed vertical height # (the measurand) of a column of liquid in a manometer,

height-measuring device may deviate from_ verticality by a small angle . The di
he device will always be larger than &; no values less than / are possible. This is beca
iection /cos ¥, implying I = h/cos ¢, and all values of cos are less than one; no values
ssible. This so-called “cosine error” can“also occur in such a way that the projection
bis equal to the observed distance-}, that is, / = hxos, and the observed distance is
basurand.

e 0 =1-cos{is introduced;-the two different situations are, assuming ¢ 0 or § <

in practice,

estimate of [, is the arithmetic mean or average of n independent repeated observatio
Variance u (l) [see Equations (3) and (5) in 4.2]. Thus it follows from Equations (F|

stance [
use i is
greater
xos{ of
always

1asis

(F.3a)

(F.3b)

ns [, of /

13a) and

)taln an estlmate of h or ha requwes an est|mate of the correction factor 0, wh|Ie to ol

btain the

specifically, appllcatlon of Equatlon (10) in 5.1.2 to Equatlons (F. 3a) and (F.3b) ylelds for ”c(h) and uc(ha)
(- and + signs, respectively)

= (1 15)2u2(l_)+l_2u2

()

W2 (T T22

(F.4a)

(F.4b)

To obtain estimates of the expected value of and the variance of 6, assume that the axis of the device used
to measure the height of the column of liquid in the manometer is constrained to be fixed in a vertical plane
and that the distribution of the values of the angle of inclination ¥ about its expected value of zero is a normal
distribution with variance 2. Although ¢ can have both positive and negative values, § = 1 — cos{ is positive
for all values of /. If the misalignment of the axis of the device is assumed to be unconstrained, the orientation

66 © ISO/IEC 2008 — Al rights reserved


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUIDE 98-3:2008(E)

of the axis can vary over a solid angle since it is capable of misalignment in azimuth as well, but ¢ is then
always a positive angle.

In the constrained or one-dimensional case, the probability element p(/)d{ (C.2.5, note) is proportional to
{exp[-¥2/(262)]}d¥; in the unconstrained or two-dimensional case, the probability element is proportional to
{exp[-¥2/(202)]}sindd¥. The probability density functions p(d) in the two cases are the expressions required
to determine the expectation and variance of ¢ for use in Equations (F.3) and (F.4). They may readily be
obtained from these probability elements because the angle ¢ may be assumed small, and hence
5=1-cos{ and sin{ may be expanded to lowest order in & This yields § 2/2, sin{ (= 25, and
d¥= d5/«/2_§. The probability density functions are then

1 / / 2\
= exp(—-o/o- F.5a
P(9T=— 7 oo (F.5a)
in one dimension
5 1
p(6)= —2exp(—§/02) (F.5b)
o

in two dimensions

where
8
[,|p(6)d5=1
Equations (F.5a) and (F.5b), which show that the most ptebable value of the correction ¢ in bgth cases is zero,
give in the one-dimensional case E(J) = 02/2 and var(8)< o4/2 for the expectation and the vdriance of §; and
in the two-dimensional case E(J) = 62 and var(J) = ,d% Equations (F.3a), (F.3b), and (F.4b) become then
n={T [1-(d/2)u® (4))] (F.6a)
ho1 1| 1+(a/2)u? ()] (F.6b)
u? h)=u§ (h3)=u2(l_)+(d/2)l_2u4([/) (F.6¢)

taken to be the
ated from all of
mple of a case

.

where d|is the dimensiondlity'(d = 1 or 2) and u(¥) is the standard uncertainty of the angle
best estimate of the standard deviation o of an assumed normal distribution and to be evall
the information availablé concerning the measurement (Type B evaluation). This is an exa
where the estimaté©f the value of a measurand depends on the uncertainty of an input quantit

Althougih Equations (F.6a) to (F.6¢) are specific to the normal distribution, the analysis can be carried out
assumirjg-other distributions for . For example, if one assumes for ¢ a symmetric rectangular|distribution with
upper and lower bounds of +J; and —{ in the one-dimensional case and +{y and zero in the two-dimensional
case, E(5)= J2/6 and var(§)= {$ /45 in one dimension; and E(5)= J2/4 and var(§)= {$ /48 in two
dimensions.

NOTE This is a situation where the expansion of the function Y = f(Xy, X5, ..., Xy) in a first-order Taylor series to
obtain uﬁ(y), Equation (10) in 5.1.2, is inadequate because of the nonlinearity of /: cos /. cos / (see Note to 5.1.2, and
H.2.4). Although the analysis can be carried out entirely in terms of  introducing the variable § simplifies the problem.

Another example of a situation where all possible values of a quantity lie to one side of a single limiting value
is the determination by titration of the concentration of a component in a solution where the end point is
indicated by the triggering of a signal; the amount of reagent added is always more than that necessary to
trigger the signal; it is never less. The excess titrated beyond the limit point is a required variable in the data
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reduction, and the procedure in this (and in similar) cases is to assume an appropriate probability distribution
for the excess and to use it to obtain the expected value of the excess and its variance.

EXAMPLE If a rectangular distribution of lower bound zero and upper bound Cj is assumed for the excess z, then
the expected value of the excess is Cy/2 with associated variance Cg /12 . If the probability density function of the excess
is taken as that of a normal distribution with 0 < z< 8, thatis, p(z)= (ox/ﬁ)‘1 exp[—zz/(20'2)] , then the expected value
is o+/2/7 with variance o2(1 - 2/x).

F.2.4.5 Uncertainty when corrections from a calibration curve are not applied

The note to 6.3.1 discusses the case where a known correction 5 for a significant systematic effect is not
applied to the reported result of a measurement but instead is taken into account by enlarging the
“uncertainty” assigned to the result. An example is replacement of an expanded uncertainty U with U + b,
where U is an ekpanded uncertainty obtained under the assumption b = 0. This practice is sometimes followed
in situations where all of the following conditions apply: the measurand Y is defined over a range of values of a
parameter ¢, as in the case of a calibration curve for a temperature sensor; U and b also depend on ¢; and only
a single value of “uncertainty” is to be given for all estimates y(¢) of the measurand over-the range of possible
values of ¢. In guch situations the result of the measurement is often reported as ¥(z) =y (¢) £ [Upad ¥ Dmaxls
where the subgcript “max” indicates that the maximum value of U and the maximum value of th¢ known
correction b over the range of values of ¢ are used.

Although this uide recommends that corrections be applied to measurement results for known significant
systematic effeg¢ts, this may not always be feasible in such a situation beCause of the unacceptable gxpense
that would be ipcurred in calculating and applying an individual correction, and in calculating and dising an
individual uncertainty, for each value of y(z).

A comparatively simple approach to this problem that is cofsistent with the principles of this Guifle is as
follows:

Compute a single mean correction b from

1 b

l2—t1 LRz

b=

b(r)d¢ (F.7a)

where 4 and 1, define the range of interest of the parameter ¢, and take the best estimate of Y{r) to be
yAt)=y(t)+b, Wwhere y(z) is the best uncorrected estimate of Y(¢). The variance associated with the mean
correction b over the range of inter€st is given by
1 f2

2 _ _ _— 2
u (b)—tz_t1 ) [b() 461 dr (F.7b)

not taking into gccount-the uncertainty of the actual determination of the correction 5(¢). The mean vatiance of
the correction b(¢) dueto its actual determination is given by

4
T

w2 [b(1)]=——] Tu7[B()]d1 (F.7c)

to—t491

where 12[b(1)] is the variance of the correction b(¢). Similarly, the mean variance of y(¢) arising from all sources
of uncertainty other than the correction 4(¢) is obtained from

uz[y(t)]— 1 J.tzuz[y(t)]dt (F.7d)

o =149

where u2[y(¢)] is the variance of y(¢) due to all uncertainty sources other than b(z). The single value of standard
uncertainty to be used for all estimates yXz) = y(¢)+ b of the measurand Y(¢) is then the positive square root of

ug(ya):uz[y(t)J+u2[b(t)J+u2(l;) (F.7¢e)
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An expanded uncertainty U may be obtained by multiplying «(y3) by an appropriately chosen coverage factor %,
U= kug(y3, yielding Y(¢)= y1¢)+*U = y(¢)+ b +U. However, the use of the same average correction for all
values of ¢ rather than the correction appropriate for each value of  must be recognized and a clear statement
given as to what U represents.

F.2.5 Uncertainty of the method of measurement

F.2.5.1 Perhaps the most difficult uncertainty component to evaluate is that associated with the method of
measurement, especially if the application of that method has been shown to give results with less variability
than those of any other that is known. But it is likely that there are other methods, some of them as yet
unknown or in some way impractical, that would give systematically different results of apparently equal
validity. This implies an a priori probability distribution, not a distribution from which samples can be readily
drawn anhd treated statistically. Thus, even though the uncertainty of the method may be the.dgminant one, the
only information often available for evaluating its standard uncertainty is one's existing\krjowledge of the

physical

NOTE

laborator]
attributal
laborator]

identifyin

F.2.6 |

F.2.6.1

charactg

masses
especia

calibratg

unknow

F.2.6.2
role. Th
may ha
often ve|
the first|
analyse
constitu

F.2.6.3
uncertai
environn
derived
uncertai

world. (See also E.4.4.)

Determining the same measurand by different methods, either in the same™laborato

O previously unrecognized systematic effects.

Incertainty of the sample

Many measurements involve comparing an unknown object with a known standar
ristics in order to calibrate the unknown. Examples.include end gauges, certain therm
resistors, and high purity materials. In mostisuch cases, the measurement m
ly sensitive to, or adversely affected by, sample selection (that is, the particular
d), sample treatment, or the effects of\wvafious environmental influence quantitig
n and standard respond in generally the same (and often predictable) way to such vari

In some practical measurement\situations, sampling and specimen treatment pl
s is often the case for the chemical analysis of natural materials. Unlike man-made
e proven homogeneity to a‘level beyond that required for the measurement, natur
'y inhomogeneous. This infilomogeneity leads to two additional uncertainty componen
requires determining how adequately the sample selected represents the parent
. Evaluation of the second requires determining the extent to which the seconda
bnts influence the measurement and how adequately they are treated by the measurer

In some case€s, careful design of the experiment may make it possible to evaluate
hty due totheé sample (see H.5 and H.5.3.2). Usually, however, especially wher
hental influence quantities on the sample are significant, the skill and knowledgeg
from_sexperience and all of the currently available information are required for
Nty

es, or by the same method in different laboratories, can often provide valuable ‘information abg
le to a particular method. In general, the exchange of measurement standards or reference 1
es for independent measurement is a useful way of assessing the reliability ,of evaluations of yincertainty and of

jé

y or in different
ut the uncertainty
naterials between

d having similar
bmeters, sets of
ethods are not
unknown being
s because the
hbles.

a much larger
aterials, which
Al materials are
s. Evaluation of
material being
ry (unanalysed)
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Annex G

Degrees of freedom and levels of confidence

G.1 Introduction

G.1.1
from the combi
defines an inter
It thus deals W
measurement r
values that coul

G.1.2 In mos
confidence — in]
only approximdg
observations of
Table E.1 in An

In most cases,

confidence of 9
either a 94 perg
with levels of cg
that no systemg
most extreme p

G.1.3 To obtg
level of confid
measurement r
normal distribuf]
o, * k,o that er
confidence p, ca

val y — U, SY<y+ U that has a high, specified coverage probab|I|ty or level of confi
ith the |ssue of determlnlng the coverage factor kp that produces an intenval’al
bsult y that may be expected to encompass a large, specified fraction p of the distril
[ reasonably be attributed to the measurand Y (see Clause 6).

practical measurement situations, the calculation of intervals having specified |
deed, the estimation of most individual uncertainty components in.such situations — i

a quantity described by a normal distribution has itself an uncérainty of about 13 perc
nex E).

t does not make sense to try to distinguish between, fof.example, an interval having 3
5 percent (one chance in 20 that the value of the fmeasurand Y lies outside the inten
ent or 96 percent interval (1 chance in 17 and 25; respectively). Obtaining justifiable
nfidence of 99 percent (1 chance in 100) and higher is especially difficult, even if it is 3
tic effects have been overlooked, because s@’little information is generally available a
prtions or “tails” of the probability distributions of the input quantities.

in the value of the coverage factor #;-that produces an interval corresponding to a 3
ence p requires detailed knowledge of the probability distribution characterized
bsult and its combined standard” uncertainty. For example, for a quantity z describ
on with expectation o and.standard deviation o, the value of k, that produces an
compasses the fraction p-of the distribution, and thus has a coverage probability or
n be readily calculated. Some examples are given in Table G.1.

Table G.1 — Value of the coverage factor &
that'produces an interval having level of confidence p
assuming a normal distribution

This annex addresses the general question of obtalnmg from the estimate y of the measurand Y, and
L.(y) that

ence p.
bout the
pution of

bvels of
5 at best

te. Even the experimental standard deviation of the mean/of.'as many as 30 rfepeated

ent (see

level of
val) and
ntervals
ssumed
bout the

pecified
by the
ed by a
interval
level of

NOTE

Level of confidence p Coverage factor ,
(percent)

68,27 1
90 1,645
95 1,960

95,45 2
99 2,576

99,73 3

By contrast, if z is described by a rectangular probability distribution with expectation o, and standard deviation

= a/\/_ where « is the half-width of the distribution, the level of confidence p is 57,74 percent for k,=1; 95 percent for
k =1,65; 99 percent for k,=1,71; and 100 percent for &, > J3 1,73; the rectangular distribution is “narrower” than the
normal distribution in the sense that it is of finite extent and has no “tails”.
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G14

If the probability distributions of the input quantities X, X, ..., Xy upon which the measurand Y

depends are known [their expectations, variances, and higher moments (see C.2.13 and C.2.22) if the

distributions are not normal

distributions], and if Y is a linear function of the

input quantities,

Y=cqXy +coXs + ... + ¢y Xy, then the probability distribution of Y may be obtained by convolving the individual

probability distributions [10]. Values of kp

confidence p may then be calculated from the resulting convolved distribution.

G.1.5

that produce intervals corresponding to specified levels of

If the functional relationship between Y and its input quantities is nonlinear and a first-order Taylor
series expansion of the relationship is not an acceptable approximation (see 5.1.2 and 5.1.5), then the

probability distribution of Y cannot be obtained by convolving the distributions of the input quantities. In such
cases, other analytical or numerical methods are required.

G.1.6
usually ¢
interval
distribut
confider
Theoren

G.2 Central Limit Theorem

G.21

then the
are not
Central
expecta
and o2}
cl~20'2(X

G.2.2
variance
moment
implies
quantitie
cl~20'2(X
uncertai
X; are tg

EXAMPL

bstimates, because it is unrealistic to expect that the level of confidence to be associa
can be known with a great deal of exactness, and because of the complexity of ‘convg
ons, such convolutions are rarely, if ever, implemented when intervals having spé
ce need to be calculated. Instead, approximations are used that take advantage of t
.

If ¥ = ciXq+coXp+..+ ey Xy = 2N, ¢;X; and all the Xare characterized by norn]

resulting convolved distribution of Y will also be normal. However, even if the distrik
normal, the distribution of ¥ may often be approximated by a normal distribution
Limit Theorem. This theorem states that the distribution of Y will be approximat
ion E(Y)=2",c,E(X;) and variance o?(Y)<2.", c?c2(X;), where E(X,) is the e
;) is the variance of X, if the X; are indepepdent and o2(Y) is much larger than any si
;) from a non-normally distributed X;.

The Central Limit Theorem is significant because it shows the very important role
s of the probability distributions'-of the input quantities, compared with that playe
s of the distributions, in determining the form of the resulting convolved distribution
that the convolved distribution converges towards the normal distribution as the n
s contributing to ¢?(Y) increases; that the convergence will be more rapid the clos
;) are to each othéri(equivalent in practice to each input estimate x; contributing
hty to the uncertainty of the estimate y of the measurand Y); and that the closer the dis
being normalj\the fewer X are required to yield a normal distribution for Y.

E The)rectangular distribution (see 4.3.7 and 4.4.5) is an extreme example of a non-norm

the conwi
of the th
02=42
respecti

1,9600 and

NOTE 1

NOTE 2

observations ¢, of a random variable ¢ with expectation

blution ‘of-even as few as three such distributions of equal width is approximately normal. If the
ee réctangular distributions is a so that the variance of each is ¢2/3, the variance of the convo

t quantities are
ed with a given
Iving probability
ecified levels of
ne Central Limit

al distributions,
utions of the X;
because of the
bly normal with
xpectation of X;
ngle component

played by the
i by the higher
of Y. Further, it
umber of input
br the values of
a comparable
tributions of the

Al distribution, but
half-width of each
ved distribution is
B70 and 2,379c;,

The 95 percent and 99 percent intervals of the convolved distribution are defined by 1,9

25760 (see Table G.1) [10].

o are defined by

For every interval with a level of confidence p greater than about 91,7 percent, the value of k, for a normal
distribution is larger than the corresponding value for the distribution resulting from the convolution of any number and size
of rectangular distributions.

It follows from the Central Limit Theorem that the probability distribution of the arithmetic mean ¢ of »

oc

q

and finite standard deviation o approaches a normal

distribution with mean o, and standard deviation o-/\/; as n — 8, whatever may be the probability distribution of 4.

G.2.3 A practical consequence of the Central Limit Theorem is that when it can be established that its
requirements are approximately met, in particular, if the combined standard uncertainty u.(y) is not dominated
by a standard uncertainty component obtained from a Type A evaluation based on just a few observations, or
by a standard uncertainty component obtained from a Type B evaluation based on an assumed rectangular
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distribution, a reasonable first approximation to calculating an expanded uncertainty Up = kpuc(y) that provides
an interval with level of confidence p is to use for k, a value from the normal distribution. The values most
commonly used for this purpose are given in Table G.1.

G.3 The s-distribution and degrees of freedom

G.3.1 To obtain a better approximation than simply using a value of kp from the normal distribution as in
G.2.3, it must be recognized that the calculation of an interval having a specified level of confidence requires,
not the distribution of the variable [Y - E(Y)]/o(Y), but the distribution of the variable (y — Y)/uq(y). This is
because in practice, all that is usually available are y, the estimate of ¥ as obtained from y = X", ¢, x;, where
x; is the of the 2 /aluated
from u2(y) =2 ) of the
estimate x;.

-
7

aund
arg

ag

mbirad AR P=N iatad IWWTE 128
C CUOTTTomTTICd varTtarios asSSouliatct™ \AALIRI

a-at Las)
et 75 e\

l.’V:1c,2u2(xi), where u(x;) is the standard uncertainty (estimated standard deviation

A\

NOTE Strictly speaking, in the expression (y — Y)/u(y), Y should read E(Y). For simplicity, such,a distinction
been made in a few places in this Guide. In general, the same symbol has been used for the physical‘quantity, th
variable that reprg¢sents that quantity, and the expectation of that variable (see 4.1.1, notes).

has only
b random

G3.2 Ifzisa
the arithmetic m
[see Equations
Student's distr|

and z is
ion of z
ution or

normally distributed random variable with expectation o, and standard deviation o,
ean of n independent observations z;, of z with s(z) the expégrimental standard deviaj
3) and (5) in 4.2], then the distribution of the variable ¢ = (2—"=)/s(z) is the ¢-distri

bution (C.3.8) with v=n — 1 degrees of freedom.

stimated

Consequently, i
by the arithme
deviation of the

the measurand Y is simply a single normally distributed quantity X, Y= X; and if X'is e
ic mean X of n independent repeated observations X, of X, with experimental i
mean s(X), then the best estimate of Y is y. =X and the experimental standard de\

standard
iation of

that estimate is
the t-distribution

Pr[—tp (v)

ug(¥)=s(X). Then ¢t =(z - «,)/s(z) = (X ~<X)/s(X) = (y = Y)/uc(») is distributed accq
with

rding to

<t

(G.1a)
or

(v)
which can be re

Pr[y—tp(

In these expreg
the parameter
encompassed K

prl 1, (G.1b)

(y=7)/uc(y)

written as

)

sions, Pr[]'means “probability of” and the #factor ¢ (v) is the value of ¢ for a given
— the~degrees of freedom (see G.3.3) — such fhat the fraction p of the ¢ distril
y the.interval —tp(v) to +tp(v). Thus the expanded uncertainty

V) ue(y) <Y <), (v) ug(v) |= p (G.10)

value of
bution is

U, =k,uc(y)=1,{v]ucly) (G.1d)
defines an interval y — U, to y + U, conveniently written as Y=y £ U,, that may be expected to encompass a
fraction p of the distribution of values that could reasonably be attributed to Y, and p is the coverage probability
or level of confidence of the interval.

G.3.3 The degrees of freedom v is equal to n — 1 for a single quantity estimated by the arithmetic mean of
n independent observations, as in G.3.2. If n independent observations are used to determine both the slope
and intercept of a straight line by the method of least squares, the degrees of freedom of their respective
standard uncertainties is v=n — 2. For a least-squares fit of m parameters to n data points, the degrees of
freedom of the standard uncertainty of each parameter is v=n—-m. (See Reference [15] for a further
discussion of degrees of freedom.)
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G.3.4 Selected values of ¢ (v) for different values of v and various values of p are given in Table G.2 at the

end of this annex. As v —
where in this expression % is the coverage factor required to obtain an interval with level
normally distributed variable. Thus the value of tp(8) in Table G.2 for a given p equals the value of kp

Table G.1

NOTE

8

the t-distribution approaches the normal distribution and ¢

()
. of

1 for the same p.

(1+2v)12%,

confidence p for a

Often, the t-distribution is tabulated in quantiles; that is, values of the quantile ¢, _ , are given, where 1 - o
denotes the cumulative probability and the relation

1—a= jj‘g’"‘f(z, v)dr

defines the quantile, where f is the probability density function of «. Thus ¢, and ¢; - , are related by p=1-2a. For
example, the value of the quantile #q 975, for which 1 — o= 0,975 and o = 0,025, is the same as ¢,(v) for p = 0,95.

G.4 Effective degrees of freedom
G.4.1 |In general, the #distribution will not describe the dlstr|but|on of the variable'(y — Y)/u.(y
sum of |two or more estimated variance components u? (y)—c u (x) (see 5.1.3), even i
estimatg of a normally distributed input quantity X.. However the distribution of that v
approximated by a rdistribution with an effective degrees of~freedom v obta
Welch-Satterthwaite formula [16], [17], [18]
4 4
Ue \V) _ i uj (y)
Vdff i=1 Vi
or
4
Verd = ug (»)
ef — N 4
Z uj ()
i-1 Vi
with
N
Veff] < Zvi
i=1
where ug( =Zl quj (y) (see 5.1.3). The expanded uncertainty U,=k uc(y) =t (Veff)uc(y)t
interval F =y + U, having-an approximate level of confidence p.
NOTE 1 If the yalue of vg obtained from Equation (G.2b) is not an integer, which will usually be thq
the correppondingwalue of 7, may be found from Table G.2 by interpolation or by truncating ves to the ne
N?TE 2 If,an input estimate x; is itself obtained from two or more other estimates, then the value of
ui(y)=[cuTx;

)if u2(y) is the
each x; is the
briable may be
ned from the

(G.2a)

(G.2b)

(G.2c)
nen provides an

case in practice,
t lower integer.

; to be used with

expression equivalent to Equation (G.2b).

NOTE 3

Depending upon the needs of the potential users of a measurement result, it may be useful,

Iculated from an

in addition to vgg,

to calculate and report also values for vega and vegg, computed from Equation (G.2b) treatlng separately the standard
uncertainties obtained from Type A and Type B evaluatlons If the contrlbutlons to uc(y) of the Type A and Type B
standard uncertainties alone are denoted, respectively, by ucA(y) and ucB(y) the various quantities are related by

ud(y)=ula(y)+uds(v)
ug(v) _ucaly) , uca(»)
Veff VeffA VeffB
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EXAMPLE

input quantities
observations,
u(x3)/x3 = 0,82 pe

[ug(») /912 =D %

Veff =

[
g[

Thus

respectively, with relative standard uncertainties wu(xq)/xq

u(x)fxi ]

X4, Xo, X3 are the arithmetic means of ny=10, n,=5, and n3=15 independent
= 0,25 percent, u(x)/x, = 0,57 perc
In this case, c¢;=9f/oX;=YlX; (fo be evaluated at xq, x5, x3 — see 5.1.3,

1[u(x,-)/x,—]2 =(1,03 percent)2 (see Note 2 to 5.1.6), and Equation (G.2b) becomes

rcent.

y)/y]4

1,034

Consider that Y= f(Xq, Xo, X3) = bX1XoX3 and that the estimates x4, xp, x3 of the normally distributed

repeated
ent, and
Note 1),

v =
e =0, 254

=100
7

0,57 0,824

10-1

The value of #, fo
this level of confi
(y to be determin
the interval is app

G.4.2 |In prac
non-normally di
probability distri
estimate y and
function t=(y —
expectation. In
Welch-Satterthy

The question ar
evaluation wher
recognizes that
Equation (E.7) i

u2

1

5-1 15-1

p =95 percent and v =19 is, from Table G.2, 795(19) = 2,09; hence the relative expanded unce
fdence is Ugs =2,09 - (1,03 percent) = 2,2 percent. It may then be stated that ¥ £+ Ugs = y (1
ed from y = bxqxox3), or that 0,978y < Y < 1,022y, and that the level of confidenee to be assoc
roximately 95 percent.

ice, u(y) depends on standard uncertainties u(x;) of input estimates of both norm
stributed input quantities, and the u(x;) are obtained from both frequency-based and

input estimates x; upon which y depends. Nevertheless; the probability distributio
Y)/u(y) can be approximated by the s-distribution if it is*expanded in a Taylor series

essence, this is what is achieved, in the/ lowest order approximation,
yaite formula, Equation (G.2a) or Equation (G.2b):

ises as to the degrees of freedom to assign\te a standard uncertainty obtained from &

vesf IS calculated from Equation (G.2b). Since the appropriate definition of degrees of

v as it appears in the t-distribution is“a measure of the uncertainty of the varianc

N E.4.3 may be used to define the degrees of freedom v,
u(x,)]”

Vi 20.2|:

The quantity in
uncertainty it is
available inform

EXAMPLE

u(x;) was evaluated leads-one to judge that the value of u(x;) is reliable to about 25 percent. This may be taken

that the relative
judged the value

large brackets jsythe relative uncertainty of u(x;); for a Type B evaluation of ¢

a subjective quantity whose value is obtained by scientific judgement based on thg
ation.

u(xl

u(x;)lu(x;) = 0,25, and thus from Equation (G.3), v; = (0,25)72/2 = 8. If instead
2. (See also Table E.1 in Annex E.)

Lincertainty is .
bf\u(x}) to be reliable to only about 50 percent, then v; =

rtainty for
+0,022)
ated with

ally and
a priori

butions (that is, from both Type A and Type B evaluations):A similar statement appligs to the

h of the
pbout its
by the

Type B
freedom
e s2(7),

(G.3)

standard
pool of

Consider that'one's knowledge of how input estimate x; was determined and how its standard ufpcertainty

to mean
one had

G.4.3

In the discussion in 4.3 and 4.4 of Type B evaluation of standard uncertainty from an a priori

probability distribution, it was implicitly assumed that the value of u(x;) resulting from such an evaluation is
exactly known. For example, when u(x;) is obtained from a rectangular probability distribution of assumed
half-width a = (a, —a_)/2 as in 4.3.7 and 4.4.5, u(x;)= a/\/§ is viewed as a constant with no uncertainty
because a, and a_, and thus q, are so viewed (but see 4.3.9, Note 2). This implies through Equation (G.3) that
v, — 8 or 1/v; — 0, but it causes no difficulty in evaluating Equation (G.2b). Further, assuming that v, —» 8 is
not necessarily unrealistic; it is common practice to choose a_ and a, in such a way that the probability of the
quantity in question lying outside the interval a_ to a, is extremely small.
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G.5 Other considerations

G.5.1 An expression found in the literature on measurement uncertainty and often used to obtain an
uncertainty that is intended to provide an interval with a 95 percent level of confidence may be written as

1/2
Ugs :[:55(%)3 +3u2] (G.4)

Here 795(vag) is taken from the r-distribution for vyg degrees of freedom and p = 95 percent; vy is the
effective degrees of freedom calculated from the Welch-Satterthwaite formula [Equation (G.2b)] taking into
account only those standard uncertainty components s; that have been evaluated statlstlcally from repeated
observations in the current measurement; s = c2s2 ¢;=dflox;; and u? = Zu (»)= Z j( 2/3)
accounts for all other components of uncertainty, where +a; and ~a;are the assumed exactly.khown upper and

lower bqunds ofXj relative to its best estimate X; (thatis, x —a; < X <x;t aJ)

NOTE A component based on repeated observations made outside the current measurément is tr¢ated in the same
way as gny other component included in »2. Hence, in order to make a meaningful comparison betwegn Equation (G.4)
and Equation (G.5) of the following subclause, it is assumed that such components, if present, are neglig|ble.

G.5.2 |If an expanded uncertainty that provides an interval with a 95 percent’level of confidence is evaluated
accordinjg to the methods recommended in G.3 and G.4, the resulting expnession in place of Efuation (G.4) is

)1/2 G5)

2
Ugg =tg5 (veff)(s +u
where v{g is calculated from Equation (G.2b) and the calculation includes all uncertainty compgnents.

In most cases, the value of Ugg from Equation (G.5) will.be larger than the value of Uz from Bquation (G.4), if
it is assumed that in evaluating Equation (G.5), all Bype B variances are obtained from a pyiori rectangular
distributlons with half-widths that are the same as the bounds a; used to compute 12 of Equation (G.4). This
may be understood by recognizing that, although‘zgs(vag) will in most cases be somewhat larger than 7g5(ves),
both fadtors are close to 2; and in Equation(G.5) 2 is multiplied by ¢ (veff) 4 while in Eq hation (G.4) it is
multipligd by 3. Although the two expressions yield equal values of U335 and Ugg for u? <|s2, Uzs will be
as much as 13 percent smaller than Ugg if u? > s2. Thus in general, Equation (G.4) yields an|uncertainty that
provideg an interval having a smaller level of confidence than the interval provided by the expanded
uncertaipty calculated from Equation (G.5).

NOTE 1 In the limits u?/s2 ~8" and ve; — 8, Uzs — 1,732u while Ugs — 1,960u. In this case, Uzs pliovides an interval
having oply a 91,7 percent-level of confidence, while Ugg provides a 95 percent interval. This case i§ approximated in
practice when the components obtained from estimates of upper and lower bounds are dominant, large in number, and
have vallies of u* (y) ~ c2a /3 that are of comparable size.

NOTE 2| For awnormal distribution, the coverage factor & =3 1,732 provides an interval with a Igvel of confidence
p =91,643... percent. This value of p is robust in the sense that it is, in comparison with that of any othe¢r value, optimally
independent.of Small deviations of the input quantities from normality.

G.5.3 Occasionally an input quantity .X; is distributed asymmetrically — deviations about its expected value
of one sign are more probable than deviations of the opposite sign (see 4.3.8). Although this makes no
difference in the evaluation of the standard uncertainty u(x;) of the estimate x; of X, and thus in the evaluation
of u.(y), it may affect the calculation of U.

It is usually convenient to give a symmetric interval, Y=y + U, unless the interval is such that there is a cost
differential between deviations of one sign over the other. If the asymmetry of X; causes only a small
asymmetry in the probability distribution characterized by the measurement result y and its combined standard
uncertainty u.(y), the probability lost on one side by quoting a symmetric interval is compensated by the
probability gained on the other side. The alternative is to give an interval that is symmetric in probability (and
thus asymmetric in U): the probability that Y lies below the lower limit y — U_ is equal to the probability that
Y lies above the upper limit y + U,. But in order to quote such limits, more information than simply the
estimates y and u.(y) [and hence more information than simply the estimates x; and u(x;) of each input quantity
X is needed.
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G.5.4 The evaluation of the expanded uncertainty U, given here in terms of u.(y), ves, and the factor ’p(Veff)
from the r-distribution is only an approximation, and it has its limitations. The distribution of (y — Y)/u.(y) is
given by the ¢distribution only if the distribution of Y is normal the estimate y and its combined standard
uncertainty u.(y) are independent, and if the distribution of « ( ) is a . 2 distribution. The introduction of veff,
Equation (G.2b), deals only with the latter problem, and prowdes an approximately . 2 distribution for uc(y)
the other part of the problem, arising from the non-normality of the distribution of Y, requires the consideration

of higher mome

nts in addition to the variance.

G.6 Summary and conclusions

G.6.1 The co

erage factor b that nrn\/ldnc an-interval hQ\Ilhﬂ alevel of confidence. B close to g

pecified

level can only bp

£ found if there is extenS|ve knowledge of the probablllty distribution of each input qua

if these distributions are combined to obtain the distribution of the output quantity. The input estimate

their standard u

G.6.2 Becaus
by the extent g
quantity is accq
probability distri
effective degreds

G.6.3 To obtg
component. Fog
independent rej
independent qu
Type B evaluat

Equation (G.3)]

G.6.4 Thus th

hcertainties u(x;) by themselves are inadequate for this purpose.
b the extensive computations required to combine probability distributionsiare seldom

pptable. Because of the Central Limit Theorem, it is usually sufficient to assume
bution of (y — Y)/u.(y) is the tdistribution and take &, = ¢ (veff ), with "the #-factor basg
s of freedom v of u(y) obtained from the Welch- Satferthwane formula, Equation (G.?

in veg from Equation (G.2b) requires the degrees of freedom v, for each standard un
I a component obtained from a Type A evaluation,{v; is obtained from the nu
eated observations upon which the corresponding/input estimate is based and the ny
antities determined from those observations (see G.3.3). For a component obtaineq
on, v; is obtained from the judged reliability of\the value of that component [see G

e following is a summary of the preferred method of calculating an expanded un

nd reliability of the available information, an approximation to the distribution of the

ntity and
s x; and

justified
output
that the
d on an

b).

Certainty
mber of
mber of
from a
4.2 and

certainty

U,= kpuc(y) intg
1)
2)

nded to provide an interval Y=y + Us that has an approximate level of confidence p:

Obtain y and u(y) as described in Clauses 4-and 5.

Compute v from the Welch-Sattertiwaite formula, Equation (G.2b) (repeated here for easy reference)

4

(»)

Y (G.2b)
(»)

Veff =1

H from a
v, — 8;

If u(x;) is optained from a Type A evaluation, determine v; as outlined in G.3.3. If u(x;) is obtaine
Type B evaluation.and it can be treated as exactly known, which is often the case in practice,
otherwise, estimate v; from Equation (G.3).

3) Obtain the ¢factor ¢

t(vesf) for the desired level of confidence p from Table G.2. If v is not an integer,
either interpolate or{j

uncate v to the next lower integer.
4) Take ky, = tp(veﬁ) and calculate U,= kpuc(y).

G.6.5 In certain situations, which should not occur too frequently in practice, the conditions required by the
Central Limit Theorem may not be well met and the approach of G.6.4 may lead to an unacceptable result.
For example, if u(y) is dominated by a component of uncertainty evaluated from a rectangular distribution
whose bounds are assumed to be exactly known, it is possible [if ¢ (veﬁ > f] that y + U, and y - Uy, the
upper and lower limits of the interval defined by Uy, could lie outside the bounds of the probab|llty d|str|but|on
of the output quantity Y. Such cases must be dealt with on an individual basis but are often amenable to an
approximate analytic treatment (involving, for example, the convolution of a normal distribution with a
rectangular distribution [10]).
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G.6.6 For many practical measurements in a broad range of fields, the following conditions prevail:

the estimate y of the measurand Y is obtained from estimates x; of a significant number of input quantities
X, that are describable by well-behaved probability distributions, such as the normal and rectangular

dist

ributions;

the standard uncertainties u(x;) of these estimates, which may be obtained from either Type A or Type B
evaluations, contribute comparable amounts to the combined standard uncertainty u.(y) of the
measurement result y;

the linear approximation implied by the law of propagation of uncertainty is adequate (see 5.1.2 and

E.3

A);

the
ma

Under t
combing
can be {
the sign
approxin
betweer

addg
95

or, for m

add
99

Althoug

uncertainty of u.(y) is reasonably small because its effective degrees of freedom g
pnitude, say greater than 10.

hese circumstances, the probability distribution characterized by the measuremen
d standard uncertainty can be assumed to be normal because of the Central Limit Thg
aken as a reasonably reliable estimate of the standard deviation of that nérmal distribd

hate nature of the uncertainty evaluation process and the impracticality of tryin
intervals having levels of confidence that differ by one or two¢percent, one may do the

pt k=2 and assume that U= 2u(y) defines an interval having a level of confidence ¢
bercent;

ore critical applications,

pt k = 3 and assume that U = 3u(y) defines @n interval having a level of confidence ¢
percent.

n this approach should be suitable for'many practical measurements, its applicability

measur
close th

99 percent, respectively. Although fofwgg =11, k=2 and k = 3 underestimate 7g5(11) and #g9(1

10 perc
for all v
than 99
produce]
Veff and

ment will depend on how close k5 2 must be to 7g5(ve) OF k=3 must be to 1gg(ves)
level of confidence of the.interval defined by U= 2u,(y) or U= 3ug(y) must be t

nt and 4 percent, respectively (see Table G.2), this may not be acceptable in some
hlues of v somewhat larger than 13, k = 3 produces an interval having a level of ¢
percent. (See Table G.2, which also shows that for v — 8 the levels of confidencs
d by k=2 and k=3 are 95,45 percent and 99,73 percent, respectively). Thus, in praq
what is requiréd of the expanded uncertainty will determine whether this approach can

has a significant

t result and its
orem; and u.(y)
tion because of

ficant size of vy Then, based on the discussion given in this annex, including that gmphasizing the

y to distinguish
following:

f approximately

f approximately

0 any particular
that is, on how
b 95 percent or
1) by only about
cases. Further,
bnfidence larger
of the intervals
tice, the size of
be used.
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Table G.2 — Value of 7 (v) from the r-distribution for degrees of freedom v that defines
an interval —tp(v) o +tp(v) that encompasses the fraction p of the distribution

Df? g::jismOf Fraction p in percent
v 68,272 90 95 95,452) 99 99,732)
1 1,84 6,31 12,71 13,97 63,66 235,80
2 1,32 2,92 4,30 4,53 9,92 19,21
3 1,20 2,35 3,18 3,31 5,84 9,22
4 1,14 2,13 2,78 2,87 4,60 6,62
5 1,11 2,02 2,57 2,65 4,03 5,51
6 1,09 1,94 2,45 2,52 3,71 4,90
7 1,08 1,89 2,36 2,43 3,50 4,53
8 1,07 1,86 2,31 2,37 3,36 4,28
9 1,06 1,83 2,26 2,32 3,25 4,09
10 1,05 1,81 2,23 2,28 317 3,96
11 1,05 1,80 2,20 2,25 3,1 3,85
12 1,04 1,78 2,18 2,23 3,05 3,76
13 1,04 1,77 2,16 2,21 3,01 3,69
14 1,04 1,76 2,14 2,20 2,98 3,64
15 1,03 1,75 2,43 2,18 2,95 3,59
16 1,03 1,75 2,12 217 2,92 3,54
17 1,03 1,74 2,1 2,16 2,90 3,51
18 1,03 1)73 2,10 2,15 2,88 3,48
19 1,03 1,73 2,09 2,14 2,86 3,45
PO 1,03 1,72 2,09 2,13 2,85 3,42
D5 1,02 1,71 2,06 2,1 2,79 3,33
B0 1,02 1,70 2,04 2,09 2,75 3,27
B5 1,01 1,70 2,03 2,07 2,72 3,23
) T,07 T.68 7,02 Z,06 Z,70 3,20
45 1,01 1,68 2,01 2,06 2,69 3,18
50 1,01 1,68 2,01 2,05 2,68 3,16
100 1,005 1,660 1,984 2,025 2,626 3,077
8 1,000 1,645 1,960 2,000 2,576 3,000

a) For a quantity z described by a normal distribution with expectation o, and standard deviation o, the interval
o, + ko encompasses p = 68,27 percent, 95,45 percent and 99,73 percent of the distribution for k=1, 2 and 3,

respectively.
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Annex H

Examples

This annex gives six examples, H.1 to H.6, which are worked out in considerable detail in order to illustrate the
basic principles presented in this Guide for evaluating and expressing uncertainty in measurement. Together
with the examples included in the main text and in some of the other annexes, they should enable the users of
this Guide to put these principles into practice in their own work.

Becaus
becausd
this Gu
While th
calculati
differ sli

It is poir
uncertai
combing
compon

the examples, the method used to evaluate a particular component of uncertainty is not sped

as to its
a Type |

H.1 Ei

This ex
uncertai

they and the numerical data used in them have been chosen mainly to demonstrate
de, neither they nor the data should necessarily be interpreted as describing. real
e data are used as given, in order to prevent rounding errors, more digits are ‘retained
ons than are usually shown. Thus the stated result of a calculation involving severa

ted out in earlier portions of this Guide that classifying the methods used to evaluatg
hty as Type A or Type B is for convenience only; it is not réquired for the detern
d standard uncertainty or expanded uncertainty of a measurement result becausq
ents, however they are evaluated, are treated in the same‘way (see 3.3.4, 5.1.2, and

fied. Moreover,
the principles of
measurements.
in intermediate
quantities may

ghtly from the result implied by the numerical values given in the text for these quantitigs.

components of
mination of the
all uncertainty
E.3.7). Thus, in

type. However, it will be clear from the discussion whether a component is obtained fi
B evaluation.

nd-gauge calibration

bmple demonstrates that even an apparently simple measurement may involve s\
hty evaluation.

fically identified
om a Type A or

btle aspects of

ard of the same
h their lengths:

(H.1)

H.1.1 The measurement problem
The length of a nominally 50 mm end gauge is determined by comparing it with a known stand
nominal|length. The direct output of the comparison of the two end gauges is the difference d i
deI(1+a. )-Is(1+eas. 5)
where
/ is the measurand, that is, the length at 20 °C of the end gauge being calibrated;
lg Is the length of the standard at 20 “C as given In its calibration certificate;
o and ag are the coefficients of thermal expansion, respectively, of the gauge being ca
standard;
. and.g are the deviations in temperature from the 20 °C reference temperature, resp

gauge and the standard.

librated and the

ectively, of the
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H.1.2 Mathematical model

From Equation (H.1), the measurand is given by

_ls(1+0{s, S)+d

(1+a. )

le +d+ls(0{s, s~ )+

(H.2)

If the difference in temperature between the end gauge being calibrated and the standard is written as

0.
becomes

I1=f(ls,d

Og,. ,60(,6. )=1Q +d—lq(60{.. + Oc ). )

. —.g and the difference in their thermal expansion coefficients as 6« = o — ag, Equation (H.2)

(H.3)

The differences|

d. and d¢, but not their uncertainties, are estimated to be zero; and 6, ag, ®.’and . are

assumed to be [uncorrelated. (If the measurand were expressed in terms of the variables ., .'d, ¢, and «g, it
would be necespary to include the correlation between . and . g, and between « and «g.)
It thus follows from Equation (H.3) that the estimate of the value of the measurand / may be obtained from the
simple expressipn /g +d, where g is the length of the standard at 20 °C as givendin its calibration certificate
and d is estimated by d, the arithmetic mean of n =5 independent repeated-gbservations. The cpmbined
standard uncertainty u.(/) of / is obtained by applying Equation (10) in 5.1.2cte~Equation (H.3), as discussed
below.
NOTE In this and the other examples, for simplicity of notation, the _same symbol is used for a quantity and its
estimate.
H.1.3 Contrihutory variances
The pertinent appects of this example as discussed in this and the following subclauses are summarized in
Table H.1.
Since it is assumed that 6z = 0 and 3. = 0, the application of Equation (10) in 5.1.2 to Equation (H.3) yields

ug(l) = c% 2(ls)+c§u2(d)+cisu2(Ots)+c'2u2(. )+C'62a u2(8a)+c§’ u2(8. ) (H.4)
with

csg Z.f/.ls =1—(8a-. +0g o), )21

ca’ = f/ d =1

C“S _f/ aSZ—lss. =0

c =.f]..|=¥lg¢dx =0

Csa Zf/ 80!2—18.

Cs. =f/6 =—l§!S
and thus

ug (1) =u2(ls)+u2(d)+l§. zuz(&x )+l§a§u2(6. ) (H.5)
80 © ISO/IEC 2008 — Al rights reserved


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUIDE 98-3:2008(E)

H.1.3.1

Uncertainty of the calibration of the standard, u(/g)

The calibration certificate gives as the expanded uncertainty of the standard U = 0,075 ym and states that it
was obtained using a coverage factor of £ = 3. The standard uncertainty is then

u(lg)=(0,075 um)/3 =25 nm

H.1.3.2

Uncertainty of the measured difference in lengths, u(d)

The pooled experimental standard deviation characterizing the comparison of / and /5 was determined from
the variability of 25 independent repeated observahons of the d|fference in Iengths of two standard end

gauges a

The sta

u(a-

dard uncertalnty assomated with the arlthmet|c mean of these readlngs is then (see 4

)=s(57)=(13 nm)/\/§=5,8 nm

According to the calibration certificate of the comparator used to compare / with”/g, its ung

random
thus the
Annex @

u(a

The ung
sigma lg

u(az

The totg

u2

or

u(d
H.1.3.3
The cos

uncertai
then [se

errors” is £0,01 um at a level of confidence of 95 percent and is basédjon 6 replicate
standard uncertainty, using the rfactor ¢g5(5)=2,57 for v=6.<1=5 degrees o
b, Table G.2), is

1)=(0,01um)/2,57 =3,9 nm

ertainty of the comparator “due to systematic errors”fis given in the certificate as 0,02
vel”. The standard uncertainty from this cause may therefore be taken to be

)=(0,02um)/3=6,7 nm
| contribution is obtained from the sum of\the estimated variances:

d)=u?(d)+u®(dy)+u?(dy) =93 nM?

)=97 nm

Uncertainty of-the thermal expansion coefficient, u(ag)

fficient of thermal expansion of the standard end gauge is given as ag=11,5- 10
hty repreSented by a rectangular distribution with bounds +2 - 1076 °C~1. The standa
e Equation (7) in 4.3.7]

4p.4)

ertainty “due to
measurements;
f freedom (see

um at the “three

—6 °C=1 with an
rd uncertainty is

u(

n\—(% 108 °(“1)/\‘/3—1 2. 1076 o1

Since ¢

o/

s =df/dag =-Igd. =0 as indicated in H.1.3, this uncertainty contributes nothing to

of /in first order. It does, however, have a second-order contribution that is discussed in H.1.7.

the uncertainty
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Table H.1 — Summary of standard uncertainty components

Standard Value of Degrees of
uncertainty Source of uncertainty standard c; = 0f10x; u;(1) = |ej|u(x;) freedom
component uncertainty

u(x;) u(x;) (nm)
u(ls) Calibration of standard end 25 nm 1 25 18
gauge
u(d) Measured difference 9,7 nm 1 9,7 25,6
between end gauges
u(d) repeated observations 58 nm 24
u(dq) random effects of 3,9 nm 5
comparator
u(do) systematic effects of 6,7 nm 8
comparator
u(as) Thermal expansion 1,2 1076 °C™1 0 0
coefficient of standard end
gauge
u(.) Temperature of test bed 0,41 °C 0 0
u(,_) mean temperature of bed 0,2 °C
u(.) cyclic variation of 0,35°C
temperature of room
u(da) Difference in expansion 0,58 - 1076 °C1 -ls. 2,9 50
coefficients of end gauges
u(®.) Difference in temperatures of | 0,029 °C -lsag 16,6 2
end gauges
u2(1)=" u?(1)=1Qq02 nm?
ug(l)F32nm
Veﬂ:(l) = 16
H.1.3.4 Uncertainty of the deviation of the temperature of the end gauge, u(. )

The temperatur|

observations w.

e of the test™bed is reported as (19,9 = 0,5) °C; the temperature at the time of the individual
s not_recorded. The stated maximum offset, . =0,5 °C, is said to represent the ampglitude of

an approximately cyclical variation of the temperature under a thermostatic system, not the uncertainty of the

mean temperatyire./The value of the mean temperature deviation

. =19,9°C-20°C=-0,1°C

is reported as having a standard uncertainty itself due to the uncertainty in the mean temperature of the test

bed of
u(. )=0,2

°C

while the cyclic variation in time produces a U-shaped (arcsine) distribution of temperatures resulting in a
standard uncertainty of

u(.)=(05°C)/¥2=0,35°C
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The temperature deviation . may be taken equal to . , and the standard uncertainty of ¢ is obtained from

w? (. )=u?(")+u?(.)=0,165°C?
which gives
u(. )=0,41°C

Since ¢ =0f/d. =-Igda=0 as indicated in H.1.3, this uncertainty also contributes nothing to the uncertainty
of 7in first order; but it does have a second-order contribution that is discussed in H.1.7.

H.1.3.5 Uncertainty of the difference in expansion coefficients, u(5)

The estimated bounds on the variability of oz are +1 - 1076 °C~1, with an equal probabilit{'o

value within those bounds. The standard uncertainty is

u(§e)=(1- 10®°c™") N3 =058 107 !

H.1.3.6 | Uncertainty of the difference in temperature of the gauges, «(07)

The standard and the test gauge are expected to be at the same temperature, but the temper
could li¢ with equal probability anywhere in the estimated interval -0,05 °C to +0,05 °C{

uncertaipty is

u(§ )=(0,05°C)/\/3=0,029°C

H.1.4 Combined standard uncertainty

The combined standard uncertainty u(/) is calculated from Equation (H.5). The individual tern

and subptituted into this expression to obtain
2
uZ(1)=(25nm)* +(9,7 nm)* + (0,05 m)° (-0,1°C)* (0,58 - 10° c™")" +

2
(0,05 m)? (11544076 ") (0,029 °C)*

=(25 nm)2 +(9;7 nm)2 +(29 nm)2 +(16,6 nm)2 =1002 nm?

or

uc (/) = 32-nim

The dominant component of uncertainty is obviously that of the standard, u(/c) =

25 nm.

f 0 having any

ature difference
The standard

ns are collected

(H.6a)

(H.6b)

(H.6c)

H.1.5 Final result

The calibration certificate for the standard end gauge gives /g = 50,000 623 mm as its length at 20 °C. The
arithmetic mean d of the five repeated observations of the difference in lengths between the unknown end
gauge and the standard gauge is 215 nm. Thus, since [ =/g+ d (see H.1.2), the length 7 of the unknown end
gauge at 20 °C is 50,000 838 mm. Following 7.2.2, the final result of the measurement may be stated as:

/=50,000 838 mm with a combined standard uncertainty u

Cc
combined standard uncertainty is u.//=6,4 - 1077,

=32 nm. The corresponding relative
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H.1.6 Expanded uncertainty

Suppose that one is required to obtain an expanded uncertainty Ugg = kggu(/) that provides an interval having
a level of confidence of approximately 99 percent. The procedure to use is that summarized in G.6.4, and the
required degrees of freedom are indicated in Table H.1. These were obtained as follows:

1)

2)

3)

4)

The calculation
of veg(d) in 2) a

To obtain the rg
then follow
2,92 - (32 nm) -

It

Uncertainty of the calibration of the standard, u(lg) [H.1.3.1]. The calibration certificate states that the
effective degrees of freedom of the combined standard uncertainty from which the quoted expanded

uncertainty

was obtained is vg(lg) = 18.

Uncertainty of the measured difference in lengths, u(d) [H.1.3.2]. Although d was obtained from five
repeated observations, because u(d) was obtained from a pooled experimental standard deviation based

on 25 obse
of freedom
d4 was obt3
comparator
Equation ((
Veff(d), is th

Verf (d

Uncertainty
+1.1076°
Equation ((

Uncertainty
-0,05°C tg
from Equat

fFvations, the degrees of freedom of u(d) 1S v(d )= 2o —1= 24 (see H.3.6, note). The
of u(d4), the uncertainty due to random effects on the comparator, is v(d{) =6 - 15
ined from six repeated measurements. The 0,02 ym uncertainty for systematic\effec

may be assumed to be reliable to 25 percent, and thus the degreesqof.'freedq

bn obtained from Equation (G.2b) in G.4.1:

[w(@)ra @ v )] (0.7 nm)’ e
u4(c7) +u4(d1) ut(dy) (58 nm)4 . (3,9 nm)4 +(6,7 nm)4 ’

of the difference in expansion coeficients, u(dca) [H.1.3.5]. The estimated bo
b.3) in G.4.2, v(dax) = 50.

of the difference in temperatures of+the gauges, u(d.) [H.1.3.6]. The estimated
+0,05 °C for the temperature difference d. is believed to be reliable only to 50 percer
on (G.3) in G.4.2 gives v(d. ) = 2.

of veg(/) from Equation (G.2b)ir G.4.1 proceeds in exactly the same way as for the cal

Veff (l):

pove. Thus from Equations (H.6b) and (H.6¢) and the values for v given in 1) through 4
(32 nm)4
4 4 4 4 = 16,7
(25 nm) +(9,7 nm)” (29 nm) +(16,6 nm)

18 25,6 50 2
quired_expanded uncertainty, this value is first truncated to the next lower integer, v
s from Table G.2 in AnnexG that #99(16)=2,92, and hence Ugg = tg9(1

=93 nm. Following 7.2.4, the final result of the measurement may be stated as:

degrees
because
s on the
m from

5.3) in G.4.2 is v(d,) = 8 (see the example of G.4.2). The effective degrees-of freedom of u(d),

unds of

C~1 on the variability of 8o are deemed to.be reliable to 10 percent. This gives, from

interval
t, which

culation

),

(1) = 16.
B)uc(l) =

/= (50,000 838 + 0,000 093) mm, where the number following the symbol + is the numerical value of an
expanded uncertainty U = ku,, with U determined from a combined standard uncertainty u, = 32 nm and a
coverage factor k£ = 2,92 based on the ¢-distribution for v = 16 degrees of freedom, and defines an interval
estimated to have a level of confidence of 99 percent. The corresponding relative expanded uncertainty is

Uli=1,9-

107S.
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H.1.7 Second-order terms

The note to 5.1.2 points out that Equation (10), which is used in this example to obtain the combined standard
uncertainty u(/), must be augmented when the nonlinearity of the function Y = f(X;, X5, ..., Xy) is so significant
that the higher-order terms in the Taylor series expansion cannot be neglected. Such is the case in this
example, and therefore the evaluation of u.(/) as presented up to this point is not complete. Application to
Equation (H.3) of the expression given in the note to 5.1.2 vyields in fact two distinct non-negligible
second-order terms to be added to Equation (H.5). These terms, which arise from the quadratic term in the
expression of the note, are

léuz(ﬁa)uz(. )+l§u2(as)u2(8. )

but only|the first of these terms contributes significantly to u(/):

Isu(8a)u(. )= (0,05m)(0,58: 107° °C™")(0,41°C) = 11,7 nm
Isi(ers)u(3. ) = (0,05 m)(1,2: 107° °C™"}(0,029°C) =1,7 nm

The secpnd-order terms increase u.(/) from 32 nm to 34 nm.

H.2 Simultaneous resistance and reactance measurement

This eXample demonstrates the treatment of multiple/ measurands or output quantijes determined
simultarfeously in the same measurement and the correlation of their estimates. It considers ¢nly the random
variatior}s of the observations; in actual practice, the uncertainties of corrections for systemalic effects would
also corftribute to the uncertainty of the measurementresults. The data are analysed in two different ways with
each yiglding essentially the same numerical values:

H.2.1 The measurement problem

The res|stance R and the reactance X of a circuit element are determined by measuring the amplitude V' of a
sinusoidally-alternating potential  difference across its terminals, the amplitude 7 of the alternating current
passing|through it, and the phase=shift angle ¢ of the alternating potential difference relative tp the alternating
current. |Thus the three input quantities are ¥, I, and ¢ and the three output quantities — themeasurands —
are the three impedance ¢omponents R, X, and Z. Since Z2 = R2 + X2, there are only two ind¢pendent output
quantitigs.

H.2.2 Mathematical model and data

The measurands are related to the input quantities by Ohm's law:

R:%cosqﬁ; X:%sin(p; Z= (H.7)

~| ¥

Consider that five independent sets of simultaneous observations of the three input quantities V, 7, and ¢ are
obtained under similar conditions (see B.2.15), resulting in the data given in Table H.2. The arithmetic means
of the observations and the experimental standard deviations of those means calculated from Equations (3)
and (5) in 4.2 are also given. The means are taken as the best estimates of the expected values of the input
quantities, and the experimental standard deviations are the standard uncertainties of those means.

Because the means V, I, and ¢ are obtained from simultaneous observations, they are correlated and the
correlations must be taken into account in the evaluation of the standard uncertainties of the measurands R, X,
and Z. The required correlation coefficients are readily obtained from Equation (14) in 5.2.2 using values of
s(V, 1), s(V,9), and s(I, ¢) calculated from Equation (17) in 5.2.3. The results are included in Table H.2,
where it should be recalled that »(x;, xj) = r(xj, x;) and r(x;, x;) = 1.
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Table H.2 — Values of the input quantities V, I, and ¢ obtained from five sets
of simultaneous observations

Set number Input quantities
k 14 1 [
V) (mA) (rad)
1 5,007 19,663 1,045 6
2 4,994 19,639 1,043 8
3 5,005 19,640 1,046 8
4 4,990 19,685 1,042 8
5 4,999 19,678 1,043 3
Arithmetic mean V =4,999 0 7 =19,6610 ¢ =1,044 46
Fxpermental standard | (7) =0,0032 | s(T) =0,0095 | () =0.00075

Correlation coefficients

r(V, 1) =-0,36
r(V,9) = 0,86
r(,9) =-0,65

H.2.3 Results: approach 1
Approach 1 is simmarized in Table H.3.

The values of the three measurands R, X, and Z are obtained from the relations given in Equation (H[7) using
the mean valugs ¥, I,and ¢ of Table H.2 for V,.L;~and ¢. The standard uncertainties of R, X, ard Z are
obtained from Equation (16) in 5.2.2 since, as_pointed out above, the input quantities vV, I,anfl ¢ are

correlated. As [an example, consider Z =¥K(/I. Identifying ¥ with xq, 1 with x,, and f with ¥r=vlil,
Equation (16) in 5.2.2 yields for the combined-standard uncertainty of Z

2 (2) =[7’:)2u2(7)+(712]2u2(7)+2(%][_7£2ju(

:zZ[”(;)r+22[@T—222{"(1/_17)""(;)}(17, 7) (H.8b)

uér (Z) = u? (I7)+u? (7)—2ur (V)ur(lt)r(f, ]_) (H.8c)

<

Ju(T)r(V,T) (H.8a)

or

where u(V)=s(V), u(I)=s(I), and the subscript “r’ in the last expression indicates that u is a relative
uncertainty. Substitution of the appropriate values from Table H.2 into Equation (H.8a) then gives
us(2)=0,236. .

Because the three measurands or output quantities depend on the same input quantities, they too are
correlated. The elements of the covariance matrix that describes this correlation may be written in general as

yl ym ZZ D m, xi u(xj)r(xi,xj) (H.9)

l1j1
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where y; = fi(x4, X, ..., xy) and y, =f, (x4, X5, ..., x)). Equation (H.9) is a generalization of Equation (F.2) in
F.1.2.3 when the g, in that expression are correlated. The estimated correlation coefficients of the output
quantities are given by r(y;, y,,) = ul, y,)u(y)u(y,), as indicated in Equation (14) in 5.2.2. It should be
recognized that the diagonal elements of the covariance matrix, u(y;, y;) = uz(yl), are the estimated variances
of the output quantities y, (see 5.2.2, Note 2) and that for m = [, Equation (H.9) is identical to Equation (16) in
5.2.2.

To apply Equation (H.9) to this example, the following identifications are made:

y1=R X1=I7
yo=X X2=1_ N=3
y3=Z X3 =0

The results of the calculations of R, X, and Z and of their estimated variances and corretfation| coefficients are
given in|Table H.3.

Table H.3 — Calculated values of the output quantities R, X, and’Z: approach 1

Measurand Relationship between Value of estimate y;, which Combined standard
index estimate of measurand y, is the result uncertainty u.(y;) of result
/ and input estimates x; of measurement of megsurement

= - o ug(R) # 0,071 .

1 y1=R=(VII)cos¢ y1=R=127,732 . u(RYR 40,06 - 1072
e v ug(X) 0,295 .

2 yo=X=(WII)sing yo=X=219,847 . ug(X)x 40,13 - 102
=T L uc(Z) ¥ 0,236 .

3 y3=Z=VII v3=27Z=254,260 . uy2)/2=0,09 - 1072

Correlation coefficients r(y;, v,,)
r(»1, y2) =r(R, X) =-0,588
r(v1, y3) = r(R, Z) = -0,485
r(v2, y3)=r(X, 2)= 0,993

H.2.4 Results: approach 2
Approagh 2 is summarized in Table H.4.

Since tHe data-have been obtained as five sets of observations of the three input quantities |V, 1, and ¢, it is
possiblg to,compute a value for R, X, and Z from each set of input data, and then take the arithmetic mean of
the five findividual values to obtain the best estimates of R, X, and Z. The experimental standard deviation of
each mean (which s 1ts combined standard uncertainty) 1S then calculated from the five individual values in
the usual way [Equation (5) in 4.2.3]; and the estimated covariances of the three means are calculated by
applying Equation (17) in 5.2.3 directly to the five individual values from which each mean is obtained. There
are no differences in the output values, standard uncertainties, and estimated covariances provided by the two
approaches except for second-order effects associated with replacing terms such as ¥/7 and cos¢ by V/I
and cosg.

To demonstrate this approach, Table H.4 gives the values of R, X and Z calculated from each of the five sets
of observations. The arithmetic means, standard uncertainties, and estimated correlation coefficients are then
directly computed from these individual values. The numerical results obtained in this way are negligibly
different from the results given in Table H.3.
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Table H.4 — Calculated values of the output quantities R, X, and Z: approach 2

Set number Individual values of measurands
k R=(VII)cos¢ X=(VI)sing Z=VI
() () ()
1 127,67 220,32 254,64
2 127,89 219,79 254,29
3 127,51 220,64 254,84
4 127,71 218,97 253,49
5 42788 24054 264:64
Arithmetic mean y1=R=127,732 | y,=X =219,847 | y5=7=254,260
Experimental standard | - 7 _ ) 474 5(X)=0,295 $(Z)=0,236
deviation of mean
Correlation coefficients (v}, v,,,)
r(y1, o) =r(R, X)=-0,588
(v, y3)=r(R, Z) = 0,485
"(y9, v3)=r(X,Z)= 0,993
In the terminology of the Note to 4.1.4, approach 2 is an example of obtaining the estimatel y from
Y = (Z (- Yk) n, while approach 1 is an example of obtainingy:from y = f(X4, Xp, ..., Xy). As pointed out
in that note, in| general, the two approaches will give identical results if f is a linear function of jts input
quantities (provided that the experimentally observed correlation coefficients are taken into account when
implementing approach 1). If f'is not a linear function, _then the results of approach 1 will differ from fthose of
approach 2 depending on the degree of nonlinearity.ahd the estimated variances and covariances df the X..
This may be se¢n from the expression
L _ gy 2 £ o
y=1 (X Koo Xy )+ =2 D ——e=u( X, X )+ (H.10)
24 XX
i=1 j=1 L
where the secand term on the right-hand side is the second-order term in the Taylor series expangion of f
in terms of the X; (see also §.1:2, note). In the present case, approach 2 is preferred because it avoids the
approximation p = f (X4, X955, X,) and better reflects the measurement procedure used — the datg were in
fact collected in|sets.
On the other [hand,) approach 2 would be inappropriate if the data of Table H.2 representeql n,=25
observations of|thé.potential difference 7, followed by n, = 5 observations of the current 7, and then followed

by n3 = 5 observations of the phase ¢, and would be impossible It n . n,. n3. (It is In fact poor measurement
procedure to carry out the measurements in this way since the potential difference across a fixed impedance
and the current through it are directly related.)

If the data of Table H.2 are reinterpreted in this manner so that approach 2 is inappropriate, and if correlations
among the quantities ¥, I, and ¢ are assumed to be absent, then the observed correlation coefficients have no
significance and should be set equal to zero. If this is done in Table H.2, Equation (H.9) reduces to the
equivalent of Equation (F.2) in F.1.2.3, namely,

N
u(yp, yp)= 2 E2 2 () (H.11)

i=1 .xi . xl

and its application to the data of Table H.2 leads to the changes in Table H.3 shown in Table H.5.
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Table H.5 — Changes in Table H.3 under the assumption
that the correlation coefficients of Table H.2 are zero

Combined standard uncertainty u.(y;) of result of measurement

ue(R) = 0,195 .
ue(R)YR = 0,15 - 1072

ue(X) = 0,201 .
ug(X)/X = 0,09 - 1072

ue(Z) = 0,204 .

(DNZ 002 40-2
o

e\ =500

Correlation coefficients r(y;, v,,)

r(y1, y2) = r(R, X) = 0,056
r(y1, y3) = r(R, 2) = 0,527
r(yo, ¥3) = r(X, Z) = 0,878

H.3 Calibration of a thermometer

This example illustrates the use of the method of least squaresto obtain a linear calibration cufve and how the
paramefers of the fit, the intercept and slope, and their _estimated variances and covariange, are used to

obtain frlom the curve the value and standard uncertainty of a predicted correction.

H.3.1 The measurement problem

A thermometer is calibrated by comparing 7 = 11 temperature readings ¢, of the thermometer, each having
negligible uncertainty, with correspondjng-known reference temperatures ¢z , in the temperatpire range 21 °C
to 27 °( to obtain the corrections by='7g , — ¢, to the readings. The measured corrections b} and measured

temperatures ¢, are the input quantities of the evaluation. A linear calibration curve

b(t) = y1+ya(t—1g)

(H.12)

is fitted fo the measuréd corrections and temperatures by the method of least squares. The parameters y, and
¥o, Which are respéectively the intercept and slope of the calibration curve, are the two measyrands or output
quantitigs to be determined. The temperature ¢y is a conveniently chosen exact reference tgmperature; it is
not an indepgndent parameter to be determined by the least-squares fit. Once y4 and y, are fpund, along with
their esfimated variances and covariance, Equation (H.12) can be used to predict the value and standard
uncertaipty. of the correction to be applied to the thermometer for any value ¢ of the temperaturé.

H.3.2 Least-squares fitting

Based on the method of least squares and under the assumptions made in H.3.1 above, the output quantities
¥4 and y, and their estimated variances and covariance are obtained by minimizing the sum

n
S =Z[bk - y1-y2(t —fo)]2
k=1
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This leads to the following equations for y4, y,, their experimental variances s2(y1) and s2(y2), and their
estimated correlation coefficient »(y4, y5) = s(y1, ¥2)/s(y1)s(v9), where s(y4, y) is their estimated covariance:

(220

(X B)- (e W)X 4)

vy = - (H.13a)
b s — (35D
yz=nz _ (g’ (2 (H.13b)
2 SQZ' ?
s (y1)=— 5 (H.13c)
2
52 (yp)=nf— (H.13d)
o) - = (H.13e)
0y 2
2
2 DL R (H.13f)
n — 2
D=nY A3 () =X (k=) = (-1 (H.13g)

where all sums
between the me
fitted curve b(¢)
the factorn — 2
the degrees of f|

H.3.3 Calculd

The data to bsg

are from k=110 n, 0 = t; — 19, = ( D k)/n, and 7 = (Ztk)/n; [b; — b(t,)] is the d
asured or observed correctionb, at the temperature 7, and the correction b(z,) predictsg
= yq + »o(t — o) at 1. Thevariance s2 is a measure of the overall uncertainty of the f
reflects the fact that because two parameters, y, and y,, are determined by the n obse
reedom of 52 is v = #=\2 (see G.3.3).

tion of results

fitted yare given in the second and third columns of Table H.6. Taking ¢y =20 °C

reference tempTrature, application of Equations (H.13a) to (H.13q) yields

fference
d by the
t, where
rvations,

as the

y1=-0,1712°C s(y1)=0,0029°C
vy =0,00218 s(y2)=0,000 67
r(y1,y2)=—0,930 s=0,0035°C

The fact that the slope y, is more than three times larger than its standard uncertainty provides some

indication that a

calibration curve and not a fixed average correction is required.
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Table H.6 — Data used to obtain a linear calibration curve for a thermometer by the method

of least squares

Reading Thermometer Observed Predicted Difference between observed
number reading correction correction and predicted correction

k I by=1r k—l b(;) by — b(1)

(°C) (°C) (°C) (°C)

1 21,521 -0,171 -0,167 9 -0,003 1

2 22,012 -0,169 -0,166 8 -0,002 2

3 22,512 -0,166 -0,1657 -0,000 3

4 23,003 -0,159 -0,164 6 +0,005 6

5 23,507 -0,164 -0,163 5 -0,000"5

6 23,999 -0,165 -0,162 5 -0,002 5

7 24,513 -0,156 -0,1614 +0,005 4

8 25,002 -0,157 -0,160 3 +0,003 3

9 25,503 -0,159 -0,159 2 +0,000 2

10 26,010 -0,161 -0,158 1 -0,002 9

11 26,511 -0,160 -0,157 Q -0,003 0

The cali
b(t

where t

corresp(
predicte
values &
measured and predicted values, 'b)/— b(7;). An analysis of these differences can be used to ¢
of the lin

H.3.4 Uncertainty of a predicted value
The exgression for the combined standard uncertainty of the predicted value of a correctior]
obtained by applying the law of propagation of uncertainty, Equation (16) in 5.2.2, to Equatio

that b(¢)

2

Uc

The est

frmin

bration curve may then be written as

0,1712(29) °C + 0,002 18(67)( — 20 °C)

ne numbers in parentheses are the, numerical values of the standard uncertainties
nding last digits of the quoted reSults for the intercept and slope (see 7.2.2). This eq
d value of the correction b()\at any temperature ¢, and in particular the value b(z;)
re given in the fourth column of the table while the last column gives the differenc

ear model; formal tests exist (see Reference [8]), but are not considered in this examq

= 17 yo) and writing u(y4) = s(v4) and u(y,) = s(y,), one obtains

(H.14)

referred to the
uation gives the
at t=1¢. These
es between the
heck the validity
le.

can be readily
n (H.12). Noting

[b(f)} = ”2(M)+(f—f0)2”2 (v2)+2(t=to)u(y1)u(y2)r(y1, v2)

2

imated variance ug

[b(t)] is @ minimum at ¢, = g — u(y4)7(vq, ¥o)/u(y,), which in the

= 24,008 5 °C.

(H.15)

present case is

As an example of the use of Equation (H.15), consider that one requires the thermometer correction and its
uncertainty at =30 °C, which is outside the temperature range in which the thermometer was actually
calibrated. Substituting ¢ = 30 °C in Equation (H.14) gives

b(30 °C)

-0,149 4 °C

© ISO/IEC 2008 — All rights reserved

91


https://iecnorm.com/api/?name=06e4b18f0802b9fbd4aa5e459cf5d309

ISO/IEC GUID

E 98-3:2008(E)

while Equation (H.15) becomes

u2[5(30 °C)] = (0,002 9 °C)? +(10 °C)? (0,000 67)* +2(10 °C)(0,002 9 °C)(0,000 67)(~0,930)

or

=17,1- 1078 oc2

ug[5(30°C)]=0,004 1°C

Thus the correction at 30 °C is —0,149 4 °C, with a combined standard uncertainty of u, = 0,004 1 °C, and with
uc having v=n — 2 = 9 degrees of freedom.

H.3.5 Eliming

Equation (H.134

PWENEDS

computation ¢

to=1= (Zl:l:1

to =1 =24,008
temperature at
it can be shown

b(t)=y3+

s (93) =51

and in writing

Equation (H.15)].

tion of the correlation between the slope and intercept

) for the correlation coefficient r(y4,y,) implies that if ¢, is so l«chos
—1(t; —19) =0, then r(y4,»,) =0 and y, and y, will be uncorrelated, theseby simplif
f the standard uncertainty of a predicted correction. Since Z,’:=1. v =0
t;)/n, and 1 =24,0085°C in the present case, repeating the-least-squares
5°C would lead to values of y, and y, that are uncorrelated. (The-temperature ¢ is

iwhich 12[b(¢)] is @ minimum — see H.3.4.) However, repeating-the fit is unnecessary
that

o (t—?)
w2 (y3)+(1=1)%u?(v5)

0

b (7 —10)
1) (v v2)/s(v2)

(M)[“Vz(ymyz)}

Equation-(H.16b), the substitutions u(y3)==s(y3) and u(y,)=s(y,) have been mg

bn  that
ying the

when
fit with
also the
because

(H.16a)

(H.16b)

(H.16c)

de [see

Application of th

ese relations to the results given in H.3.3 yields

b(r) = 0,162 5(11)+0,002 18(67)(z — 24,008 5 °C)

ug

[5()]=

(0,001 1)% + (£ — 24,008 5 °C)? (0,000 67)°

(H.17a)

(H.17b)

That these expressions give the same results as Equations (H.14) and (H.15) can be checked by repeating
the calculation of 5(30 °C) and u[6(30 °C)]. The substitution of =30 °C into Equations (H.17a) and (H.17b)

yields

b(30°C) =

-0,149 4 °C

ug[5(30°C)]=0,004 1°C
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which are identical to the results obtained in H.3.4. The estimated covariance between two predicted
corrections b(z4) and b(t,) may be obtained from Equation (H.9) in H.2.3.

H.3.6 Other considerations

The least-squares method can be used to fit higher-order curves to data points, and is also applicable to
cases where the individual data points have uncertainties. Standard texts on the subject should be consulted
for details [8]. However, the following examples illustrate two cases where the measured corrections b, are not
assumed to be exactly known.

1) Let each 7, have negligible uncertainty, let each of the n values /g , be obtained from a series of m
repeated readings, and let the pooled estimate of variance for such readings based on a Iarge amount of
data obtained over several months be s;. Then the estimated variance of each g ;-s|sp 2/m=u3 and
eadh observed correction b, = g , — ; has the same standard uncertainty u,. Under these cwcumstances
(anfl under the assumption that there is no reason to believe that the linear model is incorrect), u%
replaces s2 in Equations (H.13c) and (H.13d).

NOTE A pooled estimate of variance sg based on N series of independent.observations of fhe same random
varigible is obtained from

wherre sl2 is the experimental variance of the ith series of\@; independent repeated observationg [Equation (4) in

4.2.P] and has degrees of freedom v; = n; — 1. The degrees of freedom of 9p isv= Z Z1v;. The experimental variance
sg (and the experimental standard deV|at|on s /\/_) of the arithmetic mean of m independglent observations

chafacterized by the pooled estimate of variance s also has v degrees of freedom.
2) Suppose that each 7 has negligible uncerfainty, that a correction ¢, is applied to each of tie n values 1 4,

and that each correction has the same*standard uncertalnty Uy Then the standard uncertainty of each
by IR 1t is also uy, and s (y1) isireplaced by s (y1)+ua and s (y?) is replaced by (y?)+u§.

H.4 Mgasurement of activity

This example is similar torexample H.2, the simultaneous measurement of resistance and rdactance, in that
the datal can be analysed-in two different ways but each yields essentially the same numerical result. The first
approach illustrates) eénce again the need to take the observed correlations between inpuf quantities into
account

H.4.1 The measurement problem

The unknown radon (222Rn) activity concentration in a water sample is determined by liquid-scintillation
counting against a radon-in-water standard sample having a known activity concentration. The unknown
activity concentration is obtained by measuring three counting sources consisting of approximately 5 g of
water and 12 g of organic emulsion scintillator in vials of volume 22 ml:

Source (a) a standard consisting of a mass mg of the standard solution with a known activity
concentration;

Source (b) a matched blank water sample containing no radioactive material, used to obtain the
background counting rate;

Source (c) the sample consisting of an aliquot of mass m, with unknown activity concentration.
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Six cycles of measurement of the three counting sources are made in the order standard — blank — sample;
and each dead-time-corrected counting interval T, for each source during all six cycles is 60 minutes.
Although the background counting rate cannot be assumed to be constant over the entire counting interval
(65 hours), it is assumed that the number of counts obtained for each blank may be used as representative of
the background counting rate during the measurements of the standard and sample in the same cycle. The

data are given in Table H.7, where

tg, g, 1,

Cs, Cg, C,

The observed ¢

are the times from the reference time 1=0 to the midpoint of the dead-time-corrected
counting intervals 7, =60 min for the standard, blank, and sample vials, respectively;

although g is given for completeness, it is not needed in the analysis;

are the number of counts recorded in the dead-time-corrected counting intervals 7, = 60 min

farthe standard blank and samnlg vials rasnagctivaly
oA taRaafa—taRi—aRe-SapeHars— POGHNMBH -

bunts may be expressed as

CS =CB+SAsTomSe_' ’'s (H183)
C,=Cg+§d Tym e ' (H.18b)
where
£ is the liquid scintillation detection efficiency for 222RA)for a given source composition,
assumed to be independent of the activity level;
Ag is the activity concentration of the standard at the.réference time ¢ = 0;
A, is the measurand and is defined as the unkmnown activity concentration of the sampje at the
reference time ¢ = 0;
mg is the mass of the standard solution;
m, is the mass of the sample aliquot;
is the decay constant for 22Rn: . = (In 2)/T;,, = 1,258 94 - 107 min~1 (T, = 5 505,8 min).
Table H.7 — Counting data for determining the activity concentration
of an unknown sample
ycle Standard Blank Sample
k Is CS B CB Iy Cx
(min) (counts) (min) (counts) (min) (counts)
1 24 Q,_7/! 11: 280 qn:,:n 4 m:4 QR?”}? 41 /1.’22
2 984,53 14 978 1 046,10 3922 1 107,66 38 706
3 1723,87 14 394 178543 4 200 1 846,99 35 860
4 2 463,17 13 254 252473 3830 2 586,28 32 238
5 3 217,56 12 516 3 279,12 3 956 3 340,68 29 640
6 3 956,83 11 058 4 018,38 3980 4 079,94 26 356
94 © ISO/IEC 2008 — All rights reserved
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Equations (H.18a) and (H.18b) indicate that neither the six individual values of Cg nor of C, given in Table H.7
can be averaged directly because of the exponential decay of the activity of the standard and sample, and
slight variations in background counts from one cycle to another. Instead, one must deal with the
decay-corrected and background-corrected counts (or counting rates defined as the number of counts divided
by Ty = 60 min). This suggests combining Equations (H.18a) and (H.18b) to obtain the following expression for
the unknown concentration in terms of the known quantities:

Ax =f(AS,mS,mx, Cs, Cx, CB’IS’tx’ . )

C.—Cgle '
g s (CemCa)e (H.19)
my (CS—CB)e'tS
EC“_CR - (t—t1g)

m, Cs—Cg

where (., — Cg)e: ~ and (Cgq — Cg)e- ’s are, respectively, the background-corrected counts of the sample and
the standard at the reference time =0 and for the time interval T = 60 min. Alternatively, pne may simply
write

mg R
Ax=f(AS’mS’mx’RSst)=AS_SR_x (HZO)
my Rg

where the background-corrected and decay-corrected counting rates R, and Rg are given by

R E[(C,-Cg)/To]e ™ (H.21a)
Rg|=[(Cs-Cg)/Tp e 'S (H.21b)

H.4.2 Analysis of data

Table H|8 summarizes the values of the background-corrected and decay-corrected counting rates Rq and R,
calculated from Equations (H.21a) and (H.21b) using the data of Table H.7 and . =1,258 94| 10™4 min~! as
given egrlier. It should be noted that the ratio R = R, /Rg is most simply calculated from the expfession

[(d, - Ca)/(Cs —Ca) et ™)

The arithmetic means _Rg, R,, and R, and their experimental standard deviations s(Rg), s(R), and s(R), are
calculated in the usual.way [Equations (3) and (5) in 4.2]. The correlation coefficient »(R, Rg) i§ calculated from
Equatiofn (17) in 5.2/3-and Equation (14) in 5.2.2.

Becausg of the comparatively small variability of the values of R, and of Rg, the ratio of means Ex /ES and
the standard,uncertainty u(ﬁx/ﬁs) of this ratio are, respectively, very nearly the same as tHe mean ratio R
and its i fatt R i i H-8—see H.2.4 and
Equation (H.10) therein]. However, in calculating the standard uncertainty u(Ex/ES), the correlation between
R, and Rg as represented by the correlation coefficient r(ﬁx, ES) must be taken into account using
Equation (16) in 5.2.2. [That equation yields for the relative estimated variance of EX/ES the last three terms

of Equation (H.22b).]

It should be recognized that the respective experimental standard deviations of R. and of Rg, \/Es(ﬁx) and
Jgs(ﬁs), indicate a variability in these quantities that is two to three times larger than the variability implied by
the Poisson statistics of the counting process; the latter is included in the observed variability of the counts
and need not be accounted for separately.
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Table H.8 — Calculation of decay-corrected and background-corrected counting rates

Cycle R, Rg t,—ts R=R,/Rg

k (min™") (min~1) (min)
1 652,46 194,65 123,63 3,3520
2 666,48 208,58 123,13 3,195 3
3 665,80 211,08 123,12 3,154 3
4 655,68 214,17 123,11 3,0615
5 651,87 213,92 123,12 3,047 3
6 023731 9413 23,11 321077

R, =652,60 Rg = 206,09 R =3;170

s(R,) = 6,42 s(Rg) =3,79 s(R)-50,046

{(R,)/R, =098 1072 s(Rg)/Rg =1,84- 1072 S(RYDR = 1,44 - 1072
R./Rg =3,167
u(R,/Rg) =0,045
u(R IRg)/(R, IRg) =1,42- 1072
Correlation coefficient
r(R,, Rg) = 0,646

H.4.3 Calculdtion of final results

To obtain the | unknown activity concentration 4, _and its combined standard uncertainty u.(4,) from
Equation (H.20) requires Ag, m,, and mg and their standard uncertainties. These are given as

Ag =0,136(8 Ba/g
u(4g)=0,0018Ba/g;  u(4s)/Ag=132- 1072

mg =50192 g
u(mg)=0,p050g; w(mk)/mg =0,10- 1072
m, =50571g

u(m,)=0,0010g; u(my)/my =0,02. 1072

Other possible gatirces of uncertainty are evaluated to be negligible:

standard uncertainties of the decay times, u(tg ;) and u(z, ;);

standard uncertainty of the decay constant of 222Rn, (. ) =1 - 1077 min~1. (The significant quantity is the
decay factor expl. (¢, — tg)], which varies from 1,015 63 for cycles £ =4 and 6 to 1,015 70 for cycle k = 1.
The standard uncertainty of these values is u = 1,2 - 1079);

uncertainty associated with the possible dependence of the detection efficiency of the scintillation counter
on the source used (standard, blank, and sample);

uncertainty of the correction for counter dead-time and of the correction for the dependence of counting
efficiency on activity level.
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