

INTERNATIONAL
STANDARD

ISO
3506-4

Second edition
2009-11-15

Mechanical properties of corrosion-resistant stainless steel fasteners —

**Part 4:
Tapping screws**

Caractéristiques mécaniques des éléments de fixation en acier inoxydable résistant à la corrosion —

Partie 4: Vis à tôle

STANDARDSISO.COM : Click to view the full PDF of ISO 3506-4:2009

Reference number
ISO 3506-4:2009(E)

© ISO 2009

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDSISO.COM : Click to view the full PDF of ISO 3506-4:2009

COPYRIGHT PROTECTED DOCUMENT

© ISO 2009

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Designation, marking and finish	2
3.1 Designation	2
3.2 Marking	3
3.3 Finish	4
4 Chemical composition	4
5 Mechanical properties	5
5.1 General	5
5.2 Surface hardness	5
5.3 Core hardness	6
5.4 Torsional strength	6
5.5 Thread forming capability	6
6 Test methods	6
6.1 Surface hardness test	6
6.2 Core hardness test	6
6.3 Torsional strength test	6
6.4 Drive test	8
Annex A (normative) Description of the groups and grades of stainless steels	9
Annex B (informative) Stainless steel for cold heading and extruding	12
Annex C (informative) Austenitic stainless steels with particular resistance to chloride induced stress corrosion	14
Annex D (informative) Time-temperature diagram of intergranular corrosion in austenitic stainless steels, grade A2 (18/8 steels)	15
Annex E (informative) Magnetic properties for austenitic stainless steels	16
Bibliography	17

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 3506-4 was prepared by Technical Committee ISO/TC 2, *Fasteners*, Subcommittee SC 1, *Mechanical properties of fasteners*.

This second edition cancels and replaces the first edition (ISO 3506-4:2003), which has been technically revised.

ISO 3506 consists of the following parts, under the general title *Mechanical properties of corrosion-resistant stainless steel fasteners*:

- *Part 1: Bolts, screws and studs*
- *Part 2: Nuts*
- *Part 3: Set screws and similar fasteners not under tensile stress*
- *Part 4: Tapping screws*

Introduction

In the preparation of this part of ISO 3506, special attention has been given to the fundamentally different property characteristics of the stainless steel fastener grades compared with those of carbon steel and low-alloy steel fasteners. Ferritic and austenitic stainless steels are strengthened only by cold working and consequently, the components do not have as homogeneous local material properties as hardened and tempered parts. These special features have been recognized in the elaboration of the hardness classes and the test procedures for mechanical properties.

The primary objective of this part of ISO 3506 is to ensure that corrosion-resistant austenitic, martensitic and ferritic stainless steel tapping screws will form mating threads in materials such as aluminium into which they are normally driven without deforming their own thread and without breaking during assembly or service. Selection of the steel group is based on the intended application.

STANDARDSISO.COM : Click to view the full PDF of ISO 3506-4:2009

STANDARDSISO.COM : Click to view the full PDF of ISO 3506-4:2009

Mechanical properties of corrosion-resistant stainless steel fasteners —

Part 4: Tapping screws

1 Scope

This part of ISO 3506 specifies the mechanical properties of tapping screws made of austenitic, martensitic and ferritic steel grades of corrosion-resistant stainless steels, when tested over an ambient temperature range of 10 °C to 35 °C. Properties vary at higher or lower temperatures.

It applies to tapping screws with threads from ST2,2 up to and including ST8, in accordance with ISO 1478.

It does not apply to screws with special properties, such as weldability.

NOTE The designation system of this part of ISO 3506 can be used for sizes outside the limits given in this clause (e.g. $d > \text{ST8}$), provided that all applicable mechanical and physical requirements of the hardness classes are met.

This part of ISO 3506 does not define corrosion or oxidation resistance in particular environments. However, some information on materials for particular environments is given in Annex C. Regarding definitions of corrosion and corrosion resistance, see ISO 8044.

The aim of this part of ISO 3506 is the classification of corrosion-resistant stainless steel tapping screws into hardness classes.

Corrosion and oxidation performances and mechanical properties for use at elevated or sub-zero temperatures can be agreed on between the user and the manufacturer in each particular case. Annex D shows how the risk of intergranular corrosion at elevated temperatures depends on the carbon content.

All austenitic stainless steel fasteners are normally non-magnetic in the annealed condition; after cold working, some magnetic properties can be evident (see Annex E).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 1478, *Tapping screws thread*

ISO 3651-1, *Determination of resistance to intergranular corrosion of stainless steels — Part 1: Austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in nitric acid medium by measurement of loss in mass (Huey test)*

ISO 3651-2, *Determination of resistance to intergranular corrosion of stainless steels — Part 2: Ferritic, austenitic and ferritic-austenitic (duplex) stainless steels — Corrosion test in media containing sulfuric acid*

ISO 6507-1, *Metallic materials — Vickers hardness test — Part 1: Test method*

ISO 16048, *Passivation of corrosion-resistant stainless-steel fasteners*

ISO 16426, *Fasteners — Quality assurance system*

3 Designation, marking and finish

3.1 Designation

The designation system for stainless steel grades and hardness classes for tapping screws is given in Figure 1. The designation of the material consists of two blocks, which are separated by a hyphen. The first block designates the steel grade and the second block, the hardness class.

The designation of the steel grade (first block) consists of one of the letters

- **A** for austenitic steel,
- **C** for martensitic steel, or
- **F** for ferritic steel

which indicates the group of steel and a digit, which indicates a range of chemical compositions within this steel group (see Table 2).

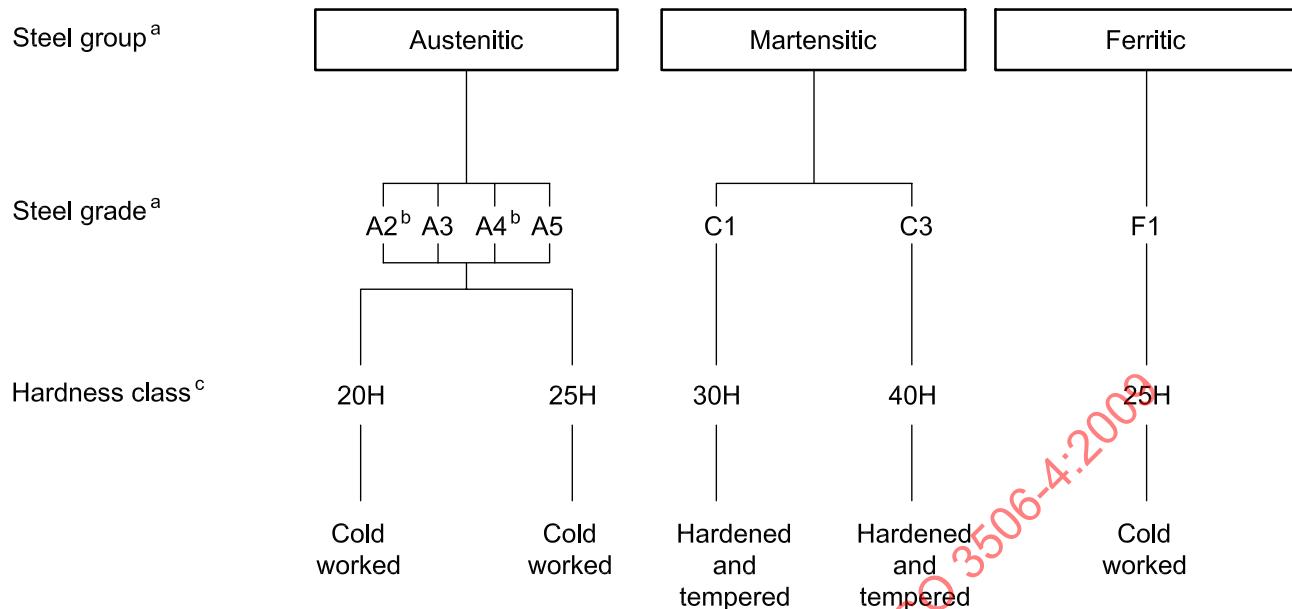

The designation of the hardness class (second block) consists of two digits representing 1/10 of the minimum Vickers hardness and the letter H, referring to hardness (see Table 1).

Table 1 — Designations of hardness classes in relation to Vickers hardness

Hardness class	20H	25H	30H	40H
Vickers hardness, HV min.	200	250	300	400

EXAMPLE 1 **A4-25H** indicates: austenitic steel of steel grade A4, cold worked, minimum hardness 250 HV.

EXAMPLE 2 **C3-40H** indicates: martensitic steel of steel grade C3, hardened and tempered, minimum hardness 400 HV.

^a The steel groups and steel grades classified in Figure 1 are described in Annex A and specified by the chemical composition given in Table 2.

^b Low-carbon austenitic stainless steels with carbon content not exceeding 0,03 % may additionally be marked with an "L".

EXAMPLE **A4L-25H**

^c Tapping screws passivated in accordance with ISO 16048 may additionally be marked with a "P".

EXAMPLE **A4-25HP**

Figure 1 — Designation system for stainless steel grades and hardness classes for tapping screws

3.2 Marking

3.2.1 General

Marking of tapping screws is not mandatory.

When tapping screws manufactured according to the requirements of this part of ISO 3506 are designated and marked, they shall be designated in accordance with the designation system described in 3.1 and marked in accordance with 3.2.2 and 3.2.3. However, the designation system described in 3.1 and the provisions for marking according to 3.2.3 shall be used only if all relevant requirements of this part of ISO 3506 are met.

3.2.2 Manufacturer's identification mark

A manufacturer's identification mark shall be included during the manufacturing process on all tapping screws which are marked with a hardness class symbol, provided this is possible for technical reasons. Manufacturer's identification marking is also recommended on tapping screws which are not marked with a hardness class symbol.

3.2.3 Tapping screws

When tapping screws are marked, they shall be clearly marked in accordance with 3.1. The marking should include the steel grade and hardness class.

3.2.4 Packages

All packages for all types of tapping screws of all sizes shall be marked (e.g. through labelling). The marking shall include the manufacturer's and/or distributor's identification and the marking symbol for the steel grade and hardness class according to Figure 1 and the manufacturing lot number, as defined in ISO 16426.

3.3 Finish

Unless otherwise specified, tapping screws in accordance with this part of ISO 3506 shall be supplied clean and bright. For maximum corrosion resistance, passivation is recommended. When passivation is required, it shall be performed in accordance with ISO 16048. Tapping screws that are passivated may additionally be marked with the symbol "P" after the symbols for steel grade and hardness class (see footnote c of Figure 1).

For tapping screws manufactured to a specific order, the additional marking should be applied to both the fastener and the label. For tapping screws delivered from stock, the additional marking should be applied to the label.

4 Chemical composition

The chemical compositions of stainless steels suitable for tapping screws in accordance with this part of ISO 3506 are given in Table 2.

NOTE The chemical compositions given in Table 2 correspond with the chemical compositions given in ISO 3506-1:2009, Table 1, for the relevant steel grades.

The final choice of the chemical composition within the specified steel grade is at the discretion of the manufacturer, otherwise by prior agreement between the purchaser and the manufacturer.

In applications where risk of intergranular corrosion is present, testing in accordance with ISO 3651-1 or ISO 3651-2 is recommended. In such cases, stabilized stainless steels of grades A3 and A5 or stainless steels of grades A2 and A4 with carbon content not exceeding 0,03 % are recommended.

Table 2 — Stainless steel grades — Chemical composition

Steel group	Steel grade	Chemical composition ^a mass fraction, %									Footnotes
		C	Si	Mn	P	S	Cr	Mo	Ni	Cu	
Austenitic	A2	0,10	1	2	0,05	0,03	15 to 20	— ^b	8 to 19	4	cd
	A3	0,08	1	2	0,045	0,03	17 to 19	— ^b	9 to 12	1	e
	A4	0,08	1	2	0,045	0,03	16 to 18,5	2 to 3	10 to 15	4	df
	A5	0,08	1	2	0,045	0,03	16 to 18,5	2 to 3	10,5 to 14	1	ef
Martensitic	C1	0,09 to 0,15	1	1	0,05	0,03	11,5 to 14	—	1	—	f
	C3	0,17 to 0,25	1	1	0,04	0,03	16 to 18	—	1,5 to 2,5	—	—
Ferritic	F1	0,12	1	1	0,04	0,03	15 to 18	— ^g	1	—	hi

NOTE 1 A description of the groups and grades of stainless steels also entering into their specific properties and applications is given in Annex A.

NOTE 2 Examples of stainless steels standardized in accordance with ISO 4954 are given in Annex B.

NOTE 3 Certain materials for specific application are given in Annex C.

^a Values are maximum, unless otherwise indicated.

^b Molybdenum may be present at the discretion of the manufacturer. However, if for some applications limiting of the molybdenum content is essential, this shall be stated at the time of ordering by the purchaser.

^c If the chromium content is below 17 %, the minimum nickel content should be 12 %.

^d For austenitic stainless steels having a maximum carbon content of 0,03 %, nitrogen may be present to a maximum of 0,22 %.

^e This shall contain titanium $\geq 5 \times C$ up to 0,8 % maximum for stabilization and be marked appropriately as specified in this table, or shall contain niobium (columbium) and/or tantalum $\geq 10 \times C$ up to 1,0 % maximum for stabilization and be marked appropriately as specified in this table.

^f At the discretion of the manufacturer, the carbon content may be higher where required in order to obtain the specified mechanical properties at larger diameters, but shall not exceed 0,12 % for austenitic steels.

^g Molybdenum may be present at the discretion of the manufacturer.

^h This may contain titanium $\geq 5 \times C$ up to 0,8 % maximum.

ⁱ This may contain niobium (columbium) and/or tantalum $\geq 10 \times C$ up to 1 % maximum.

5 Mechanical properties

5.1 General

For acceptance purposes, the mechanical properties and performance characteristics specified in 5.2 to 5.5 apply and shall be tested in accordance with 6.1 to 6.4.

5.2 Surface hardness

Screws of martensitic steel grades shall conform to the surface hardness requirements given in Table 3 when tested in accordance with 6.1.

Table 3 — Surface hardness

Steel group	Steel grade	Hardness class	Surface hardness HV min.
Martensitic	C1	30H	300
	C3	40H	400

5.3 Core hardness

Screws of austenitic and ferritic steel grades shall conform to the core hardness requirements given in Table 4 when tested in accordance with 6.2. In case of dispute, the requirements for performance characteristics in accordance with 5.5 shall be used to determine product acceptance.

Table 4 — Core hardness

Steel group	Steel grade	Hardness class	Core hardness HV ^a min.
Austenitic	A2, A3, A4, A5	20H	200
		25H	250
Ferritic	F1	25H	250

^a For threads \leq ST3.9, test force 5 HV shall be used; for threads $>$ ST3.9, test force 10 HV shall be used.

5.4 Torsional strength

Stainless steel tapping screws shall have a torsional strength such that the torque necessary to cause failure, when tested in accordance with 6.3, shall equal or exceed the minimum torque values given in Table 5 for the applicable hardness class.

5.5 Thread forming capability

Stainless steel tapping screws shall form mating threads without deforming their own thread when driven into a test plate in accordance with 6.4.

6 Test methods

6.1 Surface hardness test

This test is valid for tapping screws of martensitic steel grades.

Vickers hardness testing shall be carried out in accordance with ISO 6507-1.

The indentation of the pyramid shall be made on a flat surface, preferably on the head of the screw.

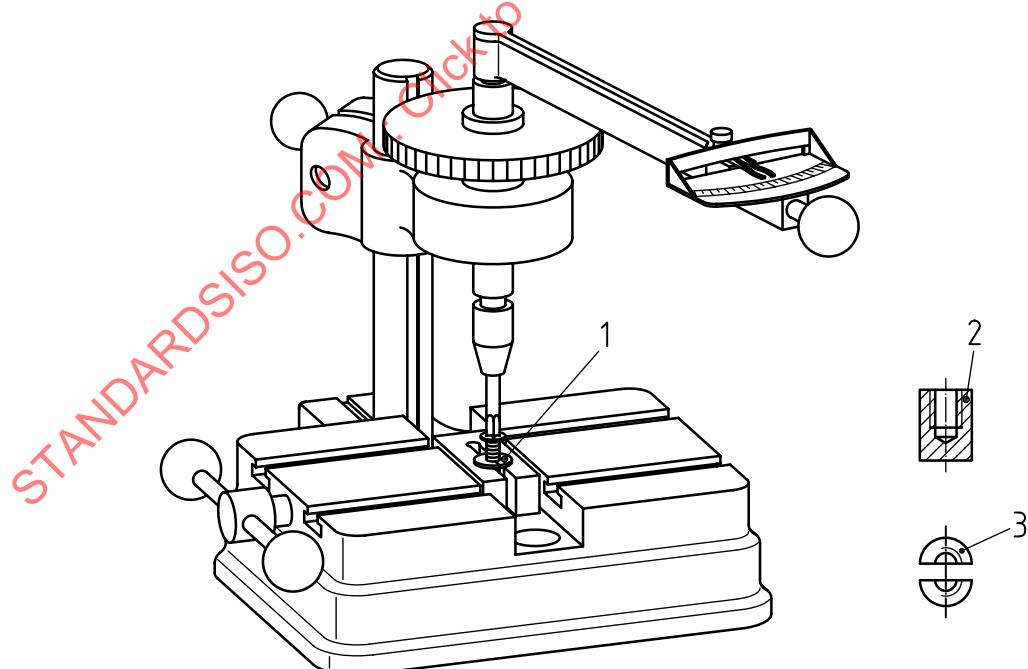
6.2 Core hardness test

This test is valid for tapping screws of austenitic and ferritic steel grades.

Vickers core hardness testing shall be carried out in accordance with ISO 6507-1 at the mid-radius of a transverse section through the tapping screw taken at a distance sufficiently behind the point of the tapping screw to be through the full minor diameter.

6.3 Torsional strength test

The breaking torque, M_B , shall be determined using an apparatus as shown in Figure 2. The torque-measuring device shall have an accuracy of within $\pm 6\%$ of the minimum torque values to be measured.


The thread of the as-received sample tapping screw (coated or uncoated) shall be clamped in a mating split threaded die or other device so that the clamped portion of the tapping screw is not damaged and at least two full threads project above the clamping device and at least two full-form threads exclusive of point are held

within the clamping device. A threaded insert with a blind hole may be used in place of the clamping device (see Figure 2) provided that the hole depth is such as to ensure that breakage will occur in the fully-threaded portion.

The torque shall be applied to the tapping screw until failure occurs. The tapping screw shall meet the minimum breaking torque specified in Table 5.

Table 5 — Minimum breaking torque

Thread	Breaking torque, M_B min. Nm			
	Hardness class			
	20H	25H	30H	40H
ST2,2	0,38	0,48	0,54	0,6
ST2,6	0,64	0,8	0,9	1
ST2,9	1	1,2	1,4	1,5
ST3,3	1,3	1,6	1,8	2
ST3,5	1,7	2,2	2,4	2,7
ST3,9	2,3	2,9	3,3	3,6
ST4,2	2,8	3,5	3,9	4,4
ST4,8	4,4	5,5	6,2	6,9
ST5,5	6,9	8,7	9,7	10,8
ST6,3	11,4	14,2	15,9	17,7
ST8	23,5	29,4	32,9	36,5

Key

- 1 split threaded die or threaded insert
- 2 threaded insert with a blind hole
- 3 split threaded die

Figure 2 — Apparatus for determination of the breaking torque, M_B

6.4 Drive test

The as-received sample tapping screw (coated or uncoated) shall be driven into a test plate until one thread of full diameter is completely through the test plate.

For the drive test of tapping screws of austenitic and ferritic steel grades, a test plate made from aluminium alloy and with a hardness of 80 HV 30 to 120 HV 30 shall be used.

For the drive test of tapping screws of martensitic steel grades, a test plate made from low-carbon steel with a carbon content not exceeding 0,23 % shall be used. The hardness of the plate shall be 130 HV 30 to 170 HV 30 when measured in accordance with ISO 6507-1.

The thickness of the test plates shall conform to the values given in Table 6.

The test hole shall be drilled, or punched and drilled, or punched and reamed, to the hole diameter specified in Table 6.

Table 6 — Test plate thickness and hole size

Thread	Test plate thickness		Hole diameter	
	min.	max.	min.	max.
ST2,2	1,17	1,30	1,905	1,955
ST2,6	1,17	1,30	2,185	2,235
ST2,9	1,17	1,30	2,415	2,465
ST3,3	1,17	1,30	2,680	2,730
ST3,5	1,85	2,06	2,920	2,970
ST3,9	1,85	2,06	3,240	3,290
ST4,2	1,85	2,06	3,430	3,480
ST4,8	3,10	3,23	4,015	4,065
ST5,5	3,10	3,23	4,735	4,785
ST6,3	4,67	5,05	5,475	5,525
ST8	4,67	5,05	6,885	6,935

Annex A (normative)

Description of the groups and grades of stainless steels

A.1 General

In ISO 3506 (all parts), reference is made to steel grades A1 to A5, C1 to C4 and F1, covering steels of the following groups:

- Austenitic steel A1 to A5;
- Martensitic steel C1 to C4;
- Ferritic steel F1.

The characteristics of the above-mentioned steel groups and steel grades are described in this annex.

This annex also gives some information on the non-standardized steel group FA. Steels of this group have a ferritic-austenitic structure.

A.2 Steel group A (austenitic structure)

A.2.1 General

Five main grades of austenitic steels, A1 to A5, are included in ISO 3506 (all parts). They cannot be hardened and are usually non-magnetic. In order to reduce the susceptibility to work hardening, copper may be added to the steel grades A1 to A5, as specified in Table 2.

For non-stabilized steel grades A2 and A4, the following applies:

- As chromic oxide makes steel resistant to corrosion, low carbon content is of great importance to non-stabilized steels. Due to the high affinity of chrome to carbon, chrome carbide is obtained instead of chromic oxide, which is more likely at elevated temperature (see Annex D).

For stabilized steel grades A3 and A5, the following applies:

- The elements Ti, Nb or Ta affect the carbon, and chromic oxide is produced to its full extent.

For offshore or similar applications, steels with Cr and Ni content of about 20 % and Mo of 4,5 % to 6,5 % are required.

When risk of corrosion is high, experts should be consulted.

A.2.2 Steel grade A1

Steels of grade A1 are specially designed for machining. Due to high sulfur content, the steels within this grade have lower resistance to corrosion than corresponding steels with normal sulfur content.

A.2.3 Steel grade A2

Steels of grade A2 are the most frequently used stainless steels. They are used for kitchen equipment and apparatus for the chemical industry. Steels within this grade are not suitable for use in non-oxidizing acid and agents with chloride content, i.e. in swimming pools and sea water.

A.2.4 Steel grade A3

Steels of grade A3 are stabilized “stainless steels” with properties of steels of grade A2.

A.2.5 Steel grade A4

Steels of grade A4 are “acid proof steels”, which are Mo alloyed and give a considerably better resistance to corrosion. A4 is used to a great extent by the cellulose industry, as this steel grade is developed for boiling sulfuric acid (hence the name “acid proof”) and is, to a certain extent, also suitable in an environment with chloride content. A4 is also frequently used by the food industry and by the shipbuilding industry.

A.2.6 Steel grade A5

Steels of grade A5 are stabilized “acid proof steels” with properties of steels of grade A4.

A.3 Steel group F (ferritic structure)

A.3.1 General

One ferritic steel grade, F1, is included in ISO 3506 (all parts). The steels within F1 cannot normally be hardened normally and should not be hardened even if possible in certain cases. The F1 steels are magnetic.

A.3.2 Steel grade F1

Steels of grade F1 are normally used for simpler equipment with the exception of the superferrites, which have extremely low C and N contents. The steels within grade F1 can, if need be, replace steels of grades A2 and A3 and be used in an environment with a higher chloride content.

A.4 Steel group C (martensitic structure)

A.4.1 General

Three types of martensitic steel grades, C1, C3 and C4, are included in ISO 3506 (all parts). They can be hardened to an excellent strength and are magnetic.

A.4.2 Steel grade C1

Steels of grade C1 have limited resistance to corrosion. They are used in turbines, pumps and knives.

A.4.3 Steel grade C3

Steels of grade C3 have limited resistance to corrosion, though better resistance than C1. They are used in pumps and valves.

A.4.4 Steel grade C4

Steels of grade C4 have limited resistance to corrosion. They are intended for machining, otherwise they are similar to steels of grade C1.

A.5 Steel group FA (ferritic-austenitic structure)

Steel group FA is not included in ISO 3506 (all parts), but will probably be included in a future edition.

Steels of this steel group are the so-called duplex steels. The FA steels developed at first had some drawbacks, which were eliminated in the steels developed later. FA steels have better properties than steels of grades A4 and A5, especially where strength is concerned. They also exhibit superior resistance to pitting and crack corrosion.

Examples of composition are shown in Table A.1.

Table A.1 — Examples of composition of steels with ferritic-austenitic structure

Steel group	Chemical composition mass fraction, %						
	C max.	Si	Mn	Cr	Ni	Mo	N
Ferritic-austenitic	0,03	1,7	1,5	18,5	5	2,7	0,07
	0,03	< 1	< 2	22	5,5	3	0,14

Annex B
(informative)

Stainless steel for cold heading and extruding

(Extract from ISO 4954:1993)

STANDARDSISO.COM : Click to view the full PDF of ISO 3506-4:2009

Table B.1 — Stainless steel for cold heading and extruding

No.	Type of steel Designation ^a Name	In accordance with ISO 4954:1979	C	Si max.	Mn max.	P max.	S max.	Chemical composition ^b mass fraction, %			Steel grade identification ^c
								Cr	Mo	Ni	
Ferritic steels											
71	X 3 Cr 17 E	—	≤ 0,04	1,00	1,00	0,040	0,030	16,0 to 18,0	—	≤ 1,0	F1
72	X 6 Cr 17 E	D 1	≤ 0,08	1,00	1,00	0,040	0,030	16,0 to 18,0	—	≤ 1,0	F1
73	X 6 CrMo 17 1 E	D 2	≤ 0,08	1,00	1,00	0,040	0,030	16,0 to 18,0	0,90 to 1,30	≤ 1,0	F1
74	X 6 CrTi 12 E	—	≤ 0,08	1,00	1,00	0,040	0,030	10,5 to 12,5	—	≤ 0,50	F1
75	X 6 CrNb 12 E	—	≤ 0,08	1,00	1,00	0,040	0,030	10,5 to 12,5	—	≤ 0,50	F1
Martensitic steels											
76	X 12 Cr 13 E	D 10	0,90 to 0,15	1,00	1,00	0,040	0,030	11,5 to 13,5	—	≤ 1,0	C1
77	X 19 CrNi 16 2 E	D 12	0,14 to 0,23	1,00	1,00	0,040	0,030	15,0 to 17,5	—	1,5 to 2,5	C3
Austenitic steels											
78	X 2 CrNi 18 10 E	D 20	≤ 0,030	1,00	2,00	0,045	0,030	17,0 to 19,0	—	9,0 to 12,0	A2 ^d
79	X 5 CrNi 18 9 E	D 21	≤ 0,07	1,00	2,00	0,045	0,030	17,0 to 19,0	—	8,0 to 11,0	A2
80	X 10 CrNi 18 9 E	D 22	≤ 0,12	1,00	2,00	0,045	0,030	17,0 to 19,0	—	8,0 to 10,0	A2
81	X 5 CrNi 18 12 E	D 23	≤ 0,07	1,00	2,00	0,045	0,030	17,0 to 19,0	—	11,0 to 13,0	A2
82	X 6 CrNi 18 16 E	D 25	≤ 0,08	1,00	2,00	0,045	0,030	15,0 to 17,0	—	17,0 to 19,0	A2
83	X 6 CrNiTi 18 10 E	D 26	≤ 0,08	1,00	2,00	0,045	0,030	17,0 to 19,0	—	9,0 to 12,0	A3 ^e
84	X 5 CrNiMo 17 12 2 E	D 29	≤ 0,07	1,00	2,00	0,045	0,030	16,5 to 18,5	2,0 to 2,5	10,5 to 13,5	A4
85	X 6 CrNiMo Ti 17 12 2 E	D 30	≤ 0,08	1,00	2,00	0,045	0,030	16,5 to 18,5	2,0 to 2,5	11,0 to 14,0	A5 ^e
86	X 2 CrNiMo 17 13 3 E	—	≤ 0,030	1,00	2,00	0,045	0,030	16,5 to 18,5	2,5 to 3,0	11,5 to 14,5	A4 ^d
87	X 2 CrNiMoN 17 13 3 E	—	≤ 0,030	1,00	2,00	0,045	0,030	16,5 to 18,5	2,5 to 3,0	11,5 to 14,5	A4 ^d
88	X 3 CrNiCu 18 9 3 E	D 32	≤ 0,04	1,00	2,00	0,045	0,030	17,0 to 19,0	—	8,5 to 10,5	A2

^a The designations given in the first column are consecutive numbers. The designations given in the second column are in accordance with the system proposed by ISO 4954:1979 (revised by ISO 4954:1993).

^b Elements not quoted in this table should not be intentionally added to the steel without the agreement of the purchaser, other than for finishing the heat. All reasonable precautions should be taken to prevent the addition, from scrap or other materials used in manufacture, of elements which affect mechanical properties and applicability.

^c This is not part of ISO 4954.

^d Excellent resistance to intergranular corrosion.

^e Stabilized steels.