
I NTE R NAT I O NA L
STANDARD

IS0
9074

First edition

AMENDMENT 1
1989-07-15

1993-1 1-15

Information processing systems - Open Systems
Interconnection - Estelle: A formal description
technique based on an extended state transition
model

AMENDMENT 1: Tutorial on Estelle

Systèmes de traitement de l'information - Interconnexion de systèmes
ouverts - Estelle: Technique de description formelle basée sur un modèle de
transition d'état étendu

AMENDEMENT 1: Tutorial sur Estelle

Reference number
IS0 9074:1989/Amd. 1:1993(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

IS0 9074:1989/Amd.l:1993 (E)

Foreword
IS0 (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are members of IS0 or IEC participate in the
development of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. IS0 and
IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with IS0 and IEC, also
take part in the work.
In the field of information technology, IS0 and IEC have established a joint technical
committee, ISO/iEC JTC 1. Draft International Standards adopted by the joint
technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting
a vote.
Amendment 1 to International Standard IS0 9074:1989 was prepared by Joint
Technical Committee ISO/IEC JTC 1, Information technology, Sub-Committee
SC 21, Informution retrieval, transfer and management for open systems
interconnection (OSI).

O ISO/EC 1993
All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

Printed in Switzerland
ISO/IEC Copyright Office Case postale 56 CH-121 1 Genhve 20 Switzerland

ii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

@ISO/IEC IS0 9074: 1989/Amd.l:1993 (E)

Information processing systems - Open Systems
Interconnection - Estelle: A formal description technique
based on an extended state transition model

AMENDMENT 1: Tutorial on Estelle

Insert a new annex D as follows:

ANNEX D
(informative)

Estelle Tutorial

INTRODUCTION

Estelle is a formal description technique (FDT) for specifying distributed, concurrent information
processing systems with a particular application in mind, namely that of communication protocols and
services of the layers of Open Systems Interconnection (OSI) architecture defiied by ISO.

Estelle is a second generation formal description technique and it reflects the experience gained from
experiments in using its predecessors (see [4], [5], [8], [9] and [56]). Estelle also reflects collaboration
with ITU-T, which defined SDL (Specification and Descriptions Language [13]) with which Estelle has
some notions in common.

Estelle is one of the description techniques that are intended to serve as means to remove ambiguities from
IS0 protocol standards, traditionally defined by a combination of a natural language prose, state tables, etc.
However, an unambiguous formal specification still may be far from any implementation. There is a vital
need for formalised specifications of distributed systems in general, and communication protocols in
particular, which would, at the same time, indicate how implementations may be derived from them. This is
precisely the principal field of application of Estelle.

Estelle can be briefly described as a technique that is based on an extended state transition model, i.e., a
model of a non deterministic communicating automaton extended by the addition of Pascal language. More
precisely, Estelle may be viewed as a set of extensions to IS0 Pascal [41], level O, which models a
specified system as a hierarchical siructure of communicating automata which:

- may run in parallel, and
- may communicate by exchanging messages and by sharing, in a restricted way, some variables.

Estelle permits a clear separation of the description of the communication interface between components of a
specified system from the description of the internal behaviour of each such component. As in Pascal, all

1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E)

P3

OISO/iEC

P-ack, N-ack

manipulated objects are strongly typed. This property enables static detection (e.g. during compilation) of
specification inconsistencies.

D.1 A brief overview of the principal concepts in Estelle

D.l.l Modules and module instances
An Estelle specification describes a collection of communicating components. Each component is in fact an
instance of a module defined within the Estelle specification by a module definition. Thus, it is appropriate
to call components module instances. Hereafter, the term module will be used rather than module instance
unless it can lead to confusion.

The behaviour of a module and its internal structure are specified respectively by the set of transitions (of an
extended state transition model) that the module may perform and by the definition of submodules (children (
modules - see D.1.2) of the module together with their interconnections (see D.1.3).

A module is active if its definition includes, in its transition part, at least one transition; otherwise, it is
inactive.

In Estelle particular care is taken to specify the communication interface of a module. Such an interface is
defined using three concepts:

- interaction points;
- channels;
- interactions.

A module may have a number of input/output access points called interaction points. There are two
categories of interaction points: external and internal. With each interaction point a channel is associated that
defines two sets of interactions. These two sets consist of interactions that can transmitted and received,
respectively, through an interaction point. Interactions are abstract events (messages) exchanged with the
module environment (through external interaction points) and with children modules (through internal
interaction points).

Informally, a module will be represented graphically as a box (rectangle) possibly with points on its
boundary (external interaction points) and inside of it (internal interaction points). The module name and its
class attribute (see D. 1.4), the names of interaction points and their associated interactions (going in or out)
may be added as shown in figure 1.

Request I f Response

Entity I Data

Figure A.l - Graphical representation of a module

2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC

c
El

E l

I S 0 9074: 1989/Arnd.l:1993 (E)

I

D.1.2 Structuring of modules
A module definition in Estelle may textually include definitions of other modules. Applied repeatedly, this
leads to a hierarchical tree structure of module definitions.

Informally, the hierarchical tree structure of modules may be depicted as in figure A.2a or as in figure A.2b.
The modules are represented by boxes. The parendchild relationship is represented either by an edge or by
nesting of boxes. The root of the tree (or the largest enclosing box) is the specification (main) module
representing the whole specification. It is assumed that one (and only one) instance of the specification
module always exists.

The hierarchical tree structure of modules constitutes a pattern for any hierarchy of module instances. The
hierarchical position of a module instance corresponds to the position of the module definition in this
pattern. By definition the specification module corresponds to one and only one module instance. Any other
module may correspond to any number of instances. This number may change dynamically (see 0.1.5).

The hierarchical tree structure of module instances that may correspond to the hierarchical tree structure of
modules is depicted in figure A.2c or as in figure A.2d.

,

A

[
I A I 4

Figure A.2 - Graphical representation of a hierarchy of modules ((a) and (b)) and of a
hierarchy of their instances ((e) and (d)).

Children of the same parent are called siblings (e.g., modules V and W in figure A.2). The transitive
relationship between modules in a hierarchy are called ancestors and descendants (e.g., module A is the
ancestor of module X and module X is the descendant of module A in figure A.2).

3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISObEC

D.1.3 Communication
Module instances within the hierarchy can communicate by

- message exchange;
- restricted sharing of variables.

D.1.3.1 Message exchange
The module instances may exchange messages, called interactions. A module instance can send an
interaction to another module instance through a previously established communication link between their
two interaction points. An interaction received by a module instance at its interaction point is appended to an
unbounded FIFO queue associated with this interaction point. The FIFO queue either belongs exclusively
to the single interaction point (individual queue) or is shared with some other interaction points of a
module (common queue).

A module instance can always send an interaction. This principle is sometimes known as non-blocking
send (or asynchronous communication) as opposed to blocking-send also known as rendez-vous (or
synchronous communication).

To specify which modules are able to exchange interactions, communication links between modules'
interaction points are specified by means of connect and attach operations.

A communication link between two interaction points is composed of exactly one connect segment and zero
or more attach segments. Informally, each link segment (connect or attach) will be represented graphically
by line segments which bind modules' interaction points. Figure A.3 illustrates this convention.

4

A

c: 19 (E

A2
T

~

15 16

Figure A.3 - Module instances and their communication links.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

When an external interaction point of a module is bound to an external interaction point of its parent
module, we say that these interaction points are attached. In figure A.3 the following pairs of interaction
points are attached: (1, 3), (2, 8), (9, i l) , (10, 13) and (17, 18).

Two bound interaction points are said to be connected if both are external interaction points of two sibling
modules (e.g., (1, 9), (2, lo), (4, 7), and (5, 6) in figure A.3), or one is an internal interaction point of a
module and the other is an external interaction point of one of its children modules (e.g., (12, 14) in figure
A.3), or both are internal or external interaction points of the same module (e.g., (15, 16) and (18, 19) in
figure A.3).

The specific restrictions which are imposed on connections and attachments of interaction points are detailed
in D.3.

Note also that an interaction point definition does not determine how the interaction point must be bound.
Two instances of the same module may have the corresponding interaction point bound differently. For

' example, module instances E l and E2 in figure 5 may be instances of the same module but their
corresponding interaction points are bound differently.

The communication link specifies that two module instances whose interaction points are the end-points of
the link can communicate by exchanging messages (in both directions) through these linked interaction end-
points. In figure A.3, for example, interaction points 3 and 11 or 8 and 13 are end-points of links between
modules D and G, and F and H, respectively. The interaction points 1,9,2 and 10 are not end-points. Note
that, at a given moment, an interaction end-point may be linked to at most one other interaction end-point.

If a module outputs (sends) an interaction through an interaction point that is an end-point of a
communication link then this interaction directly arrives at the other end-point of this link and is stored in an
unbounded FIFO queue of the receiving module. If a module outputs an interaction through an interaction
point that is not an end-point of a communication link then the interaction is considered to be discarded.
Thus only end-to-end communication between modules' interaction points is possible.

Several communication links may, however, simultaneously exist between the interaction points of a given
module instance and interaction points of other module instances. Thus multicast communication may be
specified. For example the module A in figure A.4 may multicast an interaction by sending it
simultaneously (in one transition) through its interaction points p[11, p[2] and p[3] to modules Al, A2 and ' A3. Observe that in Estelle all three of these interaction points may be declared as elements of an array (see
D.2.1).

i

D.1.3.2 Restricted sharing of variables
Certain variables can be shared between a module and its parent module. These variables must be declared
as exported variables by the module. This is the only way variables may be shared. The simultaneous
access to these variables by both the module and its parent is excluded because the execution of the parent's
actions always has priority (the parentlchildren prioris, principle of Estelle - see also D.4.3.2).

Note that sharing variables is not the only way of communication between a parent and its child: they may
also communicate by message exchange (see for example communication links between interaction points
(12, 14) and (17, 19) in figure A.3).

5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) ' OISO/iEC

Figure A.4 - Multicast communication

D.1.4 Parallelism and Nondeterminism
The way module instances behave with respect to each other is strictly dependent on the way they are nested
(see D. 1.2) and attributed.

A module may have one of the following cZms attributes

- systemprocess,
, - systemactivity,
- process,
- activity,

or may be not attributed at all.

All instances of a module have the same attribute as that defined for the module in the module's header
definition.

The modules attributed with systemprocess or systemactivity are called system modules.

The following five attributing principles must be observed within a hierarchy of modules

(a) Every active module (i.e., such that its definition includes at least one transition) shall be

(b) System modules shall not be nested within an attributed module,

(c) Modules attributed with process or activity shall be descendants of a system module,

(d) Modules attributed with process or systemprocess may be substructured only into modules

attributed,

attributed with either process or activity,

(e) Modules attributed with activity or systemactivity may be substructured only into modules
attributed with activity.

Observe that inactive modules may be attributed. Observe also that all modules embodying a system module
are inactive and nonattributed, and that those are the only nonattributed modules within the hierarchy.

6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

The attributes systemprocess and systemactivity serve to identify separate communicating systems
within the specification. In particular the specification itself may have one of these attributes. In such a case
the specification describes one system. Each system is a subtree of modules rooted at the system module.
The number of system instances within a specification is always fixed.

For clarity of presentation, the following conventions are assumed in subsequent figures:

- system modules (system roots) and their communication links are in bold lines (these form a static

- dotted lines are used for modules enclosing systems modules,

system architecture),

- non bold lines are reserved for remaining modules and links.

Figure A S illustrates these conventions. Module A is an unattributed specification (main) module. It has
two children (system modules) B and C attributed with systemprocess and systemactivity,
respectively. Module B has three children: D, E and F, attributed with process, activity and process,
respectively. Module C has two children G and H both attributed with activity. Module E has two children
both attributed activity. Within the above specification two systems are identified. Each system is a
subtree of module instances rooted at a system module (modules B and C).

,

A

c
U
I E activity I

T

-

T

*&-
-e

C syste+ctivity

G activity Tct.

H activity Ltl
I

Figure A.5 - Attributed module instances and their communication links; different lines
are used to represent system modules (bold), modules enclosing system modules (dotted)

and others (non bold)

7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

The attributes of modules play an important role in defining the behaviour of a specification (see also the
examples in D.4.4).

An attributed module instance acts as a supervising-like manager of its children instances. Recall (see
D.1.2) that all ancestor (enclosing) modules of a system module are nonattributed. This means that system
modules do not have any supervisor and thus all means of control of their respective behaviour is absent.
The systems run in aparallel asynchronous way with respect to each other.

Within a system, one of two possible behaviours among the system’s module instances may be specified by
means of the attribute assigned to the system module:

- a synchronous parallel execution, when the systemprocess attribute is assigned,

- a nondeterministic execution, when the systemactivity attribute is assigned.

D.1.5 Dynamism within a system
The system instances and their interconnections (connections of their interaction poi ts) once created (by
executing specification initialisation part) are fixed forever (are invariant). This is due to the fact that
modules enclosing system modules are always inactive (do not have any transitions) and thus do not have
any means to dynamically change the system configuration. It is possible, however, that different invariant
(static) structures may be created due to the fact that within the specification different ways of initialising it
may be defined (see D.2.4).

In contrast the internal structure of each system and the bindings between interaction points of their
submodules may vary (i.e., both are dynamic). This is because actions (transitions) of an active module
instance within a system may include statements creating and destroying its children and also creating and
destroying bindings (attachments or connections) between interaction points of children or between the
interaction points of the module instance and its children. For example, an action of the module instance E
(figure A.5) may create or destroy its children module instances E l and E2 as well as the connection
between E l and E2 and the attachment between E and E2 (compare figure A.5 with figure A.3).

Recall that although the number of instances of a specific module may change in the dynamic structure of an (,
Estelle specification, the hierarchical position of each instance corresponds to the respective position of its
module definition in the specification.

D.1.6 Typing

All manipulated objects are strongly typed. Pascal typing mechanisms are extended to purely Estelle objects
such as: module variables, interactions, interaction points and (control) states.

D.1.7 Module internal behaviour
The internal dynamic behaviour of an Estelle module is characterised in terms of a nondeterministic
extended state transition model, i.e., by defining a set of states, a subset of initial states and a next-state
relation.

An extended state is, in general, a complex structure composed of many components such as: value of the
control state, values of variables, contents of FIFO queues associated with interaction points and the status

8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

of the module internal structure (submodule instances, bindings between interaction points, etc.). Initial
states of a module instance are defined by an initialisation part of the module definition.

The next-state relation of a module instance is defined by a set of transitions declared within a transition part
of the module definition. Each transition definition contains necessary conditions enabling the transition
execution, and an action to be performed when it is executed. An action may change the module instance's
state described above and may output interactions to the module environment. A compound-statements of
Pascal is used to define the actions of a transitions.

The execution of a transition by a module instance is considered to be an atomic operation. This means that
once a transition's execution is started, it cannot be interrupted, and conceptually, one cannot observe
intermediate results.

The well-known model of a finite state automaton (FSA) is a particular case of a state transition system.
Hence, an FSA may be described in Estelle (see D.4.2).

' 'D.1.8 Global behaviour
To describe the global behaviour of an Estelle specification, the operational style (operational semantics) has
been used.

The global behaviour is defined by the set of all possible sequences of global situations generated from an
initial situation. Two consecutive global situations correspond to the execution of one transition (recall that
transitions are atomic)

The operational semantics for Estelle describes the way these sequences are generated, i.e., the way the
system's transitions (transitions of its modules) may be interleaved to properly model synchronous
parallelism within subsystems combined with asynchronous parallelism between them. This global
semantics model is described in more detail in D.4.3.

The notion of time appears in Estelle to interpret properly "delays" (i.e., dynamic values assigned to some
transitions which indicate a number of time units by which the execution of these transitions must be
delayed). However, the semantic model retains the hypothesis that execution times of transitions are
unknown. This knowledge is considered implementation dependent. The model of Estelle outlined above is
dependent on a time process, which is assumed to exist, only in that a relationship between progress of time
and computation is defined and the delay-timers are observed to decide whether a transition can or cannot
be fired. The way the delay-timers are interpreted is explained by an example in D.4.2.

The constraints formulated specify a class of acceptable time processes. In each implementation or for
simulation purposes, any element of this class may be chosen. (See E301 and [25]).

(

D.2 Syntax and interpretation of Estelle concepts

D.2.1 Channels, interactions and interaction points

Channels in Estelle specify sets of interactions (messages). Declarations of interaction points refer to
channels in a specific way. By such a reference, a particular interaction point has a precisely defined set of
interactions that can be respectively sent and received through this point (in a way, the interaction points are
typed). Consider, for example, the following channel definition

9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISO/IEC

channel CHANNEL-Id(R0LE-Id1 , ROLE-Id2);

d,
by ROLE-Idl: ml;

niN;
by ROLEJd2: nl;

n2;

nK;

by ROLE-Idl, ROLE-Id2: kl;
U;

kp;
where ml,..,mN, n l ,..,nK, kl,k2,..kP are interaction declarations.

Each interaction declaration consists of a name (interaction-identifier) and possibly some typed parameters.
Thus, an interaction declaration

REQUEST(x: integer; y: boolean)

specifies in fact a class of interactions (an interaction type) with a common name REQUEST. Each of the
interactions in the class is obtained by a substitution of actual parameters (values) for formal parameters x
and y. Therefore,

REQUEST(1, true) and REQUEST(3, false)

are both interactions in the class specified by the interaction declaration above. In the absence of parameters,
the interaction-identifier represents itself.

Now, an interaction point p l may be declared as follows

pl : CHA"EL.-Id(ROLE-Idl)

and another interaction point p2, c
p2 : CHANNEL-Id(ROLEJd2)

In the fust case, the set of interactions that can be sent via p l contains all interactions specified after "by
ROLE-Idl" and after "by ROLE-Idl, ROLE-Id2" in the channel definition (i.e., the interactions declared
by ml,m2,..,mN and k17k2,..kP), and the set of interactions which can be received contains all
interactions specified after "by ROLEJd2" and after "by ROLE-Id1 , ROLE-Id2" in the channel definition
(i.e., the interactions declared by nl,n2,..,nK and kl,k2,..kP). Observe that interactions declared for both
roles (i.e., after "by ROLE-Idl, ROLE-Id2") are those that can be sent and received (and they have to be
declared in this way).

In the second case we have, as it is easy to guess, an exact opposite assignment of interactions sent and
received, i.e., those interactions which could be previously sent via p l can now be received via p2 and vice
versa.

We say that interaction points p l and p2 above play opposite roles (or have opposite types). Two
interaction points both referring to the same channel and the same role-identifier are said to play the same
role (or have the same type).

1 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

~

11

Two interaction points that are linked (in particular, connected) shall play opposite roles since the exchange
of interactions takes place between them (any interaction sent via one interaction point is received via the
second and vice versa). Two interaction points that are attached must play the same role since the aim of
attaching them is to "replace" one of them by the other.

Finally, to specify whether the interaction point p l does or does not share its FIFO queue with other
interaction points we respectively write:

p l : CHANNEL-Id(ROLEJd1) common queue

p 1 : CHANNEL-Id(ROLEJd1) individual queue
or

In the former case, the FIFO queue will be shared with all those interaction points (external or internal)
which were declared common queue within the module.

A group of interaction points of the same type may have a common declaration by means of an array
construct. For example, I

p : array[l..3] of CHANNEL-Id(R0LE-Idl)

specifies, in fact, three interaction points referenced by p[11, p[2] and p[3].

Both external and internal interaction points of a module are declared in the way described above. The
distinction is made only by virtue of where they are declared. External interaction points of a module are
declared within its module header definition (see D.2.2), while internal interaction points are declared
within the declaration part of its body definition (see D.2.3).

D.2.2 Modules
A module definition in Estelle is composed of two parts:

- a module header definition, and
- a module body definition. ' A module-header definition specifies a module type which identifies a class of modules with the same

external visibility, i.e., with the same interaction points and exported variables, and the same class attribute.

The definition of a module header begins with the keyword module followed by its name and optionally
by: a class attribute (systemprocess, process, systemactivity or activity), a list of formal
parameters, and declarations of external interaction points (after the keyword ip) and exported variables
(after the keyword export). The definition finishes with the keyword end. The actual values of the formal
parameters are assigned when a module instance of the module header type is created (initialised) - see
D.2.4.

The following is an example of a module header definition:

i p p : T(S) individual queue;
p2 : W(K) common queue;
p3 : U(S) common queue;

export X, Y : integer; 2 : boolean

module A systemactivity (R: boolean);

en à;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISOfiEC

Observe that, by the above definition, the same FIFO queue is associated with (is shared by) the interaction
points p l and p2, which means that any interaction received through p l or p2 will be appended to the
(common) queue.

Usually one modute body definition is declared for each module header definition. However, more than one
body may be declared for a header definition to specify possibly different internal behaviour and
substructure.

A module body definition begins with the keyword body followed by: the body name, a reference to the
module header name with which the body is associated, and either a body definition followed by the
keyword end or the keyword external.

For example, the following two bodies may be associated with the module header A:

body B for A;
{body definition see D.2.3)
end;

and

body C for A; external;

In fact, at a conceptual level, two modules have been defined: one of which may be identified by the pair
(A, B), and the second by the pair (A, C). The modules thus defined have the same external visibility
(same interaction points p, p l , p2 and same exported variables X, Y, 2) and the same class attribute
(systemactivity). But their behaviours, defined by the body definitions are, in principle, different. This
means that modules may have different behaviours and the same external visibility. A body defined as
external does not denote any specific behaviour of the module. It indicates that either the module body
definition already exists elsewhere or will be provided later while refining the specification. The "external"
bodies nicely serve to allow describing an overall system architecture without any detailed description of the
system components. This feature is illustrated by the example in 4.1.

The body definition is composed of three parts:

- a declaration part;
- an initialisation part;
- a transition part.

D.2.3. Declaration part

The declaration part of a body definition contains usual Pascal declarations (constants, types, variables,
procedures and functions) and declarations of specific Estelle objects, namely:

- channels;
- modules headers and bodies;
- module variables;
- states and state-sets;
- internal interaction points.

Note that, unlike in Pascal, all these declarations may appear in any order and even several times. Note
also, that undefined types (e.g., type buffer = ...) and constants defined using any construct (e.g.,
const T = any INTEGER) may be declared. These two facilities are introduced to allow refinements of
the specification.

1 2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

A body definition which is being declared may contain declarations of other modules (headers and bodies).
This, applied repeatedly, leads to a hierarchical tree structure of module definitions.

For example, the body definition B declared below for a module-header A contains definitions of modules
(Al , B1) and (Al, B2). These are children modules of the module (A, B), where the detailed definition of
the module header A is that from the previous clause D.2.2. The hierarchy of the module definitions is
depicted in figure 6.

module A (* see D.2.2 *)..end;
body B for A;

ip

ip p l : Tl(R2) common queue; {internal ip]
module A l activity (k: integer);

p l : Tl(R1) individual queue;
p2 : Tl(R2) individual queue;
p : T(S) individual queue;

end;

body B1 for Al; {body definition] end;
body B2 for Al; {body definition] end;

end;

l

Figure A.6 - Textual hierarchy of modules

Module variabZes serve as references to module instances of a certain module type. For example, the
declaration

modvar X , Y , Z : Al

says that X, Y and Z are variables of the module type specified by the module header named Al.

1 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISO/iEC

A module instance may be created or destroyed by statements referencing module
and terminate statements, see D.3.1 and D.3.6, respectively).

Variables (init, release

The internal behaviour of each module (instance) is defined in terms of an extended state transition model
whose control states are defined by enumeration of their names. For example,

state IDLE, WAIT, OPEN, CLOSED

declares four control states IDLE, WAIT, OPEN and CLOSED. In other words, among the variables of a
module, one implicit variable is distinguished by the keyword state. The state variable may assume only
those values enumerated by the definition of the above form.

A collection of control states is sometimes referenced using a collective name which may be introduced by a
stateset declaration. For example,

stateset IDWA = [IDLE, WAIT]

Internal interaction points may be declared to allow communication between a module and its children c
modules. They are declared in the same way as the external interaction points (see D.2.1), but in the
declaration part of a module body definition rather then in a module header (see the declaration of the
interaction point p l within the body B for module A).

D.2.4 Initialisation part

The initialisation part of a module body, indicated by the keyword initialise, specifies the values of some
variables of the module with which every newly created instance of this module begins its execution. In
particular, local variables and the control variable state may have their values assigned. Also, some module
variables may be initialised, which means that the module's children modules can be created. Creation of
children modules during initialisation defines their initial architecture

To initialise Pascal variables, Pascal statements are used (for example, T := 5) and to initialise the state
variable to, for example IDLE, we write

to IDLE

i The initialisation of a module variable results in the creation of a new module instance of the variable's type.
The variable is then a reference to the newly created module. To this end, the init statement (see D.3.1) is
used. In the initialisation part, bindings may also be created between interaction points by the use of
connect (see D.3.2) and attach (see D.3.4) statements. Assume the following is the initialisation part of
the module (A, B) from the previous section:

initialise

to IDLE
begin

T := 5;
init X with B1 (O) ;
init Y with B2 (1);
init Z with B1 (4);
connect pl to Z.pl;
connect X.pl to Y.p2;
connect Y.pî to Z.p2;
attach p to X.p

end;

1 4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

@ISO/LEC IS0 9074: 1989/Amd.l:1993 (E)

The above initialisation part creates three module instances referenced by the module variables X, Y and 2,
respectively. All these instances have the same external visibility defined by the module header Al (since
the module variables X, Y and 2 have been declared with module type Al). The module instances
(referenced by) X and 2 are both instances of the same module (Al, B1) and module instance (referenced
by) Y is an instance of the module (Al, B2). The module instances X, Y and 2 have been initialised with
different values (respectively O, 1 and 4) of the parameter k declared within the header of the module Al.
The concrete hierarchy of module instances of figure A.7 corresponds to the hierarchical pattern of module
definitions from figure A.6.

The initialisation also establishes connections and attachments between appropriate interaction points of the
three newly created module instances and those of their parent module. These connections and attachments
are also shown in figure 7.

The initialisation part of a module body may define more than one way of initialisation. The example below
illustrates this.

/

initialise

provided R

to IDLE

begin
T := 5;
init X with B1 (O);
init Y with B2 (1);
init Z with B1 (4);
connect p l to 2 . ~ 1 ;
connect X.pl to Y.p2;
connect Y.pl to 2 . ~ 2 ;
attach p to X.p

end;
1

provided not R

to WAIT

begin
T := 8;
init X with B1 (O);
init Y with B2 (1);
connect X.pl to Y.p2;
attach p to X.p

end;

The actual value of the parameter R (true or false) of the module A (see the module A header definition in
D.2.2) determines how the initialisation will be done. When R is true then the module hierarchy is as in
figure A.7 and when it is false as in figure A.8.

15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISOhEC

P

-P

V instance of (A,B)
-

X instance of (A1,Bl)

2 instance of (A1,Bl) :
Y instance of (Al,B2) i

V instance ofl(A,B)

I X instance of (A1,Bl)
P2

-
I -P pil I Y instance of (Al,B2) I
I

Figure A.7 - Module instance hierarchy
corresponding to the textual pattern in

figure A.6.

Figure A.8 - Module instance hierarchy
corresponding to the textual pattern in

figure A.6.

The initialisation part of a module body may also be nondeterministic. The previous example with the
provided clauses removed illustrates this possibility.

It will be seen later (see D.2.5) that the text that follows the initialise keyword has the syntactical form of a
transition with the restriction that the only permitted clauses are to-clause and the provided-clause. For
this reason the term initialisation transition may also be used.

When creating module instances (executing the init Statements) it may happen that some of them are not
referenced by module variables. For example, when executing the following two statements:

init X with Bl(0);
init X with Bl(0);

two module instances will be created but only the second is referenced by X. There are special Estelle
constructs for dealing with such non referenced instances (forone and all statements and exist expression
- see D.3.8).

16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

D.2.5 Transition part

The transition part describes, in detail, the internal module behaviour (see also D.1.7 and D.4.2).

The transition part is composed of a collection of transition declarations. Each transition declaration begins
with the keyword trans. A transition may be either expanded or nested. A nested transition (see D.2.6.1) is
a shorthand notation for a collection of expanded transitions. These are characterised in this section.

Each expanded transition declaration is composed of two parts :

- clause-group;
- transition-block.

Within a clause-group the following clauses define the transitionfiring condition (see also D.4.2):

f - from-clause (from A l , .. ,An, where Ai (i ri) is a control state or stateset identifier);

- when-clause (when p.m, where p is an interaction point identifier and m an interaction identifier);

- provided-clause (provided B, where B is a boolean expression);

- priority-clause (priority n, where n is an non-negative constant);

- delay-clause (delay(E1, E2), where E l and E2 are non-negative integer expressions).

Two other clauses may also appear within a clause-group, namely, a to-clause (see below) and an any-
clause (see D.2.6.3).

Some clauses (or even all) may be omitted and at most one of each category may appear in the clause group
of an expanded transition. The presence of a when-clause excludes a delay-clause and vice versa.
Transitions with a when-clause in their conditions are called input transitions. Transitions without a when-
clause are called spontaneous. A spontaneous transition with a delay-clause is called a delayed transition.

I
The action to be executed when transition fires is defined by:

- a to-clause (to A, where A is a control state identifier or the keyword same);

- a transition-block, i.e., a sequence of Estelle and Pascal statements (with specific Estelle extensions
and restrictions - see D.3.9) between begin and end keywords possibly preceded by declarations
of locally manipulated objects.

The to-clause (e.g., to OPEN) specifies the next control state that will be attained once the transition is
fired. If omitted or specified by the keyword same, the next state is the same as the current state.

Example 1 below describes a transition part of a module whose detailed behaviour is explained in D.4.2.
This transition part consists of six expanded transitions containing all categories of condition clauses and
very simple actions. In D.2.6.1 the same transitions are joined into one equivalent nested transition.

Each expanded transition may have an associated name, which is introduced by an identifier. For
example, each of the transitions of the example below have one of the names tl, t2, ... ,t6 associated with
it.

17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E)

EXAMPLE 1

(* transition part *)

trans
from IDLE

to IDLE (*this clause can be omitted*)
priority medium

when N.D ATA-INDICATION
name t l : begin

out put U.DATA-INDICATION,
ak-no := ak-no + 1

end;
trans

from IDLE
to AK-SENT

provided (akno > O) and (&-no <= 4)
priority low

delay(min, m a)
name t2: begin

out put N.SENDAK(ak-no)
end;

trans
from IDLE

to AK-SENT
provided (ak-no > 4) and (ak-no < 7)

name t3: begin

priority high
delay(min)

output N.SENDAK(ak-no)
end;

trans
from IDLE

to AK-SENT
provided ak-no = 7

priority high
name t4: begin

out put N.SEND-AK(ak-no)
end;

trans
from IDLE

to AK-SENT
provided ak-no = O

priority low
delay (inac tive-period)

name t5: begin
out put N.SENDAK(ak-no)

end;
trans

from AK-SENT
to IDLE

name t6: begin
&-no := O

end;

1 8

c

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd,l:1993 (E)

D.2.6 Shorthand's

2.6.1 Nested transitions
Expanded transitions were described in D.2.5. A nested transition is a shorthand notation for a collection of
expanded transitions. Example 2 below illustrates the nesting conventions. It groups all transitions of
Example 1 (D.2.5) into one nested transition (also called a transition-group).

EXAMPLE 2

(* transition part *)

trans

from IDLE

to IDLE (*this clause cannot be omitted*)

priority medium
when N.DATA-INDICATION

name tl: begin
output U.DATA-INDICATION,
ak-no := ak-no + 1

end;

to AK-SENT

provided (ak-no > O) and (ak-no <= 4)
priority low

delay(min, max)
name t2: begin

output N.SEND-AK(akno)
end;

provided (ak-no > 4) and (ak-no < 7)
priority high

delay (min)
name t3: begin

output N.SEND-AK(ak-no)
end;

provided ak-no = 7
priority high

name t4: begin
output N.SEND-AK(ak-no)

end;
provided otherwise

priority low
delay (inactive-period)

name t5: begin
output N.SEND-AK(ak-no)

end;

from AK-SENT
to IDLE

name t6: begin
&-no := O

end;

1 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISOAEC

Each nested transition can be transformed to a collection of expanded transitions by formal rules described
in clause 7.5.2.4.1.

Algorithms to verify that nested transitions are well-formed so that they may be expanded properly, say by
a compiler, are proposed and analysed in [2]. Similar algorithms are parts of existing Estelle compilers.

D.2.6.2
This form of provided clause may occur only as the last provided clause of a (part of a) nested transition
declaration factored by provided clauses. This means that otherwise refers to the boolean expressions
occurring in other provided clauses of this factorisation. The provided otherwise form facilitates writing
what could be a complex expression. Referring to the Example 2 in D.2.6.1, the provided otherwise
form occurring within the transition named t5 is semantically equivalent to provided B, where B is the
negation of the union of boolean expressions in the provided clauses associated with transitions t2, t3, and
t4. Thus it is equivalent to

Provided otherwise form of the provided clause

providednot (((ak-no > O) and (ak-no <=4)) or
((&-no >4) and (ak-no <7)) or
(ak-no = 7))

which, assuming that a k n o is of type 0..7, can be simplified to (see transition t5 in the Example 1 of
D.2.5).

provided &-no = O

D.2.6.3 Any clause
The generic form of an any-clause is :

any domain do

The domain declares a list of local variables of finite ordinal types.

The any-clause is one of the clauses that may be used within (a clause-group of) a transition declaration. It
indicates a macro-like expansion of the remainder of the transition declaration that follows it.

For example a transition declaration :

trans
from S1 to S2

any n : 1..2; k : 3..4 do
when p[n].m

begin

end;
variable := k

2 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/EC I S 0 9074: 1989/Amd.l:1993 (E)

is a shorthand for the following nested transition :

trans

from S1 to S2
when p[l].m

begin
variable := 3

end;

begin

end;

when p[l].m

variable := 4

when p[2].m
begin

end;
variable := 3

when pC21.m
begin

end:
variable := 4

D.3 Estelle statements

D.3.1 Init statement
The init-statement is used to create module instances. These module instances are children of the module
that creates them (i.e., the module that issues the init-statement).

The two generic forms of the init-statement are

f

ini t module-variable with body-identifier;

init module-variable with body-identifier (actual-module-parameter-list).

The only difference between the two forms above is that the second one allows parameters to be passed (as
in a Pascal procedure) to the module instance being created. These parameters should be passed when the
module header definition specifies such parameters (see D.2.2).

The module-variable in the init-statement refers to the newly created module instance. This module-variable
has to be previously declared as being of the module-type (module-header identifier) with which the module
body indicated by body-identifier is associated (see D.2.2). Thus, the module instance created is of this
type and may be referenced by the module-variable. There may be several module-bodies that could be
associated with a module-header (see D.2.2) and the init-statement serves to select one of them.

If a module-variable, say X, is re-used (within another init-statement) or assigned (e.g. X := Y), the
instance it is referring to changes, but the previously referenced module instance does not cease to exist.

2 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) QISO/IEC

For example, assume that the module-variable X is declared to be of type A (i.e., X : A), then,

init X with B; init X with B

creates two module instances both of the type defmed by the module-header identifier A (both with the same
external visibility's), and with identical internal behaviour defined by the body B.

Note, however, that only the instance created second is referenced by the module-variable X. The f is t one
is not referenced by any module-variable (is not referenced at all from the specification point of view), and
the only way to access it is through the use of the forone or all statements or of the exist expression (see
D.3.8).

The init-statement may be used within an initialisation-part (see D.2.4) or transition-part (see D.2.5)
of a module body declaration allowing, respectively, the static or dynamic creation of children module
instances of a given module.

D.3.2 Connect statement
f

The generic forms of a connect-statement are

connect internal-ip to child-external-ip;

connect child-external-ip to internal-ip;

connect child-external-ip to child-external-ip;

connect internal-ip to internal-ip.

A connect statement issued by a module is used to connect:

1) an internal interaction point of the module to an external interaction point of its child module (the

2) external interaction points of two children modules of the module (the third form above);

f is t two forms above);

3) two internal interaction points of the module (the forth form above).

Recall that an interaction point is external if it is declared as part of a module's header; an interaction point is
internal if it is declared within a module's body.

The two interaction points referenced by a connect statement must refer, in their declarations, to the same
channel and they must play opposite roles (must have opposite types - see D.2.1) with respect to this
channel.

Observe that a connect statement referencing an external interaction point of the module issuing the
statement is syntactically invalid; Thus, the situation depicted in figure A.9a is impossible.

A connect statement has no effect when it attempts to connect an interaction point that is currently already
connected (or attached by the module issuing the connect statement - see D.3.4) or when it attempts to
connect an interaction point to itself; the situations depicted in figure A.9b, c and figure A.llc, d are thus
impossible .

2 2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

!

Figure A.9 - Impossible configurations of interaction point interconnections

Figure A.10 - Possible configurations of interaction point interconnections

In summary, at a given moment

(1) an internal interaction point of a module may be connected only to another internal interaction

(2) an interaction point may be connected to at most one interaction point, and it cannot be

Note also that connecting two interaction points does not have any influence on the contents of queues
associated with these interaction points.

point of the module or to an external interaction point of a child module;

connected to itself.

ID .3.3 Disconnect statement

The generic forms of a disconnect statement are

disconnect internal-ip;

disconnect child-external-ip;

disconnect module-variable.

2 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l: 1993 (E) OISOAEC

A disconnect statement in its first two forms disconnects a pair of interaction points even though only one
of them is explicitly specified by the statement; the pair is implicit because the interaction point explicitly
specified is supposed to be currently connected to another one as a result of some previously executed
connect statement (otherwise the disconnect statement has no effect).

A disconnect statement in its last form is a generalisation of the second form in that it applies to all the
external interaction points of a child (indicated by the module variable) of the module issuing the disconnect
statement.

A disconnect statement does not have any influence on the contents of queues associated with the interaction
points being disconnected.

D.3.4 Attach statement
The generic form of an attach-statement is

attach external-ip to child-external-ip.

The sequence of actions of the attach statement are as follows:

1) attach (bind) the pair of interaction points specified; the first of them must be an external
interaction point of the module issuing the statement (identified by the interaction point reference)
and the second must be an external interaction point of one of the module's children (identified by
the interaction point reference prefixed by a module variable referencing the child);

2) remove from the queue associated with the first interaction point all those interactions that have
been previously enqueued through this first interaction point; recall that the queue associated to this
interaction point may be shared ("common queue") with other interaction points through which
interactions could have been also enqueued;

3) append the interactions just removed to the current contents of the queue associated with:

a) the second (child) interaction point specified, if it is not in turn attached to another child
interaction point (i.e., the second interaction point is the end-point), otherwise,

b) the interaction point that is the end-point of the chain of attachments whose segments attach the
consecutive pairs of interaction points beginning with the second child interaction points and
ending with the interaction point of a great .. great grand child of the child.

(

The two interaction points identified in an attach statement must refer, in their declarations, to the same
channel and they must play the same roles (must have the same type - see D.2.1) with respect to this
channel.

An attach statement has no effect in the following cases:

a) when an attempt is made to attach an interaction point of the module issuing the attach statement
that is already attached to another interaction point of one of the module's children; the situation
depicted in figure A.l l a is thus impossible;

b) when an attempt is made to attach an interaction point of the module issuing the attach statement to
an interaction point of one of the module's children that is:

- already attached to the module's interaction point, or
- already connected to an interaction point.

2 4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

Thus the situations depicted in figure A. 1 1 b, 1 lc and 1 Id are impossible.

a)

Figure A . l l - Impossible configurations of interaction point attachments and connections

Note, however that the situations depicted in figure A.12a and 12b are perfectly valid.

b)

Figure A.12 - Possible configurations of interaction point attachments and connections

In summary, at a given moment,

(I) an external interaction point of a module may be attached to at most one external interaction point

(2) an external interaction point of a module attached to an external interaction point of its parent

of its parent module and to at most one external interaction point of its children;

module cannot be simultaneously connected.

2 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISO/iEC

D.3.5 Detach statement

The generic forms of a detach statement are:

detach external-ip;

detach child-external-ip;

detach module-variable.

A detach statement in the first two forms detaches a pair of interaction points even though only one of them
is explicitly specified by the statement; the pair is implicit because the interaction point explicitly specified is
supposed to be attached, at that moment, to the implied one as a result of some previously executed attach
statement (otherwise the detach statement has no effect).

A detach statement in its last form is a generalisation of the second form in that it applies to all the external
interaction points of a child (indicated by the modde-variable) of the module issuing the detach statement.

Besides detaching the pair(s) of interaction points, the detach statement also influences the content of some
queues associated with the interaction-points. To explain this point let us consider first the case where the
child‘s external interaction point (explicitly or implicitly referenced by the detach statement) is not in turn, at
that moment, attached to its child’s external interaction point (i.e., it is an end-point). In such a case, all
interactions in the queue associated with the child’s external interaction point that were enqueued through
this interaction point while it was attached are removed and appended to the queue associated with the
external interaction point of the module issuing the detach statement.

In general, a detach statement issued by a module may break a chain of attachments going from the child’s
external interaction point of the module towards the descendant modules. In such a case all the interactions
from the queue associated with the interaction point that is the end-point of the chain of attachments (all the
way down to the great, great great grand child) that were enqueued through this interaction point and
that passed via the external interaction point of the module issuing the detach statement, while it was chain-
attached, are removed and appended to the external interaction point of the module issuing the detach
statement.

’

c

D.3.6 Release and terminate statements i
The generic forms of the release and terminate statements are as follows:

release module-variable;

terminate module-variable.

The result of the release X statement, where X is the module-variable identifying a child of the module
instance issuing the statement, is equivalent to the following sequence of actions:

(1) executing, in any order, the disconnect X and detach X statements;

(2) destroying the module instance identified by the module-variable X as well as all its descendant
instances; the value of X as well as any other module-variables identifying the module instance X
(say Z if an assignment 2 : = X had been previously made) becomes undefineâ, as if it had never
been initialised.

The result of a terminate-statement differs from the result of a release-statement in that the execution of
the implicit detach X statement within the execution of the release statement is restricted only to detach all
external interaction points of the module instance identified by the module-variable X without moving the

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074; 1989/Amd,1;1993 (E)

interactions in queues. This restricted detach is called simple-detach in the formal semantic definition (see
9.6.6.2.4).

In other words, terminate X statement abruptly destroys the module instance X (and all its descendants)
including all enqueued interactions and bindings of interaction points.

Note that since the module instance identified by the module-variable references a child of the module
instance issuing the release or terminate statement, these statements can be used only to destroy the child
and all its descendants; a module may not destroy itself or a sibling module.

Note also that the execution of the sequence of statements

detach X; terminate X

gives the same result as executing release X.

D.3.7 Output statement (

The generic forms of the output statement are as follows:

out put ip-referenceinteraction-identifier;

out put ip-reference.in terac tion-iden tifier (ac tual-par ame ter-lis t) .
By using an output-statement a module sends an interaction (possibly with actual parameter values) via a
specified interaction point. For example, the statement

output pl.REQUEST(3, true)

sends the interaction REQUEST(3, true) via the interaction point pl.

If p l and p2 are the two end-points of a communication link (see D.1.3.1), then the statement output
p1.m appends interaction m to the queue associated with the interaction point p2.

Since an interaction end-point may be linked to at most one other interaction end-point, there is a unique
receiver (if any) of the interaction sent by a module. I

When p l is not the end-point of a communication link, the statement output p1.m has no effect (the
interaction m is considered to be lost).

D.3.8 All and forone statements, exist expression
In Pascal and Estelle, all objects of a given type comprise a domain. Estelle provides repetition and selector
statements, and a boolean operator, which operate over a named domain (a variable declared either as a
module or as an ordinal type). The repetition statement is named all, the selector statement is named
forone, and the boolean operator is named exist.

D.3.8.1 All statement
The generic form of the all statement is:

all domain do statement;

27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISOAEC

The statement contained in the do part of the all statement can be a compound statement, comprising
several statements between the Pascal keywords begin and end.

The domain indicates the set over which the search is to be performed, that is, either a collection of module
instances of the same module-type, or one or more finite ordinal types.

When the domain of the all statement is empty the all statement has no effect.

When all is used with module instances, the domain declares a module variable and is restricted to one such
variable and one mdule-header-idenMier.

Since a module-header-identifier identifies the module-type, the module instances to be examined and
manipulated within an all statement are declared as follows

module-variable-identifier : module-header-identer

This has the effect of declaring a module-variable local to the scope of the all statement; the module-variable (
is of the module-type identified by the module-header-identifier.

Farexample, during a reset operation, a parent managing several children, each representing a connection,
might use

all M : ModuleType do M.InProgress := false

to set an expofled variable named "InProgress" to false for each child module of type "ModuleType".

Assume that a parent has initialised several modules whose type is "network". Also assume that because of
a catastrophic failure, it is necessary to release all instances of the network modules. Then it is possible to
specify:

tram
when system.failure-indication

priority highest
to closed

begin

end:

all net : network do
release net

All module instances of the network module type are released. Since we have assumed the existence of
several such instances, supporting separate subnetworks, all of them will be released. First "net" is
assigned the value of one (arbitrary) of the module instance references of the type "network" and it is
released; then the operation is repeated for all the others. Note that the order in which module instances are
released is not specified.

Note also that module instances manipulated within an all statement are not necessarily referenced by
module variables declared outside the all statement domain (see D.3.1).

As mentioned above, the domain of an all statement may also deal with variables of finite ordinal types. In
this case the domain of the all statement may be specified as follows

variable-list 1 : type-denoter 1; variable-list N : type-denoter N

All these variables have scope local to the ail statement

28

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

If the domain of the all statement contains more than one variable, the statement following the do keyword
is executed for each instance of an object in each domain specified.

In the above example, releasing "network" modules means that the parent module receives the contents of
all queues associated with all interaction points of the released modules that have been attached to its
interaction points. Suppose that this is not desirable, since the only queue contents the parent is interested in
are those associated with the interaction points grouped by "colours" and "sorts" by means of the following
interaction point declaration (within the "network" module-header declaration):

p : array [ipcolour, ip-sort] of channel1 (Rl)

where the types ip-colour and ip-sort have been defined earlier by:

type
ipcolour = (red, green, blue);
ip-sort = 1..3;

I

Note, however, that the parent has also other interaction points attached to children "network" modules'
interaction points other then those grouped within the declaration of p.

One could now reformulate the transition from the previous example into:

trans
when system.failure-indication

priority highest
to closed

begin
all net: network do
all colour: ipcolour; sort: ip-sort do

detach ne t.p [colour, sort];
begin

end;
terminate net

end;

I

In the example above, the interior all statement iterates over two domains named ip-colour and ip-sort.
The order of iteration is nondeterministic. Therefore, the "colour" variable evaluates to red, green and blue
while the "sort" variable evaluates to the values 1 ,2 and 3; but unlike nested Pascal "for" loops, the order
of evaluation is not known.

D.3.8.2 Forone statement
The forone operation complements the all operation. It is used to search for an object satisfying given
criteria, which may be expressed as a boolean expression. It has two generic forms :

forone domain suchthat boolean-expression

forone domain suchthat boolean-expression

do statement;

do statement 1 otherwise statement 2

where the domain is declared in the same way as in the all-statement.

The boolean-expression is evaluated for each instance of an object in the domain(s) identified until it yields
the value true. When an object is encountered for which the boolean-expression is true, statement 1

2 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISO/IEC

following the keyword do is executed and the operation terminates. If the boolean-expression is false for all
instances of objects in the domain (or the domain is empty), then (if the second form was used) the
statement 2 that follows the keyword otherwise is executed.

The boolean-expression may contain, for example, exported variables (shared between parent and child)
that help identify the module sought.

Assume for the following example that a "network" module may handle only one connection at a time
through its interaction point NET-SAP; also assume that a boolean variable "is-busy" is exported by each
instance of the network module to indicate whether or not the module is currently attached to its parent.

A "connection-request" interaction may arrive any time from a user to the parent module (of the network
modules) through an interaction point user[k] for any k = I,..,N. If it happens, and if a network module
instance exists which is not busy (is-busy = false), then communication with this module instance may be
established (i.e., the parent attaches its user[k] interaction point to the NET-SAP interaction point of the
network module instance). If all existing network module instances are busy or if such instances do not
exist at all, then a new network module instance must be created first and then attached to the parent.

This could be expressed by the following transition (declared within the parent module) where new-net is a
previously declared module variable of the "network" type:

(

trans

any k : 1..N do

begin
when user[k].connecton-request

forone net : network
suchthat not net.is-busy do

attach user[k] to net.NET-SAP;
net.isbusy .- .- true

begin

end;
otherwise

begin
init new-net with networkbody;
attach user[k] to newnet.NET-SAP;
newne t . is-bu s y : = true

end;
end;

D.3.8.3 Exist expression
Exist expression provides the facility to determine if an instance of an object exists; it is a relational
expression returning either the value true or false. As such, it may be used as a factor in a more complex
expression. Its form is:

exist domain suchthat boolean-expression;

where the domain is declared in the same way as in the all and forone statements.

Assume that in the previous example (see the end of D.3.8.2) the network modules could handle more than
one connection. For example, the interaction point (within the network module-header) could have been
declared as:

3 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/LEC IS0 9074: 1989/Amd.1:1993 (E)

NET-SAP : array[l..M] of Net-channel(R1);

Then the value of the variable "isbusy" could have been determined by the exist expression (within a
more complex forone statement):

exist i : 1 ..M such that is-attached-NFiT-SAP(i)

where "is-attached-NET-SAP(i)" is a function returning true or false depending whether or not the
interaction point NET-SAP[i] is attached to an interaction point of a parent.

D.3.9 Pascal restrictions in Estelle
Estelle makes use of Pascal [41] in the transition blocks to specify actions that take place during the
transitions. Only level O Pascal is used, thus excluding the use of conformant arrays. Because Estelle is a
specification technique rather than a programming language, some restrictions were introduced to constrain
the Pascal components. Integers and real numbers have their usual mathematical meaning in Estelle, so
implementation dependent constraints such as MAXINT and the precision of real numbers do not enter into
Estelle. Similarly, all those features of Pascal that relate to file manipulation have been removed (file,
text, get, put, read, write, readln, writeln, eof, eoln). Also the keyword program has been
removed.

The use of goto statements and labels has been severely restricted, so that a goto acts like a "return"
statement. A goto may be used only within a procedure or a function, never directly within a transition
block. Consider the case where a procedure A invokes procedure B. In Pascal, a goto in procedure B
could transfer control to any label in procedure A or procedure B. In Estelle, however, it may transfer
control only to the end of procedure B.

No function in Estelle may have side-effects, so there are no complications introduced by the order of
evaluation of expressions or by evaluation of the provided clause of transitions or by evaluation of actual
parameters of functions, procedures, or modules. Side-effects are avoided by requiring that functions be
demonstrably pure (as defined in 8.2.5.1). The key idea of that definition is that a demonstrably pure
function cannot modify either directly or indirectly (through a pointer or by calling another procedure or
function) any variable that is not local. In addition to requiring all functions to be demonstrably pure, Estelle
permits procedures to be declared pure, meaning that they must be demonstrably pure.

As a convenience, functions are permitted to return arbitrary types, but the syntax does not permit complex
types returned by functions to be used within arithmetic or logical expressions. Nevertheless, the returned
value can be used as the right-hand-side of an assignment.

Estelle makes it possible to specify that the definition of a procedure, a function, or a module is to be found
elsewhere. This is indicated by the directive external, which is thus simply a way to indicate necessary
text substitution. This is in contrast to the directive primitive, which indicates that the description of a
procedure or function (but never a module) is not given in Estelle. This is frequently used with data types
indicated as as a way of deferring specification or of leaving implementation details to implementors.
As an example, buffers could be specified by:

type BufferType = ...;
and the routines to manipulate buffers (e.g., Insert, Extract, IsEmpty, etc.) could then be declared
primitive. Note that primitive functions and procedures (and only such) have global scope.

Pointers are a necessary evil of Pascal, but their use is restricted within Estelle. Pointers (and any variable
containing pointers as components) are excluded from use as parameters of interactions and as parameters

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) QISO/IEC

and exported variables of modules. As noted above, they are also excluded from use as parameters of
functions and pure procedures.

Finally we mention here that Estelle constructs cannot be used in procedures or functions. Technically this
is not a restiction to Pascal, because these construct were never a part of Pascal. Since the additional Estelle
statements cannot be hidden in procedures or functions, they are easily seen. This is important, as they may
specify the information about module structure and inter-module communication.

D.4 Behavior of Estelle specifications

D.4.1 Specification module

specification module. This unique module is defined as follows :
All modules defined as described in the preceding sections are textually embodied in a main module called

(

specification SPEC-NAME [system-class];
[default-option]
[time-option]

body definition
end.

where the system-class attribute (if any) is either systemprocess or systemactivity, and the default-
option is either individual queue or common queue (the parts in square brackets are optional).

The intent behind defining common or individual queue in a specification module definition is to give the
default assignment of queues to those interaction points of the whole specification for which this
assignment is omitted in their declarations.

The time-option indicates the unit of time (millisecond, second, etc.) applicable to the specification. A non-
negative integer expression within a delay-clause indicates the number of units the execution of a transition
must (or may) be delayed (see the last example in D.4.2 for interpretation of delay-clauses).

The above specification definition is considered semantically equivalent to the following module defiiition (
(module header and module body declarations):

module ANY-NAME [system-class];
end;

body SPEC-NAME for ANY-NAME;

end;
body definition

where ANY-NAME may be chosen arbitrarily and body definition takes into account the default-option.

Note that the specification module has neither interaction points nor exported variables. This means that an
Estelle specification is not itself a module that communicates with other external modules. In practice, a
specification body often constitutes a general framework for a system being defined, i.e., it provides a
global context necessary for the system definition and initialisation. Note that, the definitions of constants,
types, channels and procedures or functions declared as primitive are visible by any descendant module.

It is assumed that there exists only one instance of a specification module (main instance).

3 2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

The example below illustrates this "framework" role of the specification module which serves (in this
example) to define only an overall system architecture including modules' interfaces (so-called high-level-
design) without going into details of its components' definitions by leaving their bodies unspecified, i.e.,
ex ternal.

specification EXAMPLE;

default individual queue;
timescale second;

ch ann el U CH(U ser,Provider) ;
by Provider: DATA-INDICATION;

channel NCH(User,Provider);
by User: DATA-INDICATION;
by Provider: SEND_AK(x: integer); i

module USER systemactivity;

end;

body USERBODY for USER; external;

module RECEIVER systemactivity;

end;

body RECEIVER-BODY for RECEIVER external; (* see D.4.2 *)

module NETWORK systemactivity;

end;

body NETWORK-BODY for NETWORK; external;

modvar X: USER; Y: RECETVER 2: NETWORK,

ip U: UCH(User);

ip U: UCH(Pr0vider); N: NCH(Provider);

ip N: NCH(User);

initialize
begin

init X with USER-BODY;
init Y with RECEIVERBODY;
init Zwith NETWORK-BODY;
connect X.U to Y.U;
connect Y.N to Z.N;

end;

en d.

The specification declares and initialises three systems X, Y and Z (i.e., the systems are referenced by
module variables X, Y and Z of types USER, RECEIVER and NETWORK, respectively). These systems
exchange some messages through their interaction points connected as declared in the initialisation part of
the specification. While the RECEIVER-BODY is further specified in D.4.2 as one simple module body

3 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) QISODEC

(without substructuring), the other systems remain "extemal and their definitions can be substruc.lired
differently in subsequent refinements of the specification.

The graphical representation of the specification EXAMPLE is presented in figure A.13.

EXAMPLE
X : User

ICATION

SEND - AK(x ICATION

i'

Figure A.13 - Graphical representation of the specification EXAMPLE (high-level-
design)

D.4.2 Internal behaviour of a module
As noted earlier (see D. 1.7) the behaviour of a module is expressed in terms of an extended state transition
model in which one computation step is defined by execution of a transition action in the module internal
state. The criteria expressed by condition clauses of a transition determine whether the transition is jirable
(or ready-tofire) in a state of the module (and at a given moment of time, if it concerns a delayed
transition). The action of one of those firable transitions eventually executes and the module will reach a
new state.

34

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

Note that, the term state means here a complex structure composed of many components such as: value of
the control state, values of variables, contents of FIFO queues associated with interaction points and the
status of the module internal structure (submodule instances, bindings between interaction points, etc.).

This section defines when a transition is firable and it explains through simple examples how to represent a
desired behaviour in Estelle.

A from-clause is said to be satisfied in a module state if the current value of the module's control state is
among those listed by the from-clause. For example, if IDLE is the current control state of a module
instance, then all three of the following from-clauses are satisfied (assume that IDWA=[IDLE,WAITI):

from IDLE,
from IDLE, OPEN, CLOSE,
from IDWA,

The when p.m clause is satisfied in a module state if the interaction m is at the head of the queue associated
with the interaction point p.

The provided B clause is satisfied in a module state if the boolean expression B evaluates to "tnie" in that
state.

A transition is said to be enabled in a module state if the from, when and provided clauses, if present in
the clausegroup of the transition, are all satisfied in this state.

A transition is said to befirable (or ready-to-fire) in a module state and at a given moment of time if

(a) it is enabled in the state, and if i t is a delayed transition, with its delay clause "delay(El,E2)",
then it must have remained enabled for at least E l time units, and

(b) it has the highest priority among transitions satisfying (a), where "higher priority" corresponds to
"smaller nonnegative integer".

With the above definitions in mind, the first two examples below illustrate how to represent in Estelle a
simple finite state automaton (FSA).

The first of them (specification Examplel) is a direct translation into Estelle of transitions of the FSA given
by the diagram in figure A.14b and state table in figure A.14c7 while the second (specification Example2)
defines an equivalent behaviour (i.e., that in figure A.14e and figure A.14f) in a more concise way due to
the introduced auxiliary variable "x" and interactions parameter "p". In both cases the description consists
of one Estelle module body El with its header E, respectively (the interface is, however, different - see
channel definitions). The module is embedded into a "framework" specification module which, together
with the module header E, serves to declare the required interface with the environment as given in Figures
14a and 14e. In the second case, the type T (of the interaction parameter "p" and of the variable x) is also
defined within this "framework".

3 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E)

specification Example1 ;

default individual queue;
channel U(R1 ,R2);

by R1: put;
channel S(Rl,R2);

by R1: dtO; dtl;
by R2: ak0; akl;

module E systemprocess;
ip U: U(R2); S: S(R1);

end;
body El for E;

state SO, sl, s2, s3;
initialize to SO begin end;
trans when U.put

from SO to sl
begin output S.dtO end;

from s2 to s3
begin output S.dtl end;

from sl to s2
begin end;

from s3 to SO
begin end;

when S.ak0

when S.akl

end;
end.

specification Example2;

default individual queue;
type T=O..l;
channel U(R1 ,R2);

by R1: put;
channel S(Rl,R2);

by R1: dt(p:T);
by R2: ak(p:T);

module E systemprocess;
ip U: U(R2); S: S(R1);

end;
body E l for E;

state SO, S1;
var x: T;
initialize to SO begin x := O end;
trans when U.put

from SO to S1

provided p=x

begin output S.dt(x) end;

from S1 to SO

when S.ak(p)

begin x := P-x end;
end;

end.

3 6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

@ISO/J.EC I S 0 9074: 1989/Amd.l:1993 (E)

Note that in the second description two extensions have been made. The first is the parameter "p" of the
enumerated type T = 0..1 which permits the declaration of two-element classes "dt" and "ak" of
interactions instead of declaring their elements as four separate interactions (observe that "dt(0)"
corresponds to "dtO" in Examplel, etc.). The second is the variable "x" of the same type T. It permits, in a
similar way, the replacement of the four previous control states by only two (observe that in Example2, the
situation of being in the control state "SO" with x=O , corresponds to the situation of being in the control
state "SO" in Examplel, etc.).

EXAMPLE 1

I Put

~ akO, akl

hrp U.Dut Sakl S.akO U m t
U h t S:akl S.akO U.&t

EXAMPLE 2

d) I Put

r p p : o g)

ak(p:O..l)

U.put S.ak(p), p=x
S.dt(x) x := 1-x

I I

Figure A.14 - Graphical representation of interfaces of modules E ((a) and (d)) and of
their internal behaviour represented by state graphs ((b) and (e)) and state tables ((c) and

(f), respectively, for Examplel and Example2 specifications

37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) QISOLEC

The next example specifies in Estelle a behaviour in which a combination of all categories of condition
clauses is used to satisfy the requirements formulated informally below. More specifically this example
illustrates the use and interpretation of delay and priority clauses.

As observed earlier the computational model for Estelle is formulated as far as possible in time-independent
terms. However, some Estelle spontaneous transitions may contain a delay-clause of the form
"delay(El,E2)". The intent of this clause is to indicate that execution of the transition (if it is enabled) must
be delayed. The minimum time the transition must be delayed and the maximum time it may be delayed are
initially specified by the values of integer expressions E l and E2 respectively. An implementation may
choose a concrete delay value in the closed interval determined by these expressions. Let us note that
"deiay(E1)" means the same as "delay(E1,El)" and that delay(El,*) means that the maximum delay time
is infinity.

The body definition which we describe in this example can replace the "external" body parameter of the
RECEIVER module of a simple communication scheme defined in D.4.1. The necessary channel
definitions and declaration of interaction points are then defined at the specification level of the EXAMPLE
in D.4.1, The transition part of this module is that from Example 2 in 2.6.1 (and equivalent to that of (
D. 2.5).

The following narrative describes the behaviour of a protocol which assumes that:

- multiple protocol data units (messages) may be acknowledged in a single acknowledgement;
- each protocol data unit shall be acknowledged after some maximum time (max);
- it is desirable to acknowledge each protocol data unit received after a minimum time (min), but

when more than four are received an acknowledgement must be sent after this minimum delay

- the maximum number of unacknowledged protocol data units is seven;
- when the system remains inactive too long (inactive period), t'dummy'' acknowledgements are

(min);

generated to provide minimal activity to prevent disconnection.

The following module body describes a solution in Estelle. The specification in D.4.1 assumes a time scale
resolution of 1 second (see the "timescale" option in the specification).

i
body RECEIVER-BODY for RECEIVER;

(* declaration part *)
type time-period = integer;
const high = O;

medium = 1;
low = 2;

state IDLE, AK-SENT;
var &-no : 0..7;

min, max, inactive-period : time-pend,

(* initialisation part *)
initialize

to IDLE
begin

min := 1;
max := 20;
inactiveqeriod := 60;
&-no := O;

end;

3 8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

r

@ISO/IEC I S 0 9074: 1989/Amd.l:1993 (E)

i

(* transition part *)
trans (* transition part from Example of D.2.6.1 *)

from IDLE <

to IDLE
priority medium

when NDATA-INDICATION
name t l : begin

output U.DATA-INDICATION;
&-no := &-no + 1

provided (&-no > O) and (ak-no <= 4)

end;
to AK-SENT

priority low
del ay (min , max)

name t2: begin

provided (&-no >4) and (ak-no <7)

name t3: begin

output N.SENDAK(ak-no)
end;

priority high
delay (min)

output N.SENDAK(ak-no) .

end;
provided ak-no = 7

priority high
name t4: begin

output N.SENDAK(ak-no)
end;

provided otherwise
priority low

delay (inactive-period)
name t5: begin

output N.SENDAK(ak-no)
end;

from AK-SENT
to IDLE

name t6: begin
&-no := O

end;

end; {of body RECEIVER-BODY for RECEIVER}

As explained in D.2.6.1 the transition part of the RECEIVERBODY consists of one nested transition
representing in fact six expanded transitions. The outer-most level of factorisation (from-clauses) divides
these six tmnsitions into two groups: tl-t5 and t6. To-clauses separate the first transition and the nested
transition which groups expanded transitions t2-t5. These transitions in turn, are factored by their
provided-clauses.

From the initialisation part (see D.4.1), we see that the module begins in its DLI3 control state, with the
delay values appropriately initialised and the number of messages that remain to be acknowledged set to O.
Note that immediately after this initialisation, the delay-timer associated with transition t5 begins to run
since the transition becomes enabled.

If a DATAINDICATION message arrives during the inactive period (60 seconds), then the message is
transmitted to USER and the number of messages to acknowledge increases by 1 (transition tl). In this

3 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

I S 0 9074: 1989/Amd.l:1993 (E) OISO/IEC

case, the timer of transition t5 is cancelled. Otherwise, i.e., when 60 seconds passes without any incoming
message, an "artificial" acknowledgement is sent to prevent disconnection.

Note that immediately after the first message arrived and was served, the delay-timer of transition t2 starts
to run, but the transition may be fired only if: there is no new message to be served (otherwise transition t l
would fire), 1 second already has passed, and the number of messages to be acknowledged is not greater
than 4. This transition certainly will be fired if the above situation has remained unchanged for 20 seconds.
If the transition was fired or more than 4 messages have been served in between, then the transition is no
longer enabled and its timer is cancelled.

Immediately after the 5th consecutive message is served (transition t l) but before all five have been
acknowledged, the delay-timer of transition t3 is turned on. The timer will run exactly 1 second and the
transition will be executed if the number of unacknowledged messages during this time remains less than 7.
Otherwise, if the 7th message is served (transition tl) during this period, transition t3 will not be executed
and its timer will be cancelled; the transition t4 will be executed instead.

It is worth noting the role that is played by priorities assigned to transitions, Due to them, in a condition of
heavy traffic of arriving messages (more than 7 in less than one second), acknowledgements are always (
sent for blocks of 7 messages (the priority of transition t4 is higher than that of transition tl). In less heavy
traffic (more than 4 but less than 7 messages in one second), the acknowledgements are sent always for
blocks of 5-6 messages. If the messages arrive at a rate of 1 to 4 every 20 seconds, they may be
acknowledged one-by-one or in blocks of 2-4 messages depending on the message distribution in that time
and the real delay value in the time interval <min, max > (the input transition t l has a higher priority than
transition t2). If no more than one message arrives every 20 seconds, the messages certainly (and in any
implementation) will be acknowledged one-by-one.

D.4.3 Global behaviour semantics

As said earlier, the global behaviour semantics of Estelle specification is operational. This means that a, so
called, next-state relation is defined over the set of the system global states which here are called global
situations. The next-state relation (or rather next-situution relation) specifies all possible situations that may
be directly achieved from a given situation. The overall behaviour of a system (a system defined by an
Estelle specification) is then characterised by the set of all sequences of global situations which can be
generated (by the next-situation relation) from a certain initial situation.

i Recall that an Estelle specification describes a collection of systems, that modules within each system may
execute their transitions in a synchronous or non-deterministic way, and that modules belonging to different
systems may execute their transitions in a completely asynchronous fashion.

The systems execute in a succession of computation steps. Each computation step of a system begins by
nondeterministic selection of one (in the case of a systemactivity system) or several (in the case of a
systemprocess system) transitions among those ready-to-fire and offered by the system component
modules (at most one transition per module may be offered at a given moment). The selected transitions are
then executed in parallel. A computation step ends when all of them are completed.

From the point of view of the semantic model, the parallel execution of transitions within one computation
step of a system cannot be considered simultaneous since the result may depend on whether one or another
completed first (recall that, for example, these transitions may send interactions into a common queue and
that the order in which they are put into this queue depends on their execution speed). All possible
interleavings (permutations) of transitions selected in a computation step must therefore be taken into
account in the model. Nevertheless, the execution of these transitions is synchronised in that a selection of
new transitions to execute starts only when all of them have completed.

That way the relative speed of modules within a systemprocess system may be controlled
(synchronised). That is why we say that the parallelism within such system has a synchronous character.

4 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

@ISO/IEC ISO 9074: 1989/Amd.l:1993 (E)

Note, however, that since only one transition is nondeterministically selected for every computation step of
a systemactivity system, we have purely nondeterministic behaviour within such a system. In any case,
the behaviour of modules with respect to each other within a system is under the control of the system
module.

In contrast, systems run asynchronously in that their computation steps are completely independent from
each other. The relative speeds of systems are not constrained (synchronised) at all.

How the transitions are selected for synchronous or nondeterministic execution within one computation step
of a system depends always on the parenvchildren priority principle and on the way the system's modules
are attributed (see D.4.3.2).

To properly model the possible behaviours of an Estelle specification, both asynchronous behaviour among
systems, and synchronous and nondeterministic behaviour within a system have to be expressed by the
way the transition executions are interleaved. The adequacy of this interleaved model is assured in turn by
the assumption of the atomicity of transitions.

D.4.3.1 Global situations
Each global situation of the transition system is composed of current information on

- the hierarchical structure of modules within the specified system SP, the structure of bindings
established between their interaction points, and the local state of each module. AU. this information
is included in a global instantaneous description of SP (in short, gid(SP)).

- the transitions that are preselected (currently executing) within each system; the set of these
transitions for the i-th system is denoted by Ai (i=l,..,n, where n is the total number of systems).

Each global situation is denoted by:

sit = (gid(SP); Al , ..., An)

The global situation is said to be initial if the "gid(SP)" is initial and all sets Ai are empty. The "gid(SP)" is
initial if it results from the initialisation part of the specification SP.

If Ai is empty (Ai = O) in a global situation, then we say that the i-th system is in its management phare.
During this phase a new set of transitions for parallel synchronous execution is selected. Otherwise, i.e., if
Ai f O, the i-th system is executing.

(

D.4.3.2 Next-situation relation
This relation defines the successive situations of an arbitrary current situation

(gid(SP); A 1 ,..,Ai,. . ,An).

It is defined in the following manner:

For every i = 1,2,..,n,

1) If, in the current situation, Ai=O, then the following is a next situation

(gid(SP); A 1, .,AS (gid(SP)/i),. . ,An)

where AS(gid(SP)/i) is the set of transitions selected for execution by the i-th system,

4 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

OISO/IEC

2) If, in the current situation, Ai f O, then for each transition t of Ai, the following is a next situation
(t(gid(SP)); A l ,.., Ai-(t) ,.., An)

i.e., the new gid(SP) results from execution of transition t and t is removed from the set Ai.

Each transformation of a given global situation into a successive situation expresses the result of eiîher a
spontaneous evolution (case (1)) or an execution (or rather termination of the execution) of a transition
selected among those currently executing (case (2)). By spontaneous evolution a system, which terminated
all transitions previously selected, selects new transitions among those offered. Conceptually the selected
transitions are considered as executing. As any transition of Ai (for any i) may terminate before any other
(the relative speed of execution of transitions is not known), all of the successive situations (for each t of Ai
and for each i) have to be considered. These transformations applied to the initial global situation define all
possible sequences of global situations.

The execution of a transition "t" of a module:
- may cause a change in the module's local state. In particular it may modify a local variable or a ('

control state, it may create a new child module anaor a new communication link (by executing an
attach or connect statement). The transition may also generate an output (by executing an output
statement), i.e., it may send an interaction that is appended to the FIFO queue of another module,
etc. All these changes are expressed by t(gid(SP)).

- cannot influence either the choice of transitions already preselected by the other systems (the sets
Aj, for jgi, remain unchanged in the next situation) or the choice of transitions within the same
system (the set Ai becomes Ai-(t) in the next situation).

The selection of transitions to be executed within one computation step, by an i-th system, i.e., the choice
of the set AS(gid(SP)/i) is regulated by

- the principle of parendchildren priority, and - the modules' attributes.

The parent/chiZdren prioris, principle, which extends to the ancestor/descendant priority principle by
transitivity, means that a ready-to-fire transition of a module prohibits the selection of transitions of all its
descendants' modules.

The transition selection rule applied to a module within a system can be formulated as follows: (

- if the module has a ready-to-fire (fireable) transition to offer, then this one will be selected
(parendchildren priority),

- otherwise, depending on whether the module is attributed process (systemprocess) or activity
(systemactivi ty), respectively, all or one (chosen nondeterministically) of those ready-to-fie
transitions offered by its children modules, will be preselected.

This rule applied recursively, starting with the root (system) module of the i-th system, gives the selected
set AS &id(SP)/i).

It is worth noting that the ready-to-fire transition offered by a module cannot be selected if any of this
module's ancestors had something to offer. This property excludes parallelism between modules in an
ancestor/descendant relation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 90

74
:19

89
/AMD1:1

99
3

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

