INTERNATIONAL ISO
STANDARD 9074

First edition
1989-07-15

AMENDMENT 1
1993-11-15

Information processing

Reference number
1SO 9074:1989/Amd. 1:1993(E)

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074:1989/Amd.1:1993 (E)

oreword

IBO (the International Organization for Standardization) and IEC (the International
lectrotechnical Commission) form .- the specialized system for worldwide
sfandardization. National bodies that are members of ISO or IEC participate in the
velopment of International Standards through technical committees established by
the respective organization to deal with particular fields of technical activity. ISO a
C technical committees collaborate in fields of mutual interest. Other internation
ganizations, governmental and non-governmental, in liaison with ISO and
take part in the work.

Technical Committee ISO/EC JTC 1, Informatio
SC 21, Information retrieval, transfer and

{
terconnection (OSI). %

.

© ISO/IEC 1993

All rights reserved. No part of this publication may be reproduced or utilized in any form or by
any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/IEC Copyright Office « Case postale 56 « CH-1211 Gengve 20 « Switzerland
Printed in Switzerland

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E) -

Information processing systems - Open Systems
Interconnection - Estelle: A formal description technique
based on an extended state transition model

AMENDMENT 1: Tutorial on Estelle

Insert a new annex D as follow_s:

"ANNEX D

(informative)

INTRODUCTION

mind, namely that of communication protocq

[4], 51, [8], [9] and [56]). Estelle also reflects colla

pecification and Descriptions Language [13]) with which Este}le has

specifying distributed, concurrent information

Is and

ption technique and it reflects the experience ga1n§$ from

ration

ption techniques that are intended to serve as means to remove ambiguities from

aditionally defined by a combination of a natural language prosc state tables, etc.
a vital
rols in

. This is

model of anon deterrmmstlc commumcatmg automaton cxtended by the addmon of Pascal language
precisely, Estelle may be viewed as a set of extensions to ISO Pascal [41], level 0, which models a
specified system as a hierarchical structure of communicating automata which:

- may run in parallel, and

ie. a
More

- may communicate by exchanging messages and by sharing, in a restricted way, some variables.

Estelle permits a clear separation of the description of the communication interface between components of a
specified system from the description of the internal behaviour of each such component. As in Pascal, all

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

1SO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

manipulated objects are strongly typed. This property enables static detection (e.g. during compilation) of

specification inconsistencies.

D.1 A brief overview of the principal concépts in Estelle.

and inside of it (internal interaction points). The module name
ames of interaction points and their assocmted interactions (gomg in

D.1.1 Modules and module instances
An Estelle specification describes a collection of communicating components. Each component is inf fact an
instance of a module defined within the Estelle specification by a module definjtion~Thus; it is appfopriate
to call components module instances. Hereafter, the term module will be usedather than module ihstance
unless it can lead to confusion.
The behaviour of a module and its internal structure are specified respectiv ansitions (of an
extended state transition model) that the module may perform and by'the definit1 hildren (
modules - see D.1.2) of the module together with their interconne€tions (sc D.1.3
A module is active if its definition includes, in 1ts transit] ansition; otherwike, it is
inactive.
In Estelle particular care is taken to specify the co rface is
defined using three concepts:

- interaction points;

- channels;

- interactions.

€ tWo

ith the

internal

4 on its

and its
or out)

Request || Response
Enti
niity -~ pl Data
process p2
®p3 P-ack, N-ack

Figure A.1 - Graphical representation of a module

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC - ISO 9074: 1989/Amd.1:1993 (E)

D.1.2 Structuring of modules

A module definition in Estelle may textually include definitions of other modules. Applied repeatediy, this
leads to a hierarchical tree structure of module definitions.

Informally, the hierarchical tree structure of modules may be depicted as in figure A.2a or as in figure A.2b.
The modules are represented by boxes. The parent/child relationship is represented either by an edge or by
hesting of boxes. The root of the tree (or the largest enclosing box) is the speciiication (main) module
representing- the whole specification. It is assumed that one (and only one) instance of the specification
module always exists. '

[The hierarchical tree structure of modules constitutes a pattern for any hierarch odule instancgs. The
hierarchical position of a module instance corresponds to the position of th¢ module definition|in this
battern. By definition the specification module corresponds to one and only afie mgdule ibstance. Anfy other
module may correspond to any number of instances. This number may change amisally(see D.1.5).

~ [The hierarchical tree structure of module instances that may correspe he hieras al tree strugture of
" modules is depicted in figure A.2c or as in figure A.2d.

a)

\ .
V)vw
z
Y
B C
|| |c_]
F_j| (]
p e ||F]| [c]lH

Figure A.2 - Graphical representation of a hierarchy of modules ((a) and (b)) and of a
hierarchy of their instances ((c) and (d)).

Children of the same parent are called siblings (e.g., modules V and W in figure A.2). The transitive
relationship between modules in a hierarchy are called ancestors and descendants (e.g., module A is the
ancestor of module X and module X is the descendant of module A in figure A.2).

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

D.1.3 Communication
Module instances within the hierarchy can communicate by

- message exchange;
- restricted sharing of variables.

D.1.3.1 Message exchange

The module instances may exchange messages, called interactions. A module instance can send an
{nteraction to another module instance through a previously established communicationlink betwegn their
wo interaction points. An interaction réceived by a module instance at its intepaction point is appended to an
inbounded FIFO queue associated with this interaction point. The FIFO gufeue either betongs exclysively
o the single interaction point (individual queue) or is shared with sofne\other’interactio infs of a

odule (common queue). '

module instance can always send an interaction. This principle. bcking
end (or asynchronous communication) as opposed to blocking-send alsc us (or
nchronous communication).
o specify which modules are able to exchange intera pdules'
nteraction points are specified by means of connect-

communication link between two interactio qposed of exactly one connect segment ade Zero
r more attach segments. Informally, each li nect or attach) will be represented graphically
by line segments which bind modules' interactio

18

l

Fg 67 ¢ H 43
2

? —3-

Figure A.3 - Module instances and their communication links.

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ‘ ISO 9074: 1989/Amd.1:1993 (E)

When an external interaction point of a module is bound to an external interaction point of its parent
module, we say that these interaction points are artached. In figure A.3 the following pairs of interaction
points are attached: (1, 3), (2, 8), (9, 11), (10, 13) and (17, 18).

Two bound interaction points are said to be connected if both are external interaction points of two sibling
odules (e.g., (1,9), (2, 10), (4, 7), and (5, 6) in figure A.3), or one 15 an internal inferaction pojnt ofa
odule and the other is an external interaction point of one of its children modules (e.g., (12, 14) i figure
.3), or both are internal or external interaction points of the same module (e.g., (15, 16) and)(18] 19) in
igure A.3). ‘

e specific restrictions which are imposed on connections and attachments of i on points are detailed

ote also that an interaction point definition does not determine how the intexact iht piust be
'wo instances of the same module may have the corresponding int€raction. pei nd differently. For

he link can communicate by exchanging messages (in both difegtions gh'these linked interactipn end-
oints. In figure A.3, for example, interaction points 3 and\i1 or
he i] i

oint that is not an end-point of’\a con ication link thén the interaction is considered to be dis¢arded.
hus only end-to-end co ica ¢en modules”interaction points is possible.

everal communicati@. v : aneously exist between the interaction points of a given
odule instance and int€rdction/points module instances. Thus multicast communication may be

pecified. For example ' in”figure A.4 may multicast an interaction by sending it

imultaneously (in oné\transition)\thra s interaction points p[1], p[2] and p[3] to modules A1, A2 and
3. Observe that in'Es 1 th interaction points may be declared as elements of an arrpy (see

.1.3.2 Restricted sharing of variables

ertain variables can be shared between a module and its parent module. These variables must be declared
s exported variables by the module. This is the only way variables may be shared. The simultaneous
ccess;to these variables by both the module and its parent is excluded because the execution of the parent's
ctions always has priority (the parent/children priority principle of Estelle - see also D.4.3.2).

Note that sharing variables is not the only way of communication between a parent and its child: they may
also communicate by message exchange (see for example communication links between interaction points
(12, 14) and (17, 19) in figure A.3). :

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) =~ ®ISO/IEC

pl1] A2

D.1.4 Parallelism and Nondeterminism

The way module instances behave with respect to each ot
(see D.1.2) and attributed.

A module may have one of the following cfq
- systemprocess,
.- Systemactivity,
- - process,
- activity,
or may be not attributed at g

(v

All instances of a m
definition.

(a) Every a
attributed,

(b) Systemmddules shall not be nested within an attributed module,

(¢) Modules attributed with process or activity shall be descendants of a system module, &

attributed with either process or activity,

hgader

hall be

{d) Modules attributed with process or Systemprocess may be substructured only imo modules

(e) Modules attributed with activity or systemactivity may be substructured only into modules

attributed with activity.

Observe that inactive modules may be attributed. Observe also that all modules embodying a system module

are inactive and nonattributed, and that those are the only nonattributed modules within the hierarchy.

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC - ISO 9074: 1989/Amd.1:1993 (E)

The attributes systemprocess and systemactivity serve to identify separate communicating systems
within the specification. In particular the specification itself may have one of these attributes. In such a case
the specification describes one system. Each system is a subtree of modules rooted at the system module.
The number of system instances within a specification is always fixed. .

‘For clarity of presentation, the following conventions are assumed in subsequent figures:

Figure A.5 illustrates these conventions. Module A is an unattributed spe :
fwo children (system modules) B and C attributed with systemprogce
, tespectively. Module B has three children: D, E and F, attributed{wi :
1cspectively. Module C has two children G and H both attributed wi
oth attributed activity. Within the above specification two<
subtree of module instances rooted at a system module (mo

~ - system modules (system roots) and their communication Iinks are in bold Hnes (Hese form 3 static

system architecture),

- dotted lines are used for modules enclosing systems modules,

- non bold lines are reserved for remaining modules and links.

odule| It has
emactivity,
lyity and process,

: e’E has two children
are.identified. Each system is a

e

B system roc{ssQ Systemactivity
A .)\ s

< QX e&:\ G activity +_‘
| < a&t\i)\l’\‘\j& |

E\l\ac ivity | — o

<§> ﬁz activity
F process +_ H activity
? <

! !

Figure A.5 - Attributed module instances and their communication links; different lines
are used to represent system modules (bold), modules enclosing system modules (dotted)

and others (non bold)

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

The attributes of modules play an important role in dcfmmg the behav1our of a specification (sce also the
examples in D.4.4).

An attributed module instance acts as a supervising-like manager of its children instances. Recall (see
D.1.2) that all ancestor (enclosing) modules of a system module are nonattributed. This means that system
modules do not have any supervisor and thus all means of control of their respective behaviour-is{ absent.
The systems run in a parallel asynchronous way with respect to each other. '

Within a system, one of two possible behaviours among the system's module instances may-be specified by
means of the attribute assigned to the system module:

- a synchronous parallel execution, when the systemprocess attribute i

The system instances and their interconnections (connectio el eraction points) once credted (by
executing specification initialisation part) are fixed-forever/(arg invariant). This is due to the fact that
modules enclosing system modules are alwady ' transitions) and thus do not have
any means to dynamically change the syst® i {Ii'an'ant
(static) structures may be created due to the fact t pecification different ways of initiaflising it
may be defined (see D.2.4).

In contrast the internal structute eac ; e bindings between interaction points of their
submodules may vary (i.e., bo e Ty 8 is\because actions (transitions) of an active module -

instance within a system o
between interaction points of children or betwgen the

interaction points of [ildren. For example, an action of the module instance E
(figure A.5) may create’or de en module instances E1 and E2 as well as the conpection
between E1 and E2 and the att etweefi E and E2 (compare figure A.5 with figure A.3).

eatiflg and destroying its children and also crc:%ng and

Recall that although the e ofinstanees of a specific module may change in the dynamic structufe of an (
Estelle specificati ¢ position of each instance corresponds to the respective positign of its

module definition

1.6 Typing

[manipulated objects are strongly typed. Pascal typing mechanisms are extended to purely Estelle|objects
uch astmodule variables, interactions, interaction points and (control) states.

D.1.7 Module internal behaviour

The internal dynamic behaviour of an Estelle module is characterised in terms of a nondeterministic
extended state transition model, i.e., by defining a set of states, a subset of initial states and a next-state
relation.

An extended state is, in general, a complex structure composed of many components such as: value of the
control state, values of variables, contents of FIFO queues associated with interaction points and the status

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

of the module internal structure (submodule instances, bindings between interaction points, etc.). Initial
states of a module instance are defined by an initialisation part of the module definition.

The next-state relation of a module instance is defined by a set of transitions declared within a transition part
of the module definition. Each transition definition contains necessary conditions enabling the transition
execution, and an action to be performed when it is executed. An action may change the module instance's
state described above and may output interactions to the module environment. A compound-statements of

he execution of a transition by a module instance is considered to be an atomic operation. This'means that
nce a transition's execution is started, it cannot be interrupted, and conceptually, one cannot opserve

intermediate results.

he well-known model of a finite state automaton (FSA) is a particular cas¢
ence, an FSA may be described in Estelle (see D.4.2).

.1.8 Global behaviour

o describe the global behaviour of an Estelle specification,
een used.

3 S 'om an
i mal situation. Two consecutive global 51tat1 NS QOTTE ’ recuti ition (rechll that

ay the
onous

stem's transitions (transitions.of its module e interleaved to properly model synch
lobal

arallelism. within subsystems ous parallelism between them. This
mantics model is described.in 1

operly "delays" (i.e., dynamic values assigned t¢ some
by which the execution of these transitions l%list be

elayed). However, the etajhs the hypothesis that execution times of transitions are

nknown. This knowledge zmentation dependent. The model of Estelle outlined above is
“dependent on a time pri which is 2 ed to exist, only in that a relationship between progress of time
d computation isdefined and'the delay-timers are observed to decide whether a transition can or fannot

e fired. The wa i c/interpreted is explained by an example in D.4.2

rechspegify a class of acceptable time processes. In each implementation|or for
ny elemeént of this class may be chosen. (See [30] and [25]).

.2 ‘Syntax and interpretation of Estelle concepts

D.2.1 Channels, interactions and interaction points

Channels in Estelle specify sets of interactions (messages). Declarations of interaction points refer to
channels in a specific way. By such a reference, a particular interaction point has a precisely defined set of
interactions that can be respectively sent and received through this point (in a way, the interaction points are
typed). Consider, for example, the following channel definition

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

‘channel CHANNEL_Id(ROLE_Id1, ROLE_Id2);
by ROLE_Id1: ml;

m2;
;nN ;
by ROLE_Id2: nl;
nZ;
;1K;
by ROLE_Id1, ROLE_Id2: kl;
k2;
kP;

where m1,..,mN, nl,..,nK, kl1,k2,.kP are interaction declarations

[Each interaction declaration consists of a name (1nteract10n—1de ¢
Thus, an-interaction declaration ,

and y. Therefore,
REQUEST(], t c) and

[n the first case, the se
ROLE_Id1" and afte ROLE_Id1, ROLE_Id2" in the channel definition (i.e., the interactions d
by m1,m25»mN and K1,k2,.kP), and the set of interactions which can be received conta
nteractions specified after "by ROLE_Id2" and after "by ROLE_Id1, ROLE_Id2" in the channel de
i.e., the interactions declared by nl,n2,..,n0K and k1,k2,.kP). Observe that interactions declared fi

(.

some typed parameters.

‘of the
eters x

f intéractions that can be sent via p1 contains all interactions specified after "by

eclared
ins all
finition
br both
e to be

1oles (i.e., after "by ROLE_Id1, ROLE_Id2") are those that can be sent and received (and they hay
jeclared in this way).

In the second case we have, as it is easy to guess, an exact opposite assignment of interactions sent and
received, i.e., those interactions which could be previously sent via p1 can now be received via p2 and vice

versa.

We say that interaction points pl and p2 above play opposite roles (or have opposite types). Two
interaction points both referring to the same channel and the same role-identifier are said to play the same

role (or have the same type).

10

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

Two interaction points that are linked (in particular, connected) shall play opposue roles since the exchange
of interactions takes place between them (any interaction sent via one interaction point is received via the

second and vice versa) Two interaction points that are attached must play the same role since the
attaching them is to "replace” one of them by the other.

aim of

Finally, to specify whether the interaction point pl does or does not share its FIFO queue with other

interaction points we respectively write:

pl : CHANNEL_Id(ROLE_Id1) common queue
pl : CHANNEL_Id(ROLE_Id1) individual queue

which were declared common queue within the module.

“gonstruct. For example,
p: array[1..3] of CHANNEL_Id(ROLE_Id

gpecifies, in fact, three interaction points referenced by p[1], p{

In the former case, the FIFO queue will be shared with all those interactior ernal or internal)

A group of interaction points of the same type may have a commefindeclaration edns of an array

oth external and internal interaction points Y g-are ed in the way described above. The
istinction is made only by virtue of where‘they are ared. External interaction points of a modple are
eclared within its module header definition(see rnal interaction points are dgclared
ithin the declaration part of its body definition (see B
2.2 Modules
module definition 1{3&
- a module headerdefir
- amodule body def
module-header de 'n' {0 s ecifies a module type which identifies a class of modules with the same
xternal visibility, 1 e., Wi 3 teraction points and exported variables, and the same class attribute.

y: a class attribute (systemprocess, process, systemactnvnty or activity), a list of
arameters, and.declarations of external interaction points (after the keyword ip) and exported va
(pfter the keyword export). The definition finishes with the keyword end. The actual values of the
arameters) are assigned when a module instance of the module header type is created (initialised
2.4,

>header begins with the keyword module followed by its name and optionally

formal
riables
formal
) - see

¢ following is an example of a module header definition:

module A systemactivity (R: boolean);

ip p : T(S) individual queue;
p2 : W(K) common queue;
p3 : U(S) common queue;

export X, Y :integer; Z: boolean

end;

11

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

Observe that, by the above definition, the same FIFO queue is associated with (is shared by) the interaction
points p1 and p2, which means that any interaction received through p1 or p2 will be appended to the

(common) queue.

Usually one module body definition is declared for each module header definition. However, more than one
body may be declared for a header definition to specify possibly different internal behaviour and

substructure.

A module body definition begins with the keyword body followed by: the body name, a referendge to the
module header name with which the body is associated, and either a body definition followed by the

keyword end or the keyword external.

For example, the following two bodies may be associated with the module heade¢
body B for A;
{body definition see D.2.3}
end;

and

body C for A; external;

In fact, at a conceptual level, two modules have beer defin€d: of which may be identified by the pair
e B : sd’have the same external visibility

(same interaction points p, pl, p2 and same ttribute

(systemactivity). But their behaviours, defined by)\the body definitions are, in principle, differept. This

means that modules may have different b¢haviours and\the same external visibility. A body defined as
pecific behviohe modile. It indicates that either the module body

e provided latep while refining the specification. The "external”
drchitecture without any detailed description of the

The declaration part of-abody definition contains usual Pascal declarations (constants, types, variables,
procedures'and functions) and declarations of specific Estelle objects, namely:

=channels;
- modules headers and bodies;
nﬂ}cr]rt‘a ‘Yﬂf‘:aklﬂﬂ'
OOV i ULy,
- states and state-sets;
- internal interaction points.

Note that, unlike in Pascal, all these declarations may appear in any order and even several times. Note
also, that undefined types (e.g., type buffer = ...) and constants defined using any construct (e.g.,
const T =any INTEGER) may be declared. These two facilities are introduced to allow refinements of

the specification.

12

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

A body definition which is being declared may contain declarations of other modules (headers and bodies).

This, applied repeatedly, leads to a hierarchical tree structure of module definitions.

For example, the body definition B declared below for a module-header A contains definitions of modules
(A1, B1) and (A1, B2). These are children modules of the module (A, B), where the detailed definition of
the module header A is that from the previous clause D.2.2. The hierarchy of the module definitions is

depicted in figure 6.

module A (* see D.2.2 *)..end;
body B for A;
ip pl: T1(R2) common queue; {internal ip}
module Al activity (k: integer);
ip pl: T1(R1)individual queue;
p2 : T1(R2) individual queue;
p : T(S) individual queue;
end;

body B1 for Al; {body definition} end;
body B2 for Al; {body definition} end;

0
(A,B) } p D3
(AT; pl
1o %

<>< Y .
}Al B2) ‘P pl "
DGR

Figure A.6 - Textual hierarchy of modules

e

Module variables serve as references to module instances of a certain module type. For example, the

declaration
modvar X,Y,Z : Al

says that X, Y and Z are variables of the module type specified by the module header named Al.

13

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ’ ©ISO/IEC

A module instance may be created or destroyed by statements referencing module variables (init,
and terminate statements, see D.3.1 and D.3.6, respectively).

release

The internal behaviour of each module (instance) is defined in terms of an extended state transition model

whose control states are defined by enumeration of their names. For example,

state IDLE, WAIT, OPEN, CLOSED

declares four control states IDLE, WAIT, OPEN and CLOSED. In other words, among the vanalLles of a
module, one implicit variable is dlstlngulshed by the keyword state. The state variable may assume only

those values enumerated by the definition of the above form.

A collection of control states is sometimes referenced using a collectwe name wj
stateset declaration. For example,

stateset IDWA = [IDLE, WAIT]

ced by a

Internal interaction points may be declared to allow communicatio : children (-
modules. They are declared in the same way as the externa nt a .. t in the
declaration part of a module body definition rather then in ehed ce the declaratlon of the

interaction point p1 within the body B for module A).

The initialisation part of a module body, indicated'k eyword-initialise, specifies the values pf some

variables of the module with which every pew Ate ance of this module begins its execy
particular, local variables and the ar
variables may be initialised, whi
children modules during init

ition. In
module
ation of

To initialise Pascal variable) Bme arg used (for example, T :=5) and to initialise the state

variable to, for examgp
to IDLE
The variable is thn a fetgrence te the newly created module. To this end, the init statement (see I

part, bindings may also be created between interaction points by the
ach (see D.3. 4) statements. Assume the following is the initialisation

initialise

to IDLE

£'s type. {
D.3.1)1s
e use of
part of

begin

T:=5;
init X with B1 (0);
init Y with B2 (1);
init Z with B1 (4);
connect pl to Z.pl;
connect X.pl to Y.p2;
connect Y.pl to Z.p2;
attach p to X.p

end;

14

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

The above initialisation part creates three module instances referenced by the module variables X, Y
respectively. All these instances have the same external visibility defined by the module header Al

and Z,
(since

the module variables X, Y and Z have been declared with module type Al). The module instances
(referenced by) X and Z are both instances of the same module (A1, B1) and module instance (referenced
by) Y is an instance of the module (A1, B2). The module instances X, Y and Z have been initialised with

he concrete hierarchy of module instances of figure A.7 corresponds to the hierarchical pattern ofs
definitions from figure A.6.
The initialisation also establishes connections and attachments between appropriate interaction point

three newly created module instances and those of their parent module. These connections and attac]
ire also shown in figure 7.

The initialisation part of a module body may define more than one way o
{llustrates this. :

initialise
provided R
to IDLE

begin

=38;

init X with B1 (0);
init Y with B2 (1);
connect X.pl to Y.p2;

1le Al.
module

5 of the
hments

below

attach pto Xp
end;

The actual value of the parameter R (true or false) of the module A (see the module A header definition in

D.2.2) determines how the initialisation will be done. When R is true then the module hierarchy is as in

figure A.7 and when it is false as in figure A.8.

15

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E)

©ISO/IEC

¢

transition with the
this reason the-term initiql

%

gure A.8 - Module instance hierarchy
corresponding to the textual pattern| in

p p
V instance of|(A,B) V instance of|(A,B) .
, P pi P pl
X instance of (A1,B1) X instance of (A1B1)
p2 p2
® '
e
p pl
Z instance of (Al,Bl)2
P
X
.p pl | @ P pl
Y instance of (AI,BZ)2 e of (Al,BZi)
p

figure A.6.

body may also be nondeterministic. The previous example with the -

th 10)

ce 1D.2.5) that the text that follows the initialise keyword has the syntactical form of a
estriction that the only permitted clauses are to- clause and the provided-clagse. For
iSation transition may also be used.

When creating module instances (executing the init statements) it may happen that some of them|are not
referéiiced by module variables. For example, when executing the following two statements:

N _xxr
HHE Wi u;\v},

init X with B1(0);

two module instances will be created but only the second is referenced by X. There are special Estelle
constructs for dealing with such non referenced instances (forone and all statements and exist expression
- see D.3.8).

16

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/MIEC ISO 9074: 1989/Amd.1:1993 (E)

D.2.5 Transition part
The transition part describes, in detail, the internal module behaviour (see also D.1.7 and D.4.2).
The transition part is composed of a collection of transition declarations. Each transition declaration begins

with the keyword trans. A transition may be either expanded or nested. A nested transition (see D.2.6.1) is
a shorthand notation for a collection of expanded transitions. These are characterised in this section.

Each expanded transition declaration is composed of two parts :

- clause-group;
- transition-block.

- when-clause (when p.m, where p is an interaction point de ¢] i ion identifier);

clause (see D.2.6.3).

ost one of each category may appear in the clausg group
vhen-clause excludes a delay-clause and vice| versa.
are called input transitions. Transitions without alwhen-
us transition with a delay-clause is called a delayed transition.

bome clauses (or even all) ma

of an expanded transition. The
Transitions with a w| i
tlause are called spontanéons,

- a transitionsblork, i e sequence of Estelle and Pascal statements (with specific Estelle ext¢nsions
and restrictions - see D. 3. 9) between begin and end keywords possibly preceded by declarations

The to-clause (e.g., to OPEN) specifies the next control state that will be attained once the transition is
fired..If omitted or specified by the keyword same, the next state is the same as the current state.

Example 1 below describes a transition part of a module whose detailed behaviour is explained in D.4.2.
This transition part consists of six expanded transitions containing all categories of condition clauses and
very simple actions. In D.2.6.1 the same transitions are joined into one equivalent nested transition.

Each expanded transition may have an associated name, which is introduced by an identifier. For

example, each of the transitions of the example below have one of the names tl, t2, ... ,t6 associated with
it.

17

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISOAEC

EXAMPLE 1

(* transition part *)

trans
from IDLE
to IDLE (*this clause can be omitted*)

priority medium
when N.DATA_INDICATION
nametl: begin
output UDATA_INDICATION;
ak no:=ak no+1

end;
trans '
from IDLE
to AK_SENT
provided (ak_no > 0) and (ak_no <= 4)
priority low
delay(min, max)
name t2: begin
output N.SEND_AK o
end;
trans
from IDLE
to AK_SENT
provided (ak_no > 4) and (ak_t
priority high
delay(mip
name t3:
{D_AK(ak_no)
trans
from IDLE
to AK_SENT
egin
output N.SEND_AK(ak_no)
end;
trans
from IDLE
to-AK_SEN
provided ak_ no=0
priority low
delay (inactive_period)
name t5: begin
nnl'pnf N QFNn_AT((nl(__nn)
end;
trans
from AK_SENT
to IDLE
name t6: begin
ak_no:=0
end;

18

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/MIEC ISO 9%074: 1989/Amd.1:1993 (E)

D.2.6 Shorthand's

2.6.1 Nested transitions

Expanded transitions were described in D.2.5. A nested transition is a shorthand notation for a collection of
expanded transitions. Example 2 below illustrates the nesting conventions. It groups all transitions of
Example 1 (D.2.5) into one nested transition (also called a transition-group).

EXAMPLE 2

(* transition part *)

trans

from IDLE
to IDLE (*this clause cannot be omitted*)
priority medium

when N.DATA_INDICATION
name tl: begin

gi
output N.SEND_AK(ak_no)
end;

begin
-output N.SEND_AK(ak_no)
end;
provided otherwise
priority low
delay (inactive period)
name t5: begin
output N.SEND_AK(ak_no)
end;

from AK_SENT

to IDLE
name t6: begin
ak no:=0
end;

19

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

Each nested transition can be transformed to a collection of expanded transitions by formal rules described

in clause 7.5.2.4.1.

Algorithms to verify that nested transitions are well-formed so that they may be expanded properly, say by
a compiler, are proposed and analysed in [2]. Similar algorithms are parts of existing Estelle compilers.

D.2.6.2 Provided otherwise form of the provided clause

This form of provided clause may occur only as the last provided clause of a (pax

form occurring within the transition named t5 is semantically equivale

t4. Thus it is equivalent to

provided not (((ak_no >0) and (ak_no <=4))
((ak_no >4) and (ak_no <7
(ak_no =7))

which, assuming that ak_no is of type 0..7,sa ied to(see transition t5 in the Examj

D.2.5).

provided ak_no =

D.2.6.3 Any claige

The any-clatse s oneof thie clauses that may be used within (a clause-group of) a transition declar;
indicates-a macro-like expansion of the remainder of the transition declaration that follows it.

For example a transition declaration :

of.a) nested transition

declaration factored by provided clauses. This means that otherwise refers(to the“poolean expfessions
occurring in other provided clauses of this factorisation. The provided otherwise acilitates| writing
what could be a complex expression. Referring to the Example 2 in 6.1 the provided otherwise

ple 1 of

htion. It

trans
from S1 to S2
any n:1.2; k:3.4 do
when p[n].m
begin
variable :=k
end;

20

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC : ISO 9074: 1989/Amd.1:1993 (E)

is a shorthand for the following nested transition :

trans

from S1 to S2
when p[1].m

fankal
fo e

variable ;=3
end;

when p[1].m
begin
variable := 4
end;

when p[2].m
begin

variable :=3

end;

when p[2].m
begin
variable :
end;

D.3 Estelle statement

module

The only difference between the two forms above is that the second one allows parameters to be pagsed (as
n 4 Pascal procedure) to the module instance being created. These parameters should be passed when the
module header definition specifies such parameters (see D.2.2).

The module-variable in the init-statement refers to the newly created module instance. This module-variable
has to be previously declared as being of the module-type (module-header identifier) with which the module
body indicated by body-identifier is associated (see D.2.2). Thus, the module instance created is of this
type and may be referenced by the module-variable. There may be several module-bodies that could be
associated with a module-header (see D.2.2) and the init-statement serves to select one of them.

If a module-variable, say X, is re-used (within another init-statement) or assigned (e.g. X :=Y), the
instance it is referring to changes, but the previously referenced module instance does not cease to exist.

21

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISOMEC

For example, assume that the module-variable X is declared to be of type A (i.e., X : A), then,

init X with B; init X with B

creates two module instances both of the type defined by the module-header identifier A (both with the same

external visibility's), and with identical internal behaviour defined by the body B.

Note, however, that only the instance created second is referenced by the module-variable X. The first one
is not referenced by any module-variable (is not referenced at all from the specification pointof-vigw), and
the only way to access it is through the use of the forone or all statements or of the exist expression (see

3.8).
The init-statement may be used within an initialisation-part (see D.2.4) or\{r3 pn-part (se¢ D.2.5)
of a module body declaration allowing, respectively, the static or dynaifie.creatt children|module

instances of a given module.

D.3.2 Connect statement
The generic forms of a connect-statement are

connect internal-ip to child-external-ip;

A connect statement issued
1) an internal intz i

first two forms a

Recall that an idteraction
internal if it is'declared within a module's body.

ule (the

point’is external if it is declared as part of a module's header; an interaction|point is

The twolinteraction points referenced by a connect statement must refer, in their declarations, to the same

channeél"and they must play opposite roles (must have opposite types - see D.2.1) with respect
channel.

to this

Observe that a connect statement referencing an external interaction point of the module issuing the

statement is syntactically invalid; Thus, the situation depicted in figure A.9a is impossible.

A connect statement has no effect when it attempts to connect an interaction point that is currently already
connected (or attached by the module issuing the connect statement - see D.3.4) or when it attempts to
connect an interaction point to itself; the situations depicted in figure A.9b, ¢ and figure A.11c, d are thus

impossible.

22

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

a) b)
pZ\
pl —— o —9
pd p2 pl p3
c)
p2 pl p3 p4
D\

Figure A.9 - Impossible configurations of interaction point interco nections

 of a module may be connected only to another internal interaction
external interaction point of a child module;

may be connected to at most one interaction point, and it cannot be

Note also that connecting two interaction points does not have any influence on the contents of queues
nssocidted with these interaction points.

3.3 Disconnect statement
The generic forms of a disconnect statement are
disconnect internal-ip;
disconnect child-external-ip;

disconnect module-variable.

23

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd:1:1993 (E) ‘ ©ISO/IEC

A disconnect statement in its first two forms disconnects a pair of interaction points even though only one
of them is explicitly specified by the statement; the pair is implicit because the interaction point explicitly
specified is supposed to be currently connected to another one as a result of some previously executed
connect statement (otherwise the disconnect statement has no effect).

A dlsconnect staternent in its last form is a generahsatlon of the second form in that it apphes to all the
fev S sconnect

statement.

A disconnect statement does not have any influence on the contents of queues associated with the interaction
points being disconnected.

D.3.4 Attach statement

The generic form of an attach-statement is

attach external-ip to child-external-ip.

The sequence of actions of the attach statement are as follg

1) attach (bind) the pair of interaction p01 ecif} i external
interaction point of the module isghin}g ; ference)
and the second must be an external\intera gint of one ¢ the module's children (1demnﬁed by
the interaction point reference prefixedby axnod iable i

2) remove from the queug associated i irs¢ 1n i i 1 i at have
been previously enqu ued g terac 'on point; recall that the queue associatef to this

interaction point i&de") with other interaction points through which

interactions could

3) append the ions j to\the current contents of the queue associated with:
a) the second £¢ t specified, if it is not in turn attached to another child
interactio cond interaction point is the end-point), otherwise,

b) the interaction point that 15 the end-point of the chain of attachments whose segments attjch the
consecuti yopairs o interaction points beginning with the second child interaction points and
ending With t action point of a great .. great grand child of the child.

The two interaetion deints identified in an attach statement must refer, in their declarations, to the same
channel and-they must play the same roles (must have the same type - see D.2.1) with respect to this
channekl.

An attach statement has no effect in the following cases:

a) when an attempt is made to attach an interaction point of the module issuing the attach statement
that is already attached to another interaction point of one of the module's children; the situation
depicted in figure A.11a is thus impossible;

b) when an attempt is made to attach an interaction point of the module issuing the attach statement to
an interaction point of one of the module's children that is:

- already attached to the module's interaction point, or
- already connected to an interaction point.

24

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

Thus the situations depicted in figure A.11b, 11c and 11d are impossible.

ections

Figure A.12 - Possible configurations of interaction point attachments and connet[tions

In summary, at a given moment,

(1) an external interaction point of a module may be attached to at most one external interaction point
of its parent module and to at most one external interaction point of its children;

(2) an external interaction point of a module attached to an external interaction point of its parent
module cannot be simultaneously connected.

25

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISOMIEC

D.3.5 Detach statement
The generic forms of a detach statement are:
detach external-ip;

detach child-external-ip;

detach module-variable.

is explicitly specified by the statement; the pair is implicit because the interactio
supposed to be attached, at that moment, to the implied one as a result of somg
statement (otherwise the detach statement has no effect).

point that were enqueued

A detach statement in the first two forms detaches a pair of interaction points even though only one pf them
point explicitly spefified is
previously executef attach

external
ment.

bf some

turn, at
ase, all
hrough

to the queue associated with the

chain of attachments going from thg child's

darit modules. In such a case all the integactions

rom the queue associated witk the end-point of the chain of attachments|(all the

ay down to the great, grea oreat ere enqueued through this interaction pgint and

at passed via the external interacti i he odule issuing the detach statement, while it wag chain-

ttached, are remov@ 3 oy he extetnal interaction point of the module issuing the|detach
tatement.

3.6 Release a

[he resilt’of the release X statement, where X is the module-variable identifying a child of the 1
nstance issuing the statement, is equivalent to the following sequence of actions:

module

mentos
TIICTINY,

E) E]

(2) destroying the module instance identified by the module-variable X as well as all its descendant
instances; the value of X as well as any other module-variables identifying the module instance X
(say Z if an assignment Z : = X had been previously made) becomes undefined, as if it had never

been initialised.

The result of a terminate-statement differs from the result of a release-statement in that the execution of
the implicit detach X statement within the execution of the release statement is restricted only to detach all
external interaction points of the module instance identified by the module-variable X without moving the

26

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

interactions in queues. This restricted detach is called simple-detach in the formal semantic definition (see

9.6.6.2.4).

In other words, terminate X statement abruptly destroys the module instance X (and all its descendants)

including all enqueued interactions and bindings of i 1nteract10n points.

Note that since the module instance identified by the module-variable references a child of the module

and all its descendants; a module may not destroy itself or a sibling module.
Note also that the execution of the sequence of statements |
~detach X; terminate X

gives the same result as executing release X.

D.3.7 Output statement

The generic forms of the output statement are as follows:

output ip-reference.interaction-identifier;

specified interaction point. For example, the, stateing\ent

sends the interaction REQ on point pl
[f pl and p2 are th in ymramnication link (see D.1.3.1), then the statement
pl.m appends interaction/m assoriated with the interaction point p2.

Since an interaction énd-f ay be linked to at most one other interaction end-point, there is a
receiver (if any) ofthe g ;

D.3.8 All-and forone statements, exist expression

e child

putput

unique

bct (the

In Pascal and Estelle, all objects of a given type comprise a domain. Estelle provides repetition and §
taternents and a boolean operator Wthh operate over a named domain (a vanable declared eit

forone, and the boolean operator is named exnst

D.3.8.1 All statement
The generic form of the all statement is:

all domain do statement;

er as a
named

27

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

The statement contained in the do part of the all statement can be a compound statement, comprising
several statements between the Pascal keywords begin and end.

The domain indicates the set over which the search is to be performed, that is, either a collection of module
instances of the same module-type, or one or more finite ordinal types.

en the domain of the all statement 1 Y T has o effecr.

'hen all is used with module instances, the domain declares a module variable and is restricted t0 on¢ such
hriable and one module-header-identifier.

s <

Siince a module-header-identifier identifies the module-type, the module inst3 Q-be examined and
i

janipulated within an all statement are declared as follows

module-variable-identifier : module-header-identifier

This has the effect of declaring a module-variable local to the scope aten ¢ riable (
i of the module-type identified by the module-header-identifier

Fpr example, during a reset operation, a parent managing sg ildre i ction,
might use .

all M : ModuleType do M.InProgre

¢ set an exported variable named "InProgress” Yo fa

[~

Assume that a parent has initialised several yodul ; 1IN of
a|catastrophic failure, it is necegsarn ase ancesof the network modules Then it is possible to
specify:

trans
when syste re
priority highes

to closed

do

es Of the network module type are released. Since we have assumed the ex1ste ce of
sgveral such instances, supporting separate subnetworks, all of them will be released Flrst t" is
agsigned the value of one (arbltrary) of the module instance references of the type "network” and it is
rdleased; then the operation is repeated for all the others. Note that the order in which module instancps are
rdleased is not specified.

Notealso that module instances manipulated within an all statement are not necessarily referencgd by
module variables declared outside the all statement domain (see D.3.1).

As mentioned above, the domain of an all statement may also deal with variables of finite ordinal types. In
this case the domain of the all statement may be specified as follows

variable-list 1 : type-denoter 1;.....variable-list N : type-denoter N

All these variables have scope local to the all statement

28

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

If the domain of the all statement contains more than one variable, the statement following the do keyword
is executed for each instance of an object in each domain specified.

In the above example, releasing "network" modules means that the parent module receives the contents of
all queunes associated with all interaction points of the released modules that have been attached to its
interaction points. Suppose that this is not desirable, since the only queue contents the parent is interested in
are those associated with the interaction points grouped by "colours" and "sorts" by means of the following

ALV ”>e U Al ALIO (11 OT OC

p : array [ip_colour, ip_sort] of channell (R1)

where the types ip_colour and ip_sort have been defined earlier by:

type
ip_colour = (red, green, blue);
ip_sort =1..3;

Note, however, that the parent has also other interaction poin dren"network" modules'

interaction points other then those grouped within the declaration
One could now reformulate the transition from the previoys exa

trans
when system.failure_indication
priority highest
to closed
begin
all net: ng

p_sort.
nd blue
e order

D.3.8.2)Forone statement

Thé forone operation complements the all operation. It is used to search for an object satisfying given
criferia, which may be expressed as a boolean expression. It has two generic forms :

forone domain suchthat boolean-expression do statement;
forone domain suchthat boolean-expression do statement 1 otherwise statement 2
where the domain is declared in the same way as in the all-statement.
The boolean-expression is evaluated for each instance of an object in the domain(s) identified until it yields

the value true. When an object is encountered for which the boolean-expression is true, statement 1

29

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

following the keyword do is executed and the operation terminates. If the boolean- -expression is false for all
instances of objects in the domain (or the domain is empty), then (if the second form was used) the
statement 2 that follows the keyword otherwise is executed.

The boolean-expression may contain, for example, exported variables (shared between parent and child)
that help identify the module sought.

hrough its 1nteract1on pomt NET SAP also assurne that a boolean varlable is busy is exported Hy each
nstance of the network module to indicate whether or not the module is currently attached to itsarent.

e et

A "connection_request" interaction may arrive any time from a user to the parent module (of the network
thodules) through an interaction point user[k] for any k = 1,...N. If it happens, and"if & network rhodule
instance exists which is not busy (is_busy = false), then communication w1t ’ ¢ instance may be
gstablished (i.e., the parent attaches its user[k] interaction point to the interaction point of the
detwork module instance). If all existing network module instances are b if such. instances do not
exist at all, then a new network module instance must be created first an ttached to the parent

This could be expressed by the following transition (declared witk Sxpake dule) where new_pet is a
previously declared module variable of the "network" type:

trans
any k:1.N do
when user[k].connecton_request

begin
forone net : nctwork

with network_body;
to new_net. NET_SAP;

10.3.8.3<) 'Exist expression

Hxist expression provides the facility to determine if an instance of an object exists; it is a relational
expression returning either the value true or false. As such, it may be used as a factor in a more complex
expression. Its form 1s:

exist domain suchthat boolean-expression;
where the domain is declared in the same way as in the all and forone statements.
Assume that in the previous example (see the end of D.3.8.2) the network modules could handle more than

one connection. For example, the interaction point (within the network module-header) could have been
declared as:

30

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

NET_SAP : array[1..M] of Net_channel(R1);

Then the value of the variable "is_busy" could have been determined by the exist expression (within a
more complex forone statement): - _

existi: 1.M suchthat is_attached_NET._SAP(i)

where "is_attached_NET_SAP(i)" is a function returning true or false depending whether.or|not the
interaction point NET_SAP[i] is attached to an interaction point of a parent.

D.3.9 Pascal restrictions in Estelle

Estelle makes use of Pascal [41] in the transition blocks to specify aefix at take place during the
transitions. Only level O Pascal is used, thus excluding the use of conforr s. Because Estelle is a
specification technique rather than a programming language, some restristiogs Were intra uced to cpnstrain

the Pascal components. Integers and real numbers have their usua 3 ing in Estelle, so
implementation dependent constraints such as MAXINT and the igion%o real umbers do not enter into
Estelle. Similarly, all those features of Pascal that relate 8 ave been remov}d (file,
text, get, put, read, write, readln, writeln, eof, he ke word program has been

removed.

: sO that a goto acts like a {return”
statement. A goto may be used only within a procedute , ipn, never directly within a transition
block. Consider the case where a procedure™A iny ¢’B. In Pascal, a goto in procgdure B
could transfer control to any label in progedure A™0 ure B. In Estelle, however, it may fransfer

No function in Estelle may have side ehare no complications introduced by the grder of
evaluation of expressions g ; he ided clause of transitions or by evaluation of actual
parameters of functiops, p ide-effects are avoided by requiring that functions be
demonstrably pure t e Xey idea of that definition is that a demonstrahly pure
function cannot modify eithe ectly (through a pointer or by calling another procgdure or
function) any variable tha addition to requiring all functions to be demonstrably pure] Estelle
permits procedures to ;

As a convenience,, funchi Q{1 are perm itted to return arbitrary types, but the syntax does not permit complex
types returned by funcy be used within arithmetic or logical expressions. Nevertheless, the returned

Estelle makes it possible to>specify that the definition of a procedure, a function, or a module is to be found
elsewhereThis is indicafed by the directive external, which is thus simply a way to indicate negcessary
text substitution. This is in contrast to the directive primitive, which indicates that the description of a
procedure or functlon (but never a module) is not given in Estelle. This is frequently used with data types
indicated as "..." as a way of deferring specification or of leaving implementation details to implementors.
As an example buffers could be specified by:

type BufferType = ..;

and the routines to manipulate buffers (e.g., Insert, Extract, IsEmpty, etc.) could then be declared
primitive. Note that primitive functions and procedures (and only such) have global scope.

Pointers are a necessary evil of Pascal, but their use is restricted within Estelle. Pointers (and any variable
containing pointers as components) are excluded from use as parameters of interactions and as parameters

31

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

1ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

and exported variables of modules. As noted above, they are also excluded from use as parameters of

functions and pure procedures.

Finally we mention here that Estelle constructs cannot be used in procedures or functions. Technically this

is'not a restriction to Pascal, because these construct were never a part of Pascal. Since the additional

Estelle

statements cannot be hidden in procedures or functions, they are easily seen. This is nnportant as they may

specify the information about module structure and inter-module communication.

.4 Behavior of Estelle specifications

.4.1 Specification module

1l modules defined as described in the preceding sectiohs are textually.e
pecification module. This unique module is defined as follows :

speclﬁcatlon SPEC-NAME [system—class]
[default-option]
[time-option]
body definition
end.

d, second, etc.) applicable to the specification.

-clagse indicates the number of units the execution of a tra

[he time-option indica :
negative integer expre

body SPEC_NAME for ANY-NAME,;
body definition
end;

; called

efault—

ive the

ich this

A non-
nsition

Finition (

where ANY_NAME may be chosen arbitrarily and body definition takes into account the default-option.

Note that the specification module has neither interaction points nor exported variables. This means

that an

Estelle specification is not itself a module that communicates with other external modules. In practice, a
specification body often constitutes a general framework for a system being defined, i.e., it provides a
global context necessary for the system definition and initialisation. Note that, the definitions of constants,
types, channels and procedures or functions declared as primitive are visible by any descendant module.

It is assumed that there exists only one instance of a specification module (main instance).

32

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC - - ISO 9074: 1989/Amd.1:1993 (E)

The example below illustrates this "framework" role of the specification module which serves (in this
example) to define only an overall system architecture including modules' interfaces (so-called high-level-
design) without going into details of its components' definitions by leaving their bodies unspecified, i.e.,
external. '

[] X2 AAADIL I
SpEClﬁcatIOll LAMAIVIT 1.1,

default individual queue;
timescale second;

channel UCH(User,Provider);
by Provider: DATA_INDICATION;

channel NCH(User,Provider);

by User: DATA_INDICATION;
by Provider: SEND_AK(x: integer);

module USER systemactivity;
ip U: UCH(User);
end;
body USER_BODY for USER; gxte ‘
module RECEIVER systemactivity; _'

ip U: UCH(Provider); N: NCH
end;

xith USER_BODY;

init Y witif RECEIVER_BODY;
init Z with NETWORK_BODY;
connect X.U to Y.U;
connect Y.N to Z.N;

end;

end.

The specification declares and initialises three systems X, Y and Z (i.e., the systems are referenced by
module variables X, Y and Z of types USER, RECEIVER and NETWORK, respectively). These systems
exchange some messages through their interaction points connected as declared in the initialisation part of
the specification. While the RECEIVER_BODY is further specified in D.4.2 as one simple module body

33

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ' ©ISO/IEC

(without substructuring), the other systems remain "external” and their definitions can be substructured
differently in subsequent refinements of the specification. ,

The graphical representation of the specification EXAMPLE is presented in figure A.13.

EXAMPLE

Network

Figure AA3->~Graphical representation of the specification EXAMPLE (high-levpl-
design)

D.4.2 Internal behaviour of a module

As noted earlier (see D.1.7) the behaviour of a module is expressed in terms of an extended state transition
model in which one computation step is defined by execution of a transition action in the module internal
state. The criteria expressed by condition clauses of a transition determine whether the transition is firable
(or ready-to-fire) in a state of the module (and at a given moment of time, if it concerns a delayed
transition). The action of one of those firable transitions eventually executes and thc module will reach a
new: state. . _

34

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

Q@ISO/IEC ISO 9074: 1989/Amd.1:1993 - (E)

Note that, the term state means here a complex structure composed of many components such as: value of

the control state, values of variables, contents of FIFO queues associated with interaction points

and the

status of the module internal structure (submodule instances, bindings between interaction points, etc.).

This section defines when a transition is firable and it explains through simple examples how to represent a

desired behaviour in Estelle.
among those listed by the from-clause. For example, if IDLE is the current control state of a

from IDLE,
from IDLE, OPEN, CLOSE,
from IDWA,

The when p.m clause is satisfied in a module state if the interaction 1y
with the interaction point p.

The provided B clause is satisfied in a module state if the boele
state.

A transition is said to be enabled in a module state if
the clausegroup of the transition, are all satjstied int

(a) it is enabled in the st

then it must have remaj

The first of them {spec
by the diagrapiin figuxe Al state table in figure A.14c, while the second (specification Exa

ivalént behavious (i.e., that in figure A.14e and figure A.14f) in a more concise way
ariable "x" and interactions parameter "p". In both cases the description {
of one Estellé-module.body E1 with its header E, respectively (the interface is, however, differe
channel definitions). The 'module is embedded into a "framework" specification module which, t
with thednodule header E, serves to declare the required interface with the environment as given in
14a and-14e. In the second case, the type T (of the interaction parameter "p" and of the variable x]

defined within this "framework".

state is
module

instance, then all three of the following from-clauses are satisfied (assume that IDWA=[IDLEWAITT):

sociated

' in that

esent in

1LE2)",

onds to

stelle a

A given
imple2)
r due to
LOnsists
nt - see
pgether
Figures
is also

35

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

specification Examplel;

default individual queue;
channel U(R1,R2);
by R1: put;
channel S(R1,R2);
by R1: dt0; dt1;
1.

module E systemprocess;
ip U: UR2); S:SRI1);
end;
body El for E;
state s0, s1, s2, s3;
initialize to sO begin end;
trans when U.put
from s0 to sl
begin output S.dt0 end;
from s2 to s3
begin output S.dt1 end;

when S.ak0
from s1 to s2
begin end;
when S.akl
from s3 to s S
begin end;

specification Example2

default ind@al
type T =0

channel U(R]

end;
end.

body E1 for E;
state SO, S1;
var x: T;
initialize to SO begin x := 0 end;
trans when U.put

fromSOto St
begin output S.di(x) end;
when S.ak(p)
provided p=x
from S1 to SO
begin x := 1-x end;
end;
end.

36

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©@ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

Note that in the second description two extensions have been made. The first is the parameter "p" of the
enumerated type T =0..1 which permits the declaration of two-element classes "dt" and "ak" of
interactions instead of declaring their elements as four separate interactions (observe that "dt(O)"
corresponds to "dt0" in Examplel, etc.). The second is the variable "x" of the same type T. It permits, in a
similar way, the replacement of the four previous control states by only two (observe that in Example2, the
situation of being in the control state "S0" with x=0 , corresponds to the situation of being in the control

state "sO" in Examplel, etc.).

EXAMPLE 1 EXAMPLE 2

a) l{ put

E U |dto, dt1
s

ak0, ak1

U.put S.
S.gto

U.put S.ak(p), p=x
S.di(x) X = 1-X

stat \a@’@k’? int| put |_2K(p)
> N

0 ‘s state p=0 | p=1
<\}\ U so [Zled™©
\s\ s2 e PR
s3 - XI
B0pc=1-
dit1 s1 L] Ofx:=1
s3 s0 1 SOlx:=1-X

Figure A.14 - Graphical representation of interfaces of modules E ((a) and (d)) and of -
their internal behaviour represented by state graphs ((b) and (e)) and state tables ((c) and
(f), respectively, for Examplel and Example2 specnficatlons

37

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

The next example specifies in Estelle a behaviour in which a combination of all categories of condition
clauses is used to satisfy the requirements formulated informally below. More specifically this example

illustrates the use and interpretation of delay and priority clauses.

As observed earlier the computational model for Estelle is formulated as far as possible in time-independent
terms Howcver some Estelle spontancous transmons may contam a delay -clause of the form

be delayed The minimum time the transition must be delayed and the maximum tlme it may be dela
nitially specified by the values of integer expressions E1 and E2 respectively. An impleméntatigp

e body definition which we describe in this example can replace the ‘e
CEIVER module of a simple communication scheme defined jin]

D.2.5).

- each protocol data unit shall be ackno i time (max);

- it is desirable to acknowledge each

The following module@ ~
mesolution of 1 second (s : in the specification).

state LE AK_SENT;
var ak_no 0.7,
min, max, inactive_period : time_period;

(* initialisation part *)
initialize
to IDLE

begin
min ;= 1;
max := 20;
inactive_period := 60;
ak_no :=0;

end;

38

n may

¢hoose a concrete delay value in the closed interval determined by these expressions. Let us nqte that

! delay(El)" means the same as "delay(E1,E1)" and that delay(E1,*) means that the i gy time

of the

hannel
MPLE
in D.4.1. The transition part of this module is that from Exam ple .6\ (and e that of

after a minimum time (mihn), but

when more than four are received an e gst be sent after this minimum delay
(min);

- the maximum number of ' a 0nits is seven;

- when the system remaids inactive 1o Ion ye period), "dummy" acknowledgements are

stelle. The specification in D.4.1 assumes a timg scale

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

+ ©ISO/IEC ' ISO 9074: 1989/Amd.1:1993 (E)

(* transition part *) ‘
trans (* transition part from Example of D.2.6.1 *))
from IDLE \
to IDLE
priority medium
when N.DATA_INDICATION
name t1: begin

to AK_SENT
provided (ak_no >0) and (ak_no <=4)
priority low
- delay(min,max)
name t2: begin :
output N.SEND_AK(ak
: end; _
provided (ak_no >4) and (ak_no <7)
priority high .
delay(min)
name t3:

begin

provided ak_no =7
priority high
name t4:

end;

As explained in D.2.6.1 the transition part of the RECEIVER_BODY consists of one nested trg
representing in fact six expanded transitions. The outer-most level of factorisation (from-clauses)
these'\Six transitions into two groups: t1-t5 and t6. To-clauses separate the first transition and thg

Insition
divides

nested
y their

transition which groups expanded transitions t2-t5. These transitions in turn, are factored b

2.1
provided-clauses:

From the initialisation part (see D.4.1), we see that the module begins in its IDLE control state, with the
delay.values appropriately initialised and the number of messages that remain to be acknowledged set to 0.
Note that immediately after this initialisation, the delay-timer associated with transition t5 begins to run

since the transition becomes enabled.

If a DATA_INDICATION message arrives during the inactive period (60 seconds), then the message is

transmitted to USER and the number of messages to acknowledge increases by 1 (transition t1).

In this

39

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISOMEC

case, the timer of transition t5 is cancelled. Otherwise, i.e., when 60 seconds passes without any incoming
message, an "artificial" acknowledgement is sent to prevent disconnection.

Note that immediately after the first message arrived and was served, the delay-timer of transition t2 starts
to run, but the transition may be fired only if: there is no new message to be served (otherwise transition t1
would fire), 1 second already has passed, and the number of messages to be acknowledged is not greater
than 4. This transition certainly will be fired if the above situation has remained unchanged for 20 seconds.
i [iTed Or MoIe U & IMESSage AVE DUET erved i betwee cirti iti i
langer enabled and its timer is cancelled.

£

Immediately after the 5th consecutive message is served (transition t1) but before all five have
atknowledged, the delay-timer of transition t3 is turned on. The timer will run exactly 1"second agd the
transition will be executed if the number of unacknowledged messages during thi ¢ i
QOtherwise, if the 7th message is served (transition t1) during this period, transiti
and its timer will be cancelled; the transition t4 will be executed instead.

It|is worth noting the role that is played by priorities assigned to transitions. Dug 3, iYa conditjon of
heavy traffic of arriving messages (more than 7 in less than one seco K ents are always
s¢nt for blocks of 7 messages (the priority of transition t4 is higher thanth 1). In less heavy
tmaffic (more than 4 but less than 7 messages in one second),the 2 dgements are sent always for
blocks of 5-6 messages. If the messages arrive at a raj seconds, they mpay be
acknowledged one-by-one or in blocks of 2-4 messages depen sessdage distribution in thaf time
and the real delay value in the time interval <min, ma the'i transition t1 has a higher priority than

transition t2). If no more than one message drtives
ir N

)
A

Specification is operational. This means that a, so

Ci . € e system global states which here are called global
situations. The next-state.relati ; -sithigtion relation) specifies all possible situations that may
b f : i ewverall behaviour of a system (a system defined py an
E € aracterisedhby the set of all sequences of global situations which gan be
g ‘ ; 4 certain initial situation.

R describes a collection of systems, that modules within each system may

5
systems may ¢

a_ synchronpus or non-deterministic way, and that modules belonging to different

; ccession of computation steps. Each computation step of a system begins by
nondeterministic-sele of one (in the case of a systemactivity system) or several (in the case of a
systemprocess system) transitions among those ready-to-fire and offered by the system comppnent
mjodules (at most one transition per module may be offered at a given moment). The selected transitiops are
then executed in parallel. A computation step ends when all of them are completed.

The systems exec

From the point of view of the semantic model, the parallel execution of transitions within one computation
step of a system cannot be considered simultaneous since the result may depend on whether one or another
completed first (recall that, for example, these transitions may send interactions into a common queue and
that the order in which they are put into this queue depends on their execution speed). All possible
interleavings (permutations) of transitions selected in a computation step must therefore be taken into
account in the model. Nevertheless, the execution of these transitions is synchronised in that a selection of
new transitions to execute starts only when all of them have completed. »

That way the relative speed of modules within a systemprocess system may be controlled
(synchronised). That is why we say that the parallelism within such system has a synchronous character.

40

(

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

©ISO/IEC ISO 9074: 1989/Amd.1:1993 (E)

Note, however, that since only one transition is nondeterministically selected for every computation

step of

a systemactivity system, we have purely nondeterministic behaviour within such a system. In any case,
the behaviour of modules with respect to each other within a system is under the control of the system

module.

In contrast, systems run asynchronously in that their computation steps are completely independent from

each other. The relative speeds of systems are not constrained (synchronised) at all.

ow the transitions are selected for synchronous or nondeterministic execution within one computatl pn step
f a system depends always on the parent/children priority principle and on the way the system’s njodules
e attributed (see D.4.3.2).
To properly model the possible behaviours of an Estelle specification, both asynChronous behaviour jamong
ystems, and synchronous and nondeterministic behaviour within a system hv o’bergxpressed| by the
ay the transition executions are interleaved. The adequacy of this interledve lel s assured in turn by
he assumption of the atomicity of transitions.
.4.3.1 Global situations
ach global situation of the transition system is composed of current i
- the hierarchical structure of modules, withi SP, the structure of bindings
established between their interactio mation
is included in a global instantaneous
- the transitions that are preselected ting) within each system; the set of these
transitions for the i-th systemis den where n is the total number of systems).
ach global situation is denotedb
he global situation i SP)" is
initial if it results from thie
f Ai is empty (Al in i , then we say that the i-th system is in its management phase.
uring this phase ane of transitions for parallel synchronous execution is selected. Otherwise| i.e., if
i#= 0, the i-th gystem i
.4.3.2 Next-situation relation
is relation’defines the successive situations of an arbitrary current situation
(gid(SP); Al,..,Ai,..,An).

For every i = 1,2,..,n,

1) If, in the current situation, Ai=0, then the following is a next situation
(gid(SP); Al,..,AS(gid(SP)/i),..,An)

where AS(gid(SP)/i) is the set of transitions selected for execution by the i-th system,

41

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

ISO 9074: 1989/Amd.1:1993 (E) ©ISO/IEC

2) If, in the current situation, Ai # 0, then for each transition t of Ai, the following is a next situation

(t(gid(SP)); Al,..,Ai-{t},..,An)

i.e., the new gid(SP) results from execution of transition t and t is removed from the set Ai.

Each transformation of a given global situation into a successive situation expresses the result of either a

transmons previously selected, selects new transitions among those offered. Conceptually these
nsitions are considered as executing. As any transition of Ai (for any i) may terminate before any
(the relative speed of execution of transitions is not known), all of the successive situations(for each ¢

ssible sequences of global situations.

The execution of a transition "t" of a module:

- may cause a change in the module's local state. In particula
control state, it may create a new child module and/or a n€
attach or connect statement). The transition may also-ge

link (by executi

Aj, for j#i, remain unchanged in the
system (the set Ai becomes Ai-{t} in

The selection of transitions to be executed within one
of the set AS(gid(SP)/i) is regulated

- the modules' attributes

The parent/children
transitivity, means that aaea
d

of a module prohibits the selection of transitions of
¢scendants' modules.
The transition selection pplied to.a module within a system can be formulated as follows:
- if the : -fire (fireable) transition to offer, then this one will be sel
(parent/children priority),
- otherwise, depe ding or whether the module is attributed process (systemprocess) or acf

transitions offered By its children modules, will be preselected.

set AS(gid(SP)/i).

,:ora(

g an

executing an ofitput

sets
same

hoice

“nds to the ancestor/descendant priority principle by

all its

ected

ivity

-tp-fire

is rulé applied recursively, starting with the root (system) module of the i-th system, gives the selected

It is worth noting that the ready-to-fire transition offered by a module cannot be selected if any o
module's ancestors had something to offer. This property excludes parallelism between modules
ancestor/descendant relation.

f this
in an

The application of the above rule for different systems (differently attributed modules) is illustrated in figure
A.15.

42

https://standardsiso.com/api/?name=a5452e3713604e8895512458a10981fa

