INTERNATIONAL STANDARD ISO 14625 Third edition 2023-01 # Space systems — Ground support equipment for use at launch, landing or retrieval sites — General requirements Systèmes spatiaux — Équipements de soutien au sol utilisés sur les sites de lancement, d'atternssage ou de récupération — Exigences générales Girchient de la company # COPYRIGHT PROTECTED DOCUMENT © ISO 2023 All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Email: copyright@iso.org Website: www.iso.org Published in Switzerland | Coı | Contents | | | | | | |------|---|--|-------|--|--|--| | Fore | word | | vi | | | | | Intr | oductio | on | vii | | | | | 1 | Scop | De | 1 | | | | | 2 | - | mative references | | | | | | 3 | Terms and definitions, symbols and abbreviated terms | | | | | | | J | 3.1 | Terms and definitions | | | | | | | 3.2 | Symbols and abbreviated terms | 4 | | | | | 4 | Gene | eral | 4 | | | | | 5 | Functional designations 5.1 General 5.2 Servicing GSE 5.3 Checkout and test GSE 5.4 Handling and transportation GSE | | | | | | | J | 5.1 | General | 4 | | | | | | 5.2 | Servicing GSE | 5 | | | | | | 5.3 | Checkout and test GSE | 5 | | | | | | 0.1 | Handling and transportation GSE Auxiliary GSE | 5 | | | | | | 5.5 | Auxiliary GSE | 5 | | | | | | 5.6 | Umbilical GSE | 5 | | | | | 6 | Chai | racteristics Performance characteristics | 5 | | | | | | 6.1 | Performance characteristics | 5 | | | | | | | 6.1.1 Operability | 5 | | | | | | | 6.1.2 Interfaces 6.1.3 Producibility | 5 | | | | | | 6.2 | Physical characteristics |
6 | | | | | | 0.2 | 6.2.1 Limited life | 6 | | | | | | | 6.2.2 Useful life | 6 | | | | | | | 6.2.3 Protective coating | 6 | | | | | | | 6.2.4 Colours | | | | | | | | 6.2.5 Metric system | 6 | | | | | | | 6.2.6 Redundancy | 6 | | | | | | 6.3 | Reliability | | | | | | | 6.4 | Maintainability Environmental conditions | | | | | | | 6.5 | 6.5.1 General | | | | | | | | 6.5.2 Natural environment | | | | | | | | 6.5.3 Launch-induced environment | | | | | | | | 6.54 Controlled interior environment | | | | | | | | 6.5.5 Controlled clean environment | | | | | | | • | 65.6 Uncontrolled interior environment | | | | | | | XP | 6.5.7 Fire/explosion hazard environment | | | | | | | 5 | 6.5.8 Environmental test methods 6.5.9 Seismic environment | | | | | | | 6.6 | Transportability | | | | | | 7 | | • | | | | | | 7 | 7.1 | umentation | | | | | | | 7.1 | Technical documentation | | | | | | | 7.3 | Operations and maintenance documentation (OMD) | | | | | | 8 | Sunr | ply support | | | | | | 9 | | Personnel and training 8 | | | | | | | | lification | | | | | | 10 | • | | | | | | | 11 | Qua
11.1 | lity assurance
General | | | | | | | 11.1 | | | | | | | | | · · | | | | | # ISO 14625:2023(E) | | 11.3 | Testing | | |----|-------|--|----| | | | 11.3.1 General | 9 | | | | 11.3.2 Load test | 10 | | | | 11.3.3 Non-destructive test (NDT) | 10 | | | | 11.3.4 Test reports | | | | | 11.3.5 Instrumentation calibration | | | | 11.4 | Quality conformance verification | | | | 11.5 | Checkout and maintenance | | | | 11.6 | Quality problems management | | | | | | | | 12 | | nging | | | | 12.1 | Preservation and packaging | 11 | | | 12.2 | Shipping containers | 11 | | | 12.3 | Weight and size | 11 | | | 12.4 | Parts protection Precision clean parts | 11 | | | 12.5 | Precision clean parts | 11 | | | 12.6 | Marking Environmental recording instruments | 11 | | | 12.7 | Environmental recording instruments | 11 | | | 12.8 | Transportation and storage | 11 | | 13 | Desig | Transportation and storage In and construction requirements Structural design | 12 | | LJ | 13.1 | Structural design | 12 | | | 13.1 | 13.1.1 Structural steel and other structures | 12 | | | | 13.1.2 Safety factor | 12 | | | | 13.1.2 Critical wold | 12 | | | 13.2 | Machanical decign | 12 | | | 13.2 | 12.2.1 Progratica | 12 | | | | 13.1.1 Structural steel and other structures 13.1.2 Safety factor 13.1.3 Critical weld Mechanical design 13.2.1 Pneumatics 13.2.2 Cryogenics 13.2.3 Hypergols 13.2.4 Hydrocarbons | 12 | | | | 12.2.2 Hypergola | 12 | | | | 13.2.4 Hydrogorhong | 12 | | | | 13.2.4 Hydrocarbons | 13 | | | | 15.2.5 Liquiu oxidizeis | 13 | | | | 13.2.6 Hydraulics | 13 | | | | 13.2.7 Environmental control system (ECS) and coolant servicing systems | 13 | | | | 13.2.8 Life support | 13 | | | | 13.2.9 Lifting devices | 13 | | | | 13.2.10 Springs | | | | | 13.2.11 Umbilical design | | | | | 13.2.12 Torque limits | | | | | 13.2.13 Tethers. 2 | | | | | 13.2.14 Jacks | | | | | 13.2.15 Transportation equipment | | | | | 13.2.16 Pressure vessels | | | | 13.3 | Electrical/electronic design | | | | | 13.31 Electrical control and monitor equipment | | | | | 23.3.2 Pneumatic and hydraulic mechanical components | | | | | 13.3.3 Internal wiring | 14 | | | | 13.3.4 Pyrotechnic systems | | | | | 13.3.5 Electrical power | | | | | 13.3.6 Bonding and grounding | | | | | 13.3.7 Hazard-proofing | | | | | 13.3.8 Lightning protection | | | | | 13.3.9 Software | 15 | | | | 13.3.10 Firmware | 15 | | | 13.4 | Materials, parts and processes | 15 | | | | 13.4.1 Materials | | | | | 13.4.2 Parts | | | | | 13.4.3 Processes | | | | 13.5 | Electromagnetic compatibility (EMC) | | | | 13.6 | | | | | | | | | | | 13.6.1 Systems and equipment 13.6.2 Load test 13.6.3 Piping systems 13.6.4 Compressed gas cylinders 13.6.5 Load capacity 13.6.6 Test weights 13.6.7 Electrical cable assemblies | 21 | |--------|--------------|---|-----| | | 127 | 13.6.8 Serial numbers | 22 | | | 13.7 | Interchangeability | 22 | | | 13.9 | Safety | 22 | | | 13.10 | Human performance | 23 | | | | 13.10.1 General | 23 | | | | 13.10.3 Personnel force limits | 23 | | | | 13.10.4 Propellant handlers ensemble (PHE) operators | 23 | | | 13.11 | Security | 23 | | | 13.12 | Redundancy | 23 | | 14 | Check | kout and maintenance requirements | 23 | | | 14.1
14.2 | Checkout and maintenance items | 23 | | D:1.1: | | - Checkout and maintenance rems | 2.6 | | | SIAM | 13.6.4 Compressed gas cylinders 13.6.5 Load capacity 13.6.6 Test weights 13.6.7 Electrical cable assemblies 13.6.8 Serial numbers Workmanship Interchangeability Safety. Human performance 13.10.1 General 13.10.2 Operating characteristics 13.10.4 Propellant handlers ensemble (PHE) operators Security Redundancy kout and maintenance requirements General requirements Checkout and maintenance items Ty | | | | | | | | | | | | # **Foreword** ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents). Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement. For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html. This document was prepared by Technical Committee ISO/TC 20, Aircraft and space vehicles, Subcommittee SC 14, Space systems and operations. This third edition cancels and replaces the second edition (ISO 14625:2007), which has been technically revised. The main changes are as follows: requirements related to GSE checkout and maintenance have been added. Any feedback or questions on this
document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. # Introduction This document is intended to be used when designing new ground support equipment (GSE) that support space system (launch vehicle or payload) programmes or projects. Existing programmes and projects can use this document as far as is practical in accordance with sound management and engineering practices. This document is applicable at the time the decision is taken to design, construct, manufacture or procure a given GSE that remains applicable for the useful life of the hardware. However, if modifications are made to existing hardware, the edition of this document available at the time the modification is applicable. When this document is used in procurement, it is advisable that it be reviewed by the programme/ project office for applicability, and that only the clauses that apply to the project or programme be included in the procurement documentation. This document can also be used as a template for the development of specific programme or project GSE specifications or standards. # Space systems — Ground support equipment for use at launch, landing or retrieval sites — General requirements # 1 Scope This document specifies the general characteristics, performance, design, test, checkout, maintenance, safety, reliability, maintainability and quality requirements for ground support equipment (GSE) and systems intended for use at launch, landing or retrieval-site installations, or other locations that are the responsibility of the launch, landing and retrieval site. This document does not specify how to design, checkout and maintain GSE, but establishes the minimum requirements to provide simple, robust, safe, reliable, maintainable and cost-effective GSE. This document is applicable to the design, checkout and maintenance of non-flight hardware and software used to support the operations of transporting, receiving, handling, assembly, inspection, test, checkout, service, launch and recovery of space vehicles and payloads at the launch, landing or retrieval sites. As such, the requirements of this document are optional for hardware used only at the manufacturing, development or test sites prior to arrival at the launch, landing or retrieval sites. However, if such GSE is dual use equipment to be also at a launch landing or retrieval site, for whatever reason, all the safety-related requirements of this document apply to the GSE. # 2 Normative references The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 898-7, Mechanical properties of fasteners — Part 7: Torsional test and minimum torques for bolts and screws with nominal diameters 1 mm to 10 mm ISO 1949, Aircraft — Electrical connectors — Design requirements ISO 1966, Crimped joints for aircraft electrical cables ISO 2635, Aircraft — Conductors for general purpose aircraft electrical cables and aerospace applications — Dimensions and characteristics ISO 2964, Aerospace — Tubing — Outside diameters and thicknesses — Metric dimensions ISO 4301 (alt parts), Cranes — Classification ISO 6346, Freight containers — Coding, identification and marking ISO 14620-1, Space systems — Safety requirements — Part 1: System safety ISO 14621 (all parts), Space systems — Electrical, electronic and electromechanical (EEE) parts ISO 14623, Space systems - Pressure vessels and pressurized structures — Design and operation ISO 14624 (all parts), Space systems — Safety and compatibility of materials ISO 14952 (all parts), Space systems — Surface cleanliness of fluid systems ISO 15389, Space systems — Flight-to-ground umbilicals ISO 15859 (all parts), Space systems — Fluid characteristics, sampling and test methods ISO 22538 (all parts), Space systems — Oxygen safety # ISO 14625:2023(E) ISO 80000-1, Quantities and units — Part 1: General IEC 60034 (all parts), Rotating electrical machines IEC 60038, IEC standard voltages IEC 60079 (all parts), Electrical apparatus for explosive gas atmospheres IEC 60096 (all parts), Radio-frequency cables IEC 60169 (all parts), Radio-frequency connectors IEC 60189 (all parts), Low-frequency cables and wires with PVC insulation and PVC sheath IEC 60227 (all parts), Polyvinyl chloride insulated cables of rated voltages up to and including 450/750 V IEC 60245 (all parts), Rubber insulated cables — Rated voltages up to and including 450/750 IEC 60297 (all parts), Dimensions of mechanical structures of the 482,6 mm (19 in) series IEC 60309 (all parts), Plugs, socket-outlets and couplers for industrial purposes IEC 60364 (all parts), Electrical installations of buildings IEC 60794 (all parts), Optical fibre cables IEC 60874 (all parts), Connectors for optical fibres and cables IEC 60884 (all parts), Plugs and socket-outlets for household and similar purposes IEC 60947 (all parts), Low-voltage switchgear and controlgear IEC 61000 (all parts), Electromagnetic compatibility (EMC) IEC 61086 (all parts), Coatings for loaded printed wire boards (conformal coatings) IEC 62305 (all parts), Protection against lightning IEC 62326 (all parts), Printed boards # 3 Terms and definitions, symbols and abbreviated terms #### 3.1 Terms and definitions For the purposes of this document, the following terms and definitions apply. ISO and IEC maintain terminology databases for use in standardization at the following addresses: - ISO Online browsing platform: available at https://www.iso.org/obp - IEC Electropedia: available at https://www.electropedia.org/ # 3.1.1 # cognizant authority organization that is recognized as having expertise in one or more technical disciplines EXAMPLE ISO, IEC. # 3.1.2 # commercial off-the-shelf #### COTS equipment, including hardware and associated software/procedures, that is commercially available from current industry inventory #### 3.1.3 #### critical weld weld whose single failure during any operating condition can result in injury to personnel or damage to property or flight hardware # 3.1.4 # flight hardware lifting device structural or mechanical items between the crane hook and the flight vehicle interface that are used to lift the flight hardware EXAMPLE Sling, cable, shackle, beam. #### 3.1.5 # ground support equipment #### **GSE** non-flight systems, equipment or devices necessary to support the operations of transporting, receiving, handling, assembly, inspection, test, checkout, servicing, launch and recovery of a space system at launch, landing or retrieval sites #### 3.1.6 # safety critical any condition, event, operation, process, equipment or system with a potential for personnel injury, fatality or damage to, or loss of, equipment or property #### 3.1.7 # safety factor multiplying factor to be applied to *limit loads* (3.1.11) and/or maximum expected operating pressure (MEOP) or maximum design pressure (MDP) #### 3.1.8 #### safe working load assigned load, as shown on the identification tag, which is the maximum load the device or equipment is permitted to handle and maintain in operation #### 3.1.9 # sneak circuit unexpected path or logic flow within a system that, under certain conditions, can initiate an undesired function or inhibit a desired function Note 1 to entry: The path may consist of hardware, software, operator actions, or combinations of these elements. Sneak circuits are not the result of hardware failure but are latent conditions, inadvertently designed into the system, coded into the software program, or triggered by human error. Note 2 to entry: \$0 26871 defines "sneak circuit" as an undesired function or a function that inhibits a desired function. # 3.1.10 #### space flight vehicle combination of the launch system elements which leave the ground i.e. the launch vehicle and the space vehicle(s) placed in orbit by the launch vehicle [SOURCE: ISO 14622:2000,2.1] #### 3.1.11 #### limit load maximum expected load, or combination of loads, which a structure or a component in a structural assembly is expected to experience during its service life, in association with the applicable operating environments Note 1 to entry: Load is a generic term for thermal load, pressure, external mechanical load (force, moment, or enforced displacement) or internal mechanical load (residual stress, pretension, or inertial load). #### Symbols and abbreviated terms 3.2 commercial off-the-shelf COTS **ECS** environmental control system EEE electrical, electronic and electromechanical **EMC** electromagnetic compatibility **GSE** ground support equipment MMH monomethylhydrazine NDT non-destructive test hydrazine N_2H_4 $N_{2}O_{4}$ nitrogen tetroxide **OMD** operations and maintenance documentation PHE propellant handlers ensemble **PVC** polyvinyl chloride RF radio frequency **UDMH** unsymmetrical dimethylhydrazine # General to view the full PDF of 150 Mo25: 2023 The general design requirements and criteria described in this document are the minimum requirements necessary to meet the needs and expectations of internal customers (e.g. safety, reliability, maintainability, quality, ergonomics, supportability) in a cost-effective manner. In order to meet customer expectations, GSE shall need requirements that are more stringent than those specified herein. In such cases, requirements that exceed the provisions described in this document shall be determined by the responsible design organization in consultation with its customers (e.g. users, operators). # Functional designations # General GSE covered by this document shall be classified according to one of the functional designations given in 5.2 to 5.6. Under each functional
designation, GSE can be classified by criticality, whereby the GSE - physically or functionally interfaces with flight hardware/software, - is classified as safety critical, and/or - generates data used in determining flight worthiness/certification. The GSE is assessed as safety critical if loss of the GSE or improper performance can result in loss of life or personal injury, loss of flight hardware and ground equipment and facilities or damage to flight hardware and ground equipment and facilities. The GSE defined herein shall be subject to the configuration control requirements specified in the approved programme configuration management plan. # 5.2 Servicing GSE Servicing GSE is equipment used to supply electrical power, compressed gases or fluids to the flight hardware and/or associated GSE. Typical functions of servicing GSE are storage, fuelling, transfer, flushing, purging, pressurizing, conditioning, vapour disposal and decontamination of propellants and other fluids required by the flight hardware up to and including the launch terminal count and/or lift-off. #### 5.3 Checkout and test GSE Checkout and test GSE is equipment used in the preparation, test and checkout of flight hardware and/ or associated GSE. Typical functions of checkout and test GSE are stimuli monitoring and evaluation, flight hardware preparation and testing. # 5.4 Handling and transportation GSE Handling and transportation GSE is equipment used for the movement and support of flight hardware and/or associated GSE. Typical types of equipment used in the handling and transportation category are slings, dollies, trailers, shipping containers, support stands, jacks, hoists, strongbacks and special handling mechanisms. # 5.5 Auxiliary GSE Auxiliary GSE is equipment used to align, access, protect and calibrate flight hardware. Auxiliary GSE includes, but is not limited to, protective devices, access stands and platforms, and alignment or calibration hardware. #### 5.6 Umbilical GSE Umbilical GSE is equipment used to interface directly with flight hardware for transfer of fluids(gases), electrical power or electronic signals to and from the flight vehicle element intended for use up to and including launch terminal count and or lift-off. # 6 Characteristics # 6.1 Performance characteristics #### 6.1.1 Operability GSE shall support the flight hardware operational requirements and shall be designed to ensure that it does not degrade or contaminate associated flight or ground systems (areas), subsystems or experiments during use, checkout, servicing or handling. While being operated, GSE shall ensure that the minimal amount of preparation processes and work operations are performed. #### 6.1.2 Interfaces GSE shall meet the requirements of all interfaces with new or existing flight and facility hardware or software. Future system compatibility shall be in accordance with identified interfaces. GSE hardware shall meet the requirements of the applicable interface control document (ICD). # 6.1.3 Producibility GSE hardware shall provide for ease of production, manufacture, construction and inspection. Special care shall be taken to avoid imposing close manufacturing tolerances, unless required by design and performance. # 6.2 Physical characteristics #### 6.2.1 Limited life Use of items with a life of less than the useful life of the system, or equipment for which the items are intended, shall be avoided whenever possible. Items with limited life shall be identified. Identified limited-life items shall be controlled from the date of manufacture through operational use, including storage. Provisions should be made for replacement or refurbishment of these items after a specified age or operating time/cycle. Status of limited-life cycle items and waivers on limited-life items shall be maintained. Elapsed time or cycle indicators shall be employed to accumulate operational time or cycles if critical. #### 6.2.2 Useful life GSE shall be designed for a useful life appropriate to its mission. When a useful life is not identified by programme or mission requirements, a goal of at least 10 years may be used. During this period, normal preventive maintenance, repair, modification or calibration should be accomplished to maintain specified performance. # 6.2.3 Protective coating Protective coating of hardware shall be appropriate to the condition, use and environment to which the GSE should be exposed during its life cycle. The coating shall minimize corrosion and should indicate its use (see <u>6.2.4</u>). #### 6.2.4 Colours The colours given in <u>Table 1</u> should be used for the type of GSE indicated. Colour GSE type Grey or blue Consoles and panels Grey or orange Structural steel Red Remove before flight, safety and protective equipment White Transportation containers Black Panel lettering Yellow or white Handling and transportation equipment Table 1 — Colours for GSE # 6.2.5 Metric system New GSE shall use the metric system in accordance with ISO 80000-1. # 6.2.6 Redundancy Redundant systems, subsystems or components shall be physically separated or otherwise protected to ensure that failure of one should not prevent the other from performing the function. #### 6.3 Reliability GSE shall be designed to meet system availability and/or dependability requirements. GSE shall be designed to minimize the probability of system failure and reduce the severity of the failure effect of the system. As a minimum, GSE shall be designed to be fail-safe, except for structure and pressure vessels in the rupture mode. The quality management system of the supplier shall provide appropriate procedures and instructions to perform and document analyses like the failure mode, effects and criticality analysis (FMECA)/critical items list (CIL), reliability diagrams and, in particular cases, sneak circuit analysis, or equivalent. # 6.4 Maintainability GSE shall be designed to minimize the complexity and duration of maintenance, the maintenance resources required to keep the system operational and maintenance downtime. High-failure-rate items should be identified for accessibility concerns. Human engineering criteria shall be used regarding accessibility to failed items (see <u>13.10</u>). Fault detection and isolation should be considered based on criticality and cost of failures. #### 6.5 Environmental conditions #### 6.5.1 General GSE shall be designed to meet natural and induced environments to which it should be subjected during its life cycle. The manager of the geographical location where the GSE is to be located shall provide an environmental document that defines the natural and induced environmental conditions. # 6.5.2 Natural environment GSE used or stored in an exterior environment shall be designed to function properly at its respective geographical location during and after exposure to the natural environment as tailored to reflect programme-defined risk and exposure times. #### 6.5.3 Launch-induced environment GSE designed to function during or after exposure to the launch-induced environment shall be designed to withstand the environment defined in programme-induced environmental requirements documents. # 6.5.4 Controlled interior environment Unless otherwise specified by programme requirements documents, GSE designed to function within a controlled interior environment shall be designed to the following temperature and humidity requirements: - a) temperature: 15 °Cto 27 °C, with extremes of an uncontrolled temperature of 10 °C to 40 °C for a maximum of 1 h; - b) humidity: nominal 55 %, with a range of 40 % to 70 % within the above defined temperature range (15 °C to 27 °C). # 6.5.5 **Controlled clean environment** GSE used in a controlled clean environment shall be designed to be operated and maintained at a cleanliness level compatible with the intended use. #### 6.5.6 Uncontrolled interior environment GSE used in an uncontrolled interior environment shall be designed to survive the most adverse exterior (ambient) environmental conditions for temperature and humidity anticipated at the respective geographical locations during its lifetime. # 6.5.7 Fire/explosion hazard environment GSE operated in locations where fire or explosion hazards can exist, due to flammable gases or vapours, flammable liquids, liquid, gas or solid propellants, etc., shall be hazard-proofed to prevent such hazardous conditions in accordance with the requirements specified in this document. #### 6.5.8 Environmental test methods Environmental methods and conditions required for GSE life cycle testing and qualification may be in accordance with accepted national or international aerospace industrial practices, as applicable. #### 6.5.9 Seismic environment If GSE can be subjected to a seismic environment, hardware shall be designed to resist the effects of a seismic event using the appropriate criteria and guidelines given in ISO 3010 or in accordance with a national standard. # 6.6 Transportability GSE design shall take into consideration the mobility and transportability constraints imposed by the deployment and maintenance concepts, handling equipment and planned modes of transportation (i.e. road, rail, sea or air). If necessary, GSE shall be capable of being partially dismantled or packed in order to meet the maximum size envelopes of the transportation method to be used (see 12.3). Maximum compatibility with existing procedures, facilities and equipment, including material handling equipment, shall be a design goal. GSE to be transported by personnel shall be provided with such handling provisions (e.g. handles, hand holds) necessary to meet operational transportability requirements. GSE that exceeds personnel lifting limits shall be provided with material handling provisions (e.g. sling, provided, castors, skid) necessary to meet the operational requirements for installation/removal, maintenance and use. # 7 Documentation # 7.1 Drawings and specifications Drawings and
specifications required for the fabrication, construction, installation, modification, test, operation, maintenance or utilization of GSE shall be prepared in accordance with accepted national or international drawing practices, as applicable. # 7.2 Technical documentation Technical documentation (e.g. manuals, reports) shall be prepared in accordance with accepted national or international aerospace industrial practices, as applicable. # 7.3 Operations and maintenance documentation (OMD) Operations and maintenance documentation (i.e. schematics, diagrams, operation and maintenance manuals, lists, etc.) shall be developed to the extent necessary to permit operations and maintenance personnel to fully utilize, operate, troubleshoot and otherwise maintain the GSE within their charge. # 8 Supply support GSE design shall accommodate the supply support system for the identification and acquisition of sufficient spare parts (e.g. critical parts, wear parts), components, materials and items to support construction, fabrication, installation, activation, tests, verification and operation activities that occur during the life cycle of the equipment or system. # 9 Personnel and training GSE design shall minimize the personnel and training requirements for the operation and maintenance of hardware and software. Hardware and software design shall keep the number and skill levels of personnel to a minimum. OMD shall be used as the source documentation in training courses. All GSE shall be designed assuming operations and maintenance should be performed by appropriately trained and skilled personnel, unless otherwise directed. GSE shall be designed for simplicity of use, redundancy and controls that are self-explanatory. The design shall provide for appropriate safety and warning devices to alert personnel of impending or existing hazards and shall ensure that normal operations/failures should not adversely affect personnel safety or the safety of the system or equipment. The design shall limit the number of controls and the data provided to the absolute minimum possible, so that only the functions needed by an operator are available. The design shall provide ease of operation so that operators do not require specialized training for normal or emergency conditions. Design features shall ensure ease of operation, safety and economy. The resultant design shall optimize compatibility between equipment and human performance, without requiring personnel training. The training necessary for operation and maintenance of GSE should be included in the training systems for the equipment that the GSE supports. # 10 Qualification Critical systems, subsystems and other components that have significant failure impact shall be qualified in accordance with the provisions of the approved programme/project verification plan. # 11 Quality assurance #### 11.1 General A supplier of GSE shall establish a quality management system that incorporates appropriate design rules and technical quality requirements. The design shall also include special quality-related requirements, such as special processes, special testing and any other necessary special requirements that produce a quality product. Quality requirements should be defined in programme/project quality and technical requirements documents, specifications, contractual requirements and other specified documentation. # 11.2 Responsibility for verification The concept of quality assurance places primary responsibility for quality of delivered products, materials or services on the supplier. The supplier is also responsible for the verification/quality of subcontractor products. However, where assembly of the system or equipment is at a customer facility, responsibility for verification may be split between the customer and the supplier. Accordingly, the supplier's responsibility for inspection shall be clearly stated in the contract documentation and the customer's role, either as a partner or monitor, shall be specified. A typical statement of responsibility is given in the example below. EXAMPLE "Responsibility for verification: Unless otherwise specified in the contract or order, the supplier is responsible for the performance of all verification requirements specified herein. Except otherwise specified, the supplier may use its own facilities or any commercial laboratory acceptable to the customer. The customer reserves the right to perform any of the verifications set forth in the specification where such inspections are deemed necessary to ensure that supplies and services conform to prescribed requirements." # 11.3 Testing #### 11.3.1 General Testing shall be specified by the engineering documentation and shall normally be limited to end-item acceptance testing, to verify conformity with the applicable specifications, and the ability of the end item to perform its functions. See ISO/TR 17400 for general testing guidelines. #### **11.3.2** Load test A load test shall be performed on hardware whenever there is reason to question its safety for the intended use. The minimum static test load shall be 125 % of the design or working load. Lifting devices and equipment shall be load tested in accordance with accepted national or international aerospace industry practice, as applicable. The static test load for metallic flight hardware lifting devices shall be 200 % of the design or working load. An alternative to the 200 % static load test shall be a 150 % minimum static load test and a 110 % minimum dynamic test of the design or working load. Non-flight metallic hardware lifting devices shall use a minimum static test load of 125 % of the design or working load. Non-metallic natural or synthetic lifting devices shall be load tested up to 100 % of the design or working load and the use shall be limited to 50 % of the design or working load. # 11.3.3 Non-destructive test (NDT) All NDTs of base materials shall be performed in accordance with accepted national or international aerospace industry practice, as applicable. # 11.3.4 Test reports Test reports shall be prepared in accordance with accepted national or international aerospace industry practice, as applicable. #### 11.3.5 Instrumentation calibration Calibration of measuring instruments shall be established and maintained. Where calibration is accomplished in a laboratory setting, it should be accomplished in accordance with the requirements of ISO/IEC 17025. # 11.4 Quality conformance verification A verification programme shall be specified in the contract documentation. This programme shall ensure that examinations and tests are performed to verify that all requirements of this document have been achieved. This quality conformance verification programme shall include: - tests and analyses of the performance and reliability requirements; - measurement or comparison of specified physical characteristics; - verification, with specific criteria, of workmanship; - test and inspection methods for ensuring conformity, including environmental conditions for performance. # 11.5 Checkout and maintenance The checkout and maintenance of GSE installed at integration and launch sites shall be carried out to prior to each launch mission to help ensure that the GSE is in proper operating condition. Potential problems, defects, accidents, risks and hazards of GSE shall be eliminated prior to launch to ensure the success of launch mission. At a minimum, the following tasks shall be fulfilled during the checkout and maintenance of GSE. - a) Ensure that all GSE functions, characteristics and parameters are operating within expected nominal ranges. - b) Verification of compatibility of interfaces among GSE, space flight vehicle and astronauts. - c) Normality of separate redundant systems, subsystems or components in accordance with expected constraints and conditions, as set by the launch operator and launch range. # 11.6 Quality problems management The quality problems of GSE including failures, defects, accidents, and other undesirable conditions can be resolved according to relevant approved national or international aerospace practices. NOTE ISO 16159 establishes procedures for the analysis of failures occurring during acceptance testing or operations of launch pad and integration site facilities, systems and equipment; and ISO 18238 provides basic procedures and requirements of closed loop problem solving against product quality problems. # 12 Packaging # 12.1 Preservation and packaging Hardware shall be preserved and packaged in accordance with accepted national or international aerospace industry practice, as applicable. # 12.2 Shipping containers Shipping containers shall be compatible with on-site transportation, handling and storage methods. For convenient handling and stacking, containers having a gross weight of more than the maximum weight allowed by human engineering shall be provided with integral skids or pallets for shipment. The recommended minimum skid or pallet thickness is 100 mm. Attach points shall be provided where applicable for crane hoists and tie-downs. # 12.3 Weight and size The weight and cubic displacement of packaging and packing shall be held to a minimum consistent with the requirement of the item and the method of transportation. Oversized hardware shall be designed so that the configuration (i.e. item) can be disassembled as required and packaged for shipment. # 12.4 Parts protection There shall be an efficient, reliable and economical system for the protection of all parts during shipping, handling and storage. There shall be standardization of parts protection procedures, methods, materials and devices, such as carts, boxes, containers or transportation vehicles necessary to prevent damage to parts. # 12.5 Precision clean parts Precision clean parts shall be packaged in such a manner as to preserve the cleaning level of the part until used. # 12.6 Marking Containers shall be marked in such a manner as to identify the
contents of the container easily without opening it, in accordance with ISO 6346. # 12.7 Environmental recording instruments Shipment of hardware that is sensitive to the induced and/or natural environment shall include instruments which record the environment with respect to time. Proof of adequate packaging shall be demonstrated if the use of a recording instrument is required but is not feasible in a single-item shipment of a small item. # 12.8 Transportation and storage The packaging shall protect the hardware during transportation and storage. # 13 Design and construction requirements # 13.1 Structural design #### 13.1.1 Structural steel and other structures The design of structural steel, aluminium, concrete and other GSE structures (e.g. access platforms, support stands) shall be in accordance with accepted national or international aerospace industrial practices and the requirements of this document. # 13.1.2 Safety factor A minimum safety factor of 2 against yield or permanent deformation and 3 against ultimate failure or collapse shall be used. The safety factor for flight hardware lifting devices shall be 3 against yield or permanent deformation and 5 against ultimate failure or collapse. The safety factor for non-metallic natural or synthetic material devices shall meet or exceed 5 against ultimate failure or collapse. #### 13.1.3 Critical weld Critical welds shall be avoided wherever possible. Critical welds shall be identified by the responsible design organization on the design drawings by placing a flag note in the tail of the critical weld symbol. The required appropriate non-destructive testing for critical welds shall also be identified by the responsible design organization in the general notes on the design drawings. # 13.2 Mechanical design # **13.2.1 Pneumatics** The design of pneumatic (i.e. gaseous nitrogen helium, oxygen, hydrogen, breathing air and special oxygen/nitrogen mixtures) servicing systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. Vacuum systems or compressed air systems shall be designed in accordance with accepted national or international aerospace industrial practices, as applicable. #### 13.2.2 Cryogenics The design of cryogenic [i.e. liquid hydrogen (LH_2), liquid oxygen (LO_2), liquid helium (LHe) and liquid nitrogen (LN_2)] servicing systems shall be in accordance with the ISO 22538 series and accepted national or international aerospace industrial practices, as applicable. # 13.2.3 Hypergols It is presupposed that the design of the following hypergolic fuel servicing systems and equipment complies with the provisions of the national regulations applicable at the launch, landing or retrieval site: - monomethylhydrazine (MMH); - nitrogen tetroxide (N₂O₄); - hydrazine (N_2H_4) ; - aerozine-50 (A-50); - unsymmetrical dimethylhydrazine (UDMH). # 13.2.4 Hydrocarbons The design of hydrocarbon fuel (i.e. JP-4, JP-5, RP-1, etc.) servicing and storage systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.2.5 Liquid oxidizers The design of liquid oxidizer systems (i.e. high purity H2O2, ethylene oxide liq fluorine, nitric acid, etc) servicing and storage systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.2.6 Hydraulics The design of hydraulic servicing systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.2.7 Environmental control system (ECS) and coolant servicing systems The design of ECS and coolant servicing systems and equipment used to condition and control the environment within selected space vehicle, spacecraft or experiment compartments shall be in accordance with accepted national or international aerospace industrial practices, as applicable. Environments in which personnel can be exposed shall be maintained in a condition in accordance with the safety objectives of the launch site. # 13.2.8 Life support The design of life support systems and equipment used or worn by personnel involved in toxic material operations, emergency rescue operations and all activities where the possibility of exposure to hazardous atmosphere exists shall be in accordance with accepted national or international aerospace industrial safety practices, as applicable. #### 13.2.9 Lifting devices The design of lifting devices (e.g. cranes, crane bridges, hoists) shall be in accordance with national or international standards (e.g. the ISO 4301 series), as applicable. When lifting flight hardware, a liftability analysis shall be performed to certify the stability of the lift prior to completion of the final design. # 13.2.10 Springs Spring design shall be in accordance with accepted national or international aerospace industrial practices. See Reference [9] for suggested methods and practices. # 13.2.11Umbilical design The design of flight-to-ground umbilicals shall be in accordance with ISO 15389. # **13.2.12 Torque limits** Threaded fasteners that require a torque shall use the torque limit criteria specified in ISO 898-7, as a minimum. For threaded fasteners of diameters greater than 10 mm, torquing requirements shall be determined by accepted design methods. # **13.2.13 Tethers** Equipment used in areas where the dropping of hardware can result in injury to personnel or damage to flight hardware shall be tethered. # 13.2.14 Jacks The design of jacks shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.2.15 Transportation equipment Transporters and other motorized GSE used for transportation of flight elements shall be designed to system specifications compiled from appropriate sections of industry and military specifications applicable to the characteristics of the desired end item. Transportation equipment shall ensure that loads imparted to flight hardware are equal to or less than 80 % of the design flight loads. The equipment shall remain stable under any maximum combination of applicable design loads. The minimum stand to tilt ratio between stabilizing and instabilizing moments shall be 1,2 for stationary items and 1,3 for slow moving items. #### 13.2.16Pressure vessels All pressure vessels for use in GSE shall be designed, constructed and tested according to ISO 14623, or in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.3 Electrical/electronic design # 13.3.1 Electrical control and monitor equipment The design of electrical control and monitor systems and equipment shall be in accordance with accepted national or international aerospace electronics industry practices, as applicable. # 13.3.2 Pneumatic and hydraulic mechanical components The electrical design for pneumatic and hydraulic mechanical components shall be in accordance with accepted national or international aerospace fluid component industry practices, as applicable. #### 13.3.3 Internal wiring The design of internal wiring used for electrical interconnection of components or parts within electronic GSE shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.3.4 Pyrotechnic systems It is presupposed that the design of pyrotechnic systems and equipment complies with the national regulations applicable at the launch, landing or retrieval site. #### 13.3.5 Electrical power The design of electrical power for systems and equipment shall be in accordance with the IEC 60364 series. Standard voltages shall be in accordance with IEC 60038. Adapters or other electrical devices may be required to ensure GSE compatibility between different power systems. # 13.3.6 Bonding and grounding Bonding and grounding shall be provided in accordance with IEC 60364-5-54. Bonding and grounding verification testing shall be determined based on the safety of personnel, systems, equipment and flight requirements for continuity with the ground. For a bonding and grounding test, the normal resistance across the flight to ground interfaces shall be less than $100 \text{ m}\Omega$. # 13.3.7 Hazard-proofing Electrically energized equipment that is operated in a hazardous environment shall be hazard-proofed equipment and wiring, or shall be intrinsically safe in accordance with the IEC 60079 series. # 13.3.8 Lightning protection Lightning protection for GSE at the launch pad, hazardous processing facilities and other hazardous areas shall be designed in accordance with the IEC 62305 series. # 13.3.9 Software Software incorporated in the design of GSE should follow the recommendations of accepted national or international aerospace industrial practices, as applicable. #### 13.3.10Firmware Firmware incorporated in the design of GSE shall meet the requirements of accepted national or international aerospace industrial practices, as applicable. # 13.4 Materials, parts and processes #### 13.4.1 Materials #### 13.4.1.1 General Recovered or recycled materials may be used instead of virgin materials, except in cases where virgin materials are deemed necessary to ensure adequate performance. For establishing properties, national or international industrial standards, as applicable, shall be used for metal. Applications for materials shall be limited to materials that are adequately described by controlling specifications or standards of a cognizant authority. Any additional qualifying tests and inspections shall be indicated in the engineering documentation. Control documents may be created for proposed materials that lack such documentation. # 13.4.1.2 Hydrogen embrittlement Materials subject to hydrogen embrittlement shall not be used in applications where the material can be exposed to hydrogen. These materials include, but are not limited to,
titanium, maraging steels, martensitic stainless steels and precipitation-hardening stainless steels. Low-strength carbon and austenitic stainless steels are preferred construction materials. When hydrogen-generating processes such as inorganic finishing or plating are utilized, the appropriate embrittlement relief procedure shall be used. # 13.4.1.3 Stress corrosion Materials shall be selected from alloys that are resistant to stress corrosion cracking (SCC), unless the GSE is used and stored in a controlled interior environment as specified in this document. #### 13.4.1.4 Dissimilar metals Dissimilar metals shall not be used in direct contact with each other for applications where the operational environment can cause corrosion. Separation by use of barrier tape, protective coatings or other methods of isolation shall be used in these applications. #### 13.4.1.5 Toxic materials or formulations Toxic materials or formulations shall not be specified in GSE design. Toxic products and formulations shall not be generated by a system or equipment. Typical examples of such toxic materials are mercury in liquid or vapour form, polychlorobiphenyls (PCBs), lead-based paints, chlorofluorocarbons (CFCs) and asbestos. Toxic fluids such as N_2H_4 , N_2O_4 , MMH, UDMH and ammonia (NH $_3$) may only be used when specifically required by a flight vehicle system requirement. It is presupposed that the use of such toxic fluids complies with the applicable safety regulations. A material's hazardous analysis shall be performed to determine if the GSE design involves any materials or by-products that are considered hazardous. # 13.4.1.6 Flammability, odour and off-gassing #### 13.4.1.6.1 General Materials used in hardware designed for use in direct contact with the flight vehicle element, or in close proximity, shall be qualified for flammability, odour and off-gassing in accordance with the ISO 14624 series. # 13.4.1.6.2 Oxygen service Only materials that are compatible with oxygen shall be selected for use in liquid or gaseous oxygen and liquid or gaseous air systems, in accordance with ISO 22538. #### 13.4.1.6.3 Reactive fluid service Only materials that are compatible with reactive fluids (i.e. hydrogen, hypergols, etc.) shall be used in these systems. # 13.4.1.7 Heat and blast protection Coating materials used for heat and blast protection of hardware shall be compatible with the space system propellants, shall not create debris and shall protect the hardware to which it is applied with a minimum of repair after launch. # 13.4.1.8 Potting and moulding compound Potting and moulding compound for electrical connectors shall be compatible with the space system propellants and shall provide a hermetic seal, isolation and insulation of electrical current, and structural support for the connector. # 13.4.1.9 Fungus resistance Materials susceptible to the growth of fungi shall be avoided. When these materials cannot be avoided, the material shall be treated to resist fungus. #### 13.4.1.10 Liquid locking compounds Single component liquid locking compounds that are anaerobic (i.e. they remain liquid when exposed to oxygen) shall not be used without prior project/programme approval. #### 13.4.2 Parts # 13.4.2.1 Use of commercial parts Commercial off-the-shelf (COTS) equipment, parts, items, software or components shall be used to the maximum extent possible when - a) they satisfy the hardware function, - b) they meet or exceed advertised safety ratings (i.e. SWL, proof, etc) - c) they shall not degrade the safety or reliability of the flight or ground system, and - d) they provide a cost savings that should exceed possible cost increases due to unique maintenance or logistics requirements, modifications or an increase in the complexity of the intentacing equipment. In all cases, exact materials of construction and applicable specifications shall be determined for evaluation of material compatibility requirements. Any additional qualifying tests and inspections shall be indicated in the engineering documentation. Control documents may be created for proposed parts that lack such documentation. # 13.4.2.2 Electrical, electronic and electromechanical (EEE) parts EEE parts shall be selected in accordance with the ISO 14621 series. Only EEE parts commensurate with the criticality of the application and the life cycle of the hardware shall be used. Determination of the EEE grade shall be based on the specific circuit function and its associated criticality. # 13.4.2.3 Tubing and fittings Tube fittings used in high-pressure fluid systems shall be in accordance with accepted national or international aerospace industrial practices as applicable. Tubing shall be in accordance with ISO 2964. # 13.4.2.4 Fluid system components Fluid system components used in the design of liquid or gas systems shall be limited to items that are adequately described by controlling specifications or standards of a cognizant authority. Control documents may be created for proposed fluid components that lack such documentation. Fluid components shall be selected for design utilization based upon the severity of the application. For applications where safety of personnel, damage to flight hardware or loss of mission is a direct concern, fluid components shall be selected from items of the highest practical quality. # 13.4.2.5 Electrical power receptacles and plugs Electrical power receptacles and plugs for GSE shall conform to the IEC 60309 series or the IEC 60884 series as applicable. The wiring of receptacles and plugs should be verified to ensure compatibility with the intended destination of the GSE. #### 13.4.2.6 Electrical power cable Alternating current (a.c.) power cable shall conform to the IEC 60227 series or the IEC 60245 series, as applicable, where the presence of polyvinyl chloride (PVC) or rubber is not detrimental to the intended use of the GSE. Power cables for use in environmental chambers or environmentally hazardous areas shall use appropriate aircraft or vacuum-approved cable types. #### 13.4.2.7 Electrical cable Flexible multi-conductor jacketed electrical cable shall be in accordance with accepted national or international aerospace electrical industry practices, as applicable. #### 13.4.2.8 Instrumentation and communication cable Instrumentation and communication cable shall be in accordance with the IEC 60189 series, where the presence of PVC or rubber is not detrimental to the intended use of the GSE. Power cables for use in environmental chambers or environmentally hazardous areas shall use appropriate aircraft or vacuum-approved cable types. # 13.4.2.9 Fibre-optic cable Fibre-optic cable shall be in accordance with the IEC 60794 series. #### 13.4.2.10 Electrical hook-up wire Electrical hook-up wire shall be in accordance with ISO 2635. #### 13.4.2.11 Radio-frequency (RF) cables Radio-frequency cables shall be in accordance with the IEC 60096 series. #### 13.4.2.12 **Connectors** #### 13.4.2.12.1 **Multi-conductor connectors** PDF of 150 \A625.202 Electrical multi-conductor connectors for electrical control and monitor systems and equipment shall conform to ISO 1949. #### 13.4.2.12.2 Radio frequency (RF) connectors RF connectors shall be selected from the IEC 60169 series #### 13.4.2.12.3 Fibre-optic connectors Fibre-optic connectors shall be in accordance with the IEC 60874 series. #### 13.4.2.12.4 Protective covers or caps Protective covers or caps shall be specified for all electrical connector plugs and receptacles when they are not connected. Protective covers or caps shall: - be moisture-proof a) - protect sealing, surfaces, threads and pins against damage; b) - be resistant to abrasion, chipping or flaking; c) - conform to cleanliness requirements for plugs and receptacles on which they are used; - be made of material that is compatible with the connector materials; - be connected to the cable with suitable lanyard, chain or hinge; - be non-static producing; - provide RFI protection, where appropriate. #### 13.4.2.13 Sensors and transducers Sensors and transducers used in the design of electrical control and monitor systems shall be limited to items that are adequately described by controlling specifications or standards of a cognizant authority. Control documents may be created for proposed sensors and transducers that lack such documentation. Sensors and transducers shall be selected for design utilization based upon the severity of the application. For applications where safety of personnel, damage to flight hardware or loss of mission is a direct concern, sensors and transducers shall be selected from items of the highest practical quality. #### 13.4.2.14 Exterior electrical enclosures Electrical enclosures used in exterior applications shall be designed to protect the electrical/electronic devices, apparatus and wiring contained within the enclosure from the effects of the natural and induced environment and to prevent any potential hazardous conditions. # 13.4.2.15 Rack, panels and modular enclosures Electronic racks, panels and modular enclosures used in interior applications shall be in accordance with the IEC 60297 series. #### 13.4.2.16 Printed boards GSE printed boards shall be designed, fabricated and qualified in accordance with the IEC 62326 series. #### 13.4.2.17 Motors Motors used in GSE shall be in accordance with the IEC 60034 series. Starters and controllers shall be in accordance with accepted national or international aerospace industrial practices for industrial control devices specified in the IEC 60947 series. #### 13.4.2.18 Threaded fasteners Threaded fasteners shall be limited to items that are adequately described by controlling specifications or standards of a cognizant authority. Control documents may be created for proposed fasteners that lack such documentation. Fasteners shall be selected for design utilization based upon the severity of the application. For applications where safety of
personnel, damage to flight hardware or loss of mission is a direct concern, fasteners shall be selected from items of the highest practicable quality. These critical fasteners shall have lot traceability from the manufacturer to the warehouse storage or shall have acceptance testing (chemical and physical properties, where applicable) of fasteners by lot or be proof-loaded prior to use. Other applications shall give primary consideration to reduced cost and schedule requirements. #### 13.4.2.19 Fluids Fluids used in GSE shall conform to the ISO 15859 series. # 13.4.3 Processes # 13.4.3.1 Welding Welding shall be in accordance with the accepted national or international aerospace industrial practices, as applicable. # 13.4.3.2 Brazing Brazing of steel, copper, aluminium, nickel and magnesium alloys and induction brazing shall be in accordance with accepted national or international aerospace industrial practices, as applicable to non-flight equipment. # **13.4.3.3 Soldering** Soldering shall be in accordance with accepted national or international aerospace industrial practices, as applicable to non-flight equipment. # 13.4.3.4 Tube assembly Fabrication and installation of tube assemblies shall be in accordance with accepted national or international aerospace industrial practices, as applicable to non-flight equipment. # 13.4.3.5 Fitting lubrication Lubrication of tube fittings shall preclude system contamination and shall be compatible with the fluid and/or gaseous service. # 13.4.3.6 Fluid system cleaning Cleaning of piping, tubing, fittings, and other fluid system components shall be in accordance with the ISO 14952 series. The cleanliness level and test method shall be specified based upon the application. # **13.4.3.7** Riveting Riveting on systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # **13.4.3.8 Crimping** Crimping shall be in accordance with ISO 1966. # 13.4.3.9 Potting and moulding Potting and moulding of electrical connectors shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.4.3.10 Electrical cable fabrication Electrical cable fabrication for control and monitor systems and equipment shall be in accordance with accepted national or international aerospace industrial practices, as applicable. # 13.4.3.11 Conformal coating The application of conformal coating on printed board assemblies shall be in accordance with the IEC 61086 series. #### 13.4.3.12 Corrosion control Corrosion control shall be provided for GSE so as to preclude concentration cell, galvanic, intergranular, pitting, stress corrosion and crevice corrosion when subjected to the natural and induced environment anticipated during the life cycle. Appropriate methods for corrosion removal, cleaning, treatment and coating shall be developed to minimize the effects of corrosion. #### 13.4.3.13 Metal treatment and plating Metal treatment (including passivation of stainless steel) and plating shall be in accordance with the accepted national or international aerospace industrial practices, as applicable. Cadmium plating is not recommended for use and is prohibited for use in applications that should be exposed to cleanroom, high-oxygen or vacuum environments or where temperatures exceed 232 °C. Cadmium plating may only be used where safety is an overriding factor.