INTERNATIONAL ISO/IEC
STANDARD 10967-2

First edition
2001-08-15

Information technology — L'anguage
independent arithmetic —<

Part 2:
Elementary numerical functions

Technologies de l'information'~— Arithmétique de langage indépengant —

Partie 2: Fonctions numériques élémentaires

Reference number
ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2001

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. +412274901 11

Fax +4122 74909 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2001 — All rights reserved

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Contents
Foreword e e viii
Introductiono ix
1 Scope
1.1 Inclusions e 1
1.2 Exclusions e e 2
Conformity 2
3 Normative references 3
4 Symbols and definitions 4
4.1 Symbols RN 4
4.1.1 Setsandintervals. 4
4.1.2 Operators and relations N L. 4
4.1.3 Mathematical functions 5
4.1.4 Exceptional values NN Lo)
4.1.5 Datatypes o Oy 6
4.2 Definitions of terms S N 7
H Specifications for integer and floating point operations 10
5.1 Basic integer operations LN Lo oL oo 10
5.1.1 The integer result and wrap helper functions 10
5.1.2 Integer maximum and minimum &, Lo 11
5.1.3 Imteger diminish %> 11
5.1.4 Integer power and arithmeticsshift 12
5.1.5 Imteger square root . . . AN . . Lo 12
5.1.6 Divisibility tests . . .« . . Lo 12
5.1.7 Integer division (withfloor, round, or ceiling) and remainder 13
5.1.8 Greatest common divisor and least common positive multiple 13
5.1.9 Support operations for extended integer range 14
5.2 Basic floating pointfoperationso 15
5.2.1 The rounding and floating point result helper functions 15
5.2.2 Floating-point maximum and minimum 17
5.2.3 Fleating point diminish oo 18
5.2.4 Eloor, round, and ceiling L oL 19
5.2.53-Remainder after division with round to integer 20
526" Square root and reciprocal squareroot 20
5.2.7 Multiplication to higher precision floating point datatype 20
5.2.8 Support operations for extended floating point precision 21
53 Elementary transcendental floating point operations 22
5.3.1 Maximum error requirementso 22
5.3.2 Sign requirements 23
5.3.3 Monotonicity requirements Lo 23
5.3.4 The result* helper function 23
5.3.5 Hypotenuse e 24
5.3.6 Operations for exponentiations and logarithms 24

iii

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

iv

© ISO/IEC 2001 — All rights reserved

5.3.6.1 Integer power of argument base 24
5.3.6.2 Natural exponentiation 25
5.3.6.3 Natural exponentiation, minusone 26
5.3.6.4 Exponentiation of 2 o Lo 27
5.3.6.5 Exponentiation of 10 27
5.3.6.6 Exponentiation of argument base. 28
5.3.6.7 Exponentiation of one plus the argument base, minus one 29
5.3.6.8 Natural logarithm, 29
5.3.6.9 Natural logarithm of one plus the argument 30
0.0.0.10 2-logarithm o oo 30
5.3.6.11 10-logarithm 3
5.3.6.12 Argument base logarithm0x 3l
5.3.6.13 Argument base logarithm of one plus each argument . . . , .|/ . 3P
5.3.7 Introduction to operations for trigonometric elementary functions ~\. . . . 3P
5.3.8 Operations for radian trigonometric elementary functions . . .x% 3B
5.3.8.1 Radian angle normalisation N0 3y
5.3.82 Radiansine. L. 3b
5.3.8.3 Radian cosine LA\ 3p
5.3.8.4 Radiantangent. Cs7 3p
5.3.8.5 Radian cotangent & o000 36
5.3.8.6 Radiansecant /A 37
5.3.8.7 Radian cosecant &) Lo 3[7
5.3.8.8 Radian cosine with sine oo 3R
5.3.8.9 Radian arcsine S00 . 0L oo Lo 38
5.3.8.10 Radian arc cosine @o 3
5.3.8.11 Radian arc tangento 3P
5.3.8.12 Radian arc cotangent>¥o 4]
5.3.8.13 Radian arcsecant ~\". L o |
5.3.8.14 Radian arc coséeanto 4i
5.3.8.15 Radian angle from Cartesian co-ordinates 4ap
5.3.9 Operations for trigonometrics with given angular unit 48
5.3.9.1 Argument angular-unit angle normalisation 43
5.3.9.2 Argument angular-unit sineo a
5.3.9.3 Argument angular-unit cosine 45
5.3.9.4 (Argument angular-unit tangento 45
5.3,9.5. Argument angular-unit cotangent 46
58,96 Argument angular-unit secant a7
5:3.9.7 Argument angular-unit cosecant ar
5.3.9.8 Argument angular-unit cosine with sine 48
5.3.9.9 Argument angular-unit arc sine 48
5.3.9.10 Argument angular-unit arc cosine 48
5.3.9.11 Argument angular-unit arc tangent 49
5.3.9.12 Argument angular-unit arc cotangent 50
5.3.9.13 Argument angular-unit arc secant o1
5.3.9.14 Argument angular-unit arc cosecant 51
5.3.9.15 Argument angular-unit angle from Cartesian co-ordinates 52
5.3.10 Operations for angular-unit conversions 53
5.3.10.1 Converting radian angle to argument angular-unit angle 53

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

5.3.10.2 Converting argument angular-unit angle to radian angle
5.3.10.3 Converting argument angular-unit angle to (another) argument
angular-unit angle L L

5.3.11 Operations for hyperbolic elementary functions
5.3.11.1 Hyperbolicsine.o
5.3.11.2 Hyperbolic cosine oo
5.3.11.3 Hyperbolic tangent
5.3.11.4 Hyperbolic cotangent oL
5.3.11.5 Hyperbolic secanto

=1

N

0.0.11.6 Hyperbolic cosecanto o000

5.3.11.7 Inverse hyperbolicsine L0

5.3.11.8 Inverse hyperbolic cosine07.

5.3.11.9 Inverse hyperbolic tangent, L. ..

5.3.11.10 Inverse hyperbolic cotangent M.

5.3.11.11 Inverse hyperbolic secant x¥......

5.3.11.12 Inverse hyperbolic cosecant N0

5.4 Operations for conversion between numeric datatypes~
5.4.1 Integer to integer conversions ~N\M. ...
5.4.2 Floating point to integer conversions Ca7
5.4.3 Integer to floating point conversions %
5.4.4 Floating point to floating point conversions », .~
5.4.5 Floating point to fixed point conversions ..).".
5.4.6 Fixed point to floating point conversions ™S

5.5 Numerals as operations in a programming language
5.5.1 Numerals for integer datatypes . .2
5.5.2 Numerals for floating point datatypes

Notification
6.1 Continuation values«Q

Relationship with language standards
Documentation requirements

Annex A (normative) ‘Partial conformity
A1 Maximum error relaxation
A.2 Extra aceuracy requirements relaxation oL
A.3 Relatiénships to other operations relaxation
A.4 Veryxlose-to-axis angular normalisation relaxation
A.5 PRart 1 requirements relaxation oo

Anriex B (informative) Rationale

Bl Scope . . e e e

B.1.1 Inclusions e
B.1.2 Exclusions. e
B.2 Conformity
B.2.1 Validation e
B.3 Normative references e
B.4 Symbols and definitions L Lo oo

ISO/IEC 10967-2:2001(E)

68
69

69

70

73
73
74
74
74
75

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.4.1 Symbols 79
B.4.1.1 Sets and intervals L. 79
B.4.1.2 Operators and relationso 80
B.4.1.3 Mathematical functions 0L L. 80
B.4.1.4 Exceptional values 80
B.4.1.5 Datatypes 81

B.4.2 Definitions of terms 81

B.5 Specifications for the numerical functions 81

B.5.1 Basic integer operations 82
B.o.1.1 'The integer result and wrap helper tunctions 32
B.5.1.2 Integer maximum and minimum 8P
B.5.1.3 Imteger diminish0x 8P
B.5.1.4 Integer power and arithmetic shift " . 83
B.5.1.5 Imteger squareroot L (AN 8B
B.5.1.6 Divisibility tests L o 0L ONY L &3
B.5.1.7 Integer division (with floor, round, or ceiling) and remainder . . . 83
B.5.1.8 Greatest common divisor and least common positive multiple . . . 84
B.5.1.9 Support operations for extended integer range\>" 3y

B.5.2 Basic floating point operations Ca7 0oL 8y
B.5.2.1 The rounding and floating point result helper functions 8p
B.5.2.2 Floating point maximum and minimum™. 8p
B.5.2.3 Floating point diminish &) 8p
B.5.2.4 Floor, round, and ceiling & 86
B.5.2.,5 Remainder after division andixound to integer 8[7
B.5.2.6 Square root and reciprocal §gquare root 8[7
B.5.2.7 Multiplication to higher precision floating point datatype 38
B.5.2.8 Support operations.feiextended floating point precision 88

B.5.3 Elementary transcendental floating point operations 80
B.5.3.1 Maximum error<requirements 89
B.5.3.2 Sign requirementso 90
B.5.3.3 Monotonicity requirements L. 90
B.5.3.4 The result* helper function 90
B.5.3.5 Hypotenuse 9t
B.5.3.6 Opecrations for exponentiations and logarithms 9t
B.5.3.7(Introduction to operations for trigonometric elementary functions 93
B.5.3.8/ Operations for radian trigonometric elementary functions 9
B:5:3.9 Operations for trigonometrics with given angular unit 96
B-5.3.10 Operations for angular-unit conversions 97
B.5.3.11 Operations for hyperbolic elementary functions 98

B:5.4 Operations for conversion between numeric datatypes 98

B.5.5 Numerals as operations in a programming language 9p
B.5.5.1 Numerals for integer datatypes 99
B.5.5.2 Numerals for floating point datatypes 99

B.6 Notification 100

B.6.1 Continuation values o 100

B.7 Relationship with language standards 101
B.8 Documentation requirements L0 Lo oo 101

vi

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Annex C (informative) Example bindings for specific languages 103
C.l Ada e e 104
C.2 BASIC e 110
C.3 O e e 114
Cd CHH . o e 120
C.5 Fortran e e e 126
C.6 Haskell e e 132
C.7 Java e e e e 137
C.8 Common Lisp e 142
CO9 ISLisp o, 47
C.10 Modula-2 e 152
C.11 Pascal and Extended Pascal07. 157
CA2PL/T . .o e 62
CABSML . . . RN 167

Annex D (informative) Bibliography 173

Annex E (informative) Possible changes to part 1 177

vii

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialized system for worldwide standardization. National bodies
that are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest.
Other international organizations, governmental and non-governmental, in liaison with ISO and
IEC, also take part in the work.

tives, Part 3.

IS

cirfulated to national bodies for voting. Publication as an International Standard reguires approv

by

any or all such patent rights.

JT
an

Ad

infi

International Standards are drafted in accordance with the rules given in the ISO/IEC Dire

In the field of information technology, ISO and IEC have established a joint technical egimmitte¢,
/IEC JTC 1. Draft International Standards adopted by the joint technical committee ai

@

[

at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this pact of ISO/TEC 1096
vy be the subject of patent rights. ISO and IEC shall not be held résponsible for identifyinig

N

[P

International Standard ISO/TEC 10967-2 was prepared by Joint-Technical Committee ISO/IE
C 1, Information technology, Subcommittee SC 22, Programiying languages, their environmen
1 system software interfaces.

V)

ISO/TEC 10967 consists of the following parts, underithe general title Information technolog
Language independent arithmetic:

<

— Part 1: Integer and floating point arithmetic
— Part 2: Elementary numerical functions

~

— Part 3: Complex integer and floating~point arithmetic and complex elementary numeric
functions

ditional parts will specify other atithimetic datatypes or arithmetic operations.

Annex A forms a normative part of this part of ISO/TEC 10967. Annexes B to E are fdr
brmation only.

viii

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Introduction

The aims

Portability is a key issue for scientific and numerical software in today’s heterogeneous computing
environment. Such software may be required to run on systems ranging from personal computers
to high performance pipelined vector processors and massively parallel systems, and the source
code may be ported between several programming languages. Part 1 of ISO/IEC 10967 specifies
the basic properties of integer and floating point types that can be relied upon in writing portable

software

Programmers writing programs that perform a significant amount of numeric processing, have
dften not been certain how a program will perform when run under a given language procesgor.
Rrogramming language standards have traditionally been somewhat weak in the are&)of numdric
Hdrocessing, seldom providing an adequate specification of the properties of arithmetic datatypes,
garticularly floating point numbers. Often they do not even require much in the\way of documpn-
thtion of the actual arithmetic operations by a conforming language processor,

It is the intent of this part to help to redress these shortcomings, by getting out precise defjni-
tlons of elementary numerical functions, and requirements for documentation.

It is not claimed that this part will ensure complete certainty 6 arithmetic behaviour in|all
dircumstances; the complexity of numeric software and the difficulties of analysing and proving
dlgorithms are too great for that to be attempted. Rather, this’/International Standard will proviide
g firmer basis than hitherto for attempting such analysis¢

The aims for this part, part 2 of ISO/IEC 10967, are-extensions of the aims for part 1: to ensjire
dequate accuracy for numerical computation, predictability, notification on the production| of
xceptional results, and compatibility with programming language standards.

(O]

'he content

perations approximating real eleméntary functions, operations often required (usually withput
detailed specification) by the §tandards for programming languages widely used for scientjific
bftware. This part also prowvides specifications for conversions between the “internal” valueq of
an arithmetic datatype, anda very close approximation in, e.g., the decimal radix. It does not
over the further transformation to decimal string format, which is usually provided by language
tandards. This part'also includes specifications for a number of other functions deemed useful,
ven though theyAnay not be stipulated by programming language standards.

1
The content of this part is based on part\I, and extends part 1’s specifications to specifications|for
a
a
S

o »n o

The numerical functions covered by this part are computer approximations to mathematical
inctions ofiene or more real arguments. Accuracy versus performance requirements often vary
Fith the application at hand. This is recognised by recommending that implementors support mpre
han, one library of these numerical functions. Various documentation and (program availahle)
arameters requirements are specified to assist programmers in the selection of the library best

n_Hg o+t < b

b 1 L 41 1. i 41]
LU TU UIIC appPlitatliUll 4t IIalltl.

The benefits

Adoption and proper use of this part can lead to the following benefits.

Language standards will be able to define their arithmetic semantics more precisely without
preventing the efficient implementation of their language on a wide range of machine architectures.

ix

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Programmers of numeric software will be able to assess the portability of their programs in
advance. Programmers will be able to trade off program design requirements for portability in
the resulting program.

Programs will be able to determine (at run time) the crucial numeric properties of the imple-
mentation. They will be able to reject unsuitable implementations, and (possibly) to correctly
characterize the accuracy of their own results. Programs will be able to detect (and possibly
correct for) exceptions in arithmetic processing.

End users will find it easier to determine whether a (properly documented) application program

is 1.] a]} 1o ovanufﬂ Sof;cronfnr”}r onthaolr p]ofrr\vm_ "Pl’ﬁs canbaodone]'\‘Jr nnmv\ar;ng thao dnnnmov\fﬂ

requirements of the program against the documented properties of the platform.

Finally, end users of numeric application packages will be able to rely on the correct egeetitio
of those packages. That is, for correctly programmed algorithms, the results are relidble if an
only if there is no notification.

=)

[®@n

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

INTERNATIONAL STANDARD® 80/ 2001 ISO/IEC 10967-2:2001(E)

Information technology —
Language independent arithmetic —

Pr\v‘{' 9. T'lamontaris nirmaorieal ‘F11Y\n+1n1nn
orv - JITTITeIIvor y— ITUTITITOT TOOV T TUTTITUTOTIS

1 Scope

.|

'his part of ISO/IEC 10967 defines the properties of numerical approximatiens for many of
bal elementary numerical functions available in standard libraries for a,varviety of programm
fgnguages in common use for mathematical and numerical applications:

—

—

An implementor may choose any combination of hardware andcsoftware support to meet
pecifications of this part. It is the computing environment, as seen by the programmer /user, t
does or does not conform to the specifications.

[0s)

The term implementation (of this part) denotes the total computing environment pertin
b this part, including hardware, language processorsy siubroutine libraries, exception handl
hcilities, other software, and documentation.

=

1.1 Inclusions

The specifications of part 1 are includedchy reference in this part.

This part provides specifications for numerical functions for which all operand values ard
integer or floating point datatypes,satisfying the requirements of part 1. Boundaries for the
durrence of exceptions and the maximum error allowed are prescribed for each specified operati
Also the result produced by:giving a special value operand, such as an infinity, or a NaN
grescribed for each specified’ floating point operation.

This part covers 1host numerical functions required by the ISO/IEC standards for Ada [}
asic [16], C [17]~ €=+ [18], Fortran [22], ISLisp [24], Pascal [27], and PL/I [29]. In particu
pecifications afeyprovided for:

[

a) Some additional integer operations.

ilnum operations.

b) Seme additional non-transcendental floating point operations, including maximum and i

the
ing

the
hat

et
Ing

il e o don 1 sl 1 1 1 1.
b/ X PULICIIVIAUIUILS, TUSALIVIIIILS, Allt 11y PDTTUULIUS.

d) Trigonometrics, both in radians and for argument-given angular unit with degrees as a

special case.

This part also provides specifications for:

1. Scope

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

e) Conversions between integer and floating point datatypes (possibly with different radices)

conforming to the requirements of part 1, and the conversion operations used, for example,
in text input and output of integer and floating point numbers.

f) The results produced by an included floating point operation when one or more argument

values are IEC 60559 special values.

g) Program-visible parameters that characterise certain aspects of the operations.

1.2

Exclusions

Thiis part provides no specifications for

)

Furthermore, this part does not provide specifications for how the operations should be implé
nted or which algorithms are to be used for the various operations.

Numerical functions whose operands are of more than one datatype (with one exception).
This part neither requires nor excludes the presence of such “mixed operand” “Operations.

An interval datatype, or the operations on such data. This part neither requires nor excludgs
such data or operations.

A fixed point datatype, or the operations on such data. This part/neither requires ndr
excludes such data or operations.

A rational datatype, or the operations on such data. This part neither requires nor excludgs
such data or operations.

Complex, matrix, statistical, or symbolic operations. <Phis part neither requires nor excludgs
such data or operations.

=

The properties of arithmetic datatypes that arenot related to the numerical process, suc
as the representation of values on physical media.

The properties of integer and floating point datatypes that properly belong in programminlg
language standards or other specifications. Examples include

1) the syntax of numerals andcexpressions in the programming language,

2) the syntax used for parsed (input) or generated (output) character string forms fq
numerals by any spetific programming language or library,

=

the precedence ef\operators in the programming language,

the presence(oy absence of automatic datatype coercions,

the gonsequences of applying an operation to values of improper datatype, or to uninj
tialised data.

)
)

5) the rules-for‘assignment, parameter passing, and returning value,
)

2 Conformity

It is expected that the provisions of this part of ISO/IEC 10967 will be incorporated by refer-
ence and further defined in other International Standards; specifically in programming language
standards and in binding standards.

Conformity

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

A binding standard specifies the correspondence between one or more of the parameters and
operations specified in this part and the concrete language syntax of some programming language.
More generally, a binding standard specifies the correspondence between certain parameters and
operations and the elements of some arbitrary computing entity. A language standard that ex-
plicitly provides such binding information can serve as a binding standard.

When a binding standard for a language exists, an implementation shall be said to conform to
this part if and only if it conforms to the binding standard. In case of conflict between a binding
standard and this part, the specification of the binding standard takes precedence.

When o bhindina ctandard covars r\v\]} acubaot of tho r\pav‘af;nnc cpon;gnr;‘ m-thic povf’ an ‘m_
-y £ ct e =HH= = =

flementation remains free to conform to this part with respect to other operations, independently
df that binding standard.

When no binding standard for a language and some operations specified in this’ part exigts,
an implementation conforms to this part if and only if it provides one or moreoperations that
bgether satisfy all the requirements of clauses 5 through 8 that are relevant teithose operatigns.
'he implementation shall then document the binding.

=

Conformity to this part is always with respect to a specified set of datatypes and operatidgns.
(onformity to this part implies conformity to part 1 for the integer and floating point datatypes
Used.

An implementation is free to provide operations that do notcgonform to this part, or that are
Heyond the scope of this part. The implementation shall not claim or imply conformity to this
part with respect to such operations.

An implementation is permitted to have modes of gperation that do not conform to this pgrt.
A conforming implementation shall specify how to, select the modes of operation that enspire
onformity. However, a mode of operation that ¢onforms to this part should be the default m¢de
f operation.

NOTES

1 Language bindings are essential. Clause 8 requires an implementation to supply a binding
if no binding standard exists. S¢e annex C for suggested language bindings.

(olie)

2 A complete binding for thi§ part will include (explicitly or by reference) a binding for part 1
as well, which in turn may include (explicitly or by reference) a binding for IEC 60559 as
well.

3 This part does nét require a particular set of operations to be provided. It is not possible
to conform to(this part without specifying to which datatypes and set of operations (and
modes of opefation) conformity is claimed.

3 Normative references

Thefollowing normative documents contain provisions which, through reference in this text,
cphstitute provisions of this part of ISO/IEC 10967. For dated references, subsequent amendmepts
to, or revisions of, any of these publications do not apply. However, parties to agreements based
on this part of ISO/IEC 10967 are encouraged to investigate the possibility of applying the most
recent editions of the normative documents indicated below. For undated references, the latest
edition of the normative document referred to applies. Members of ISO and IEC maintain registers
of currently valid International Standards.

3. Normative references 3

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems.
ISO/TEC 10967-1:1994, Information technology — Language independent arithmetic —

Part 1: Integer and floating point arithmetic.
NOTE — See also annex E.

4 Symbols and definitions

4.

4.1

In
an

4.]

All
thi

1

Symbols

.1 Sets and intervals

bhis part, Z denotes the set of mathematical integers, R denotes the set of classicaleal number
1 C denotes the set of complex numbers over R. Note that Z C R C C.

The conventional notation for set definition and manipulation is used.

In this part, the following notation for intervals is used

[x, z] designates the interval {y € R | z <y < z},
|z, 2] designates the interval {y € R | z <y < z},
[z, 2| designates the interval {y € R | z <y < z}, and
|z, 2] designates the interval {y e R | z <y < z}.

NOTE - The notation using a round bracket for an open end of an interval is not used, for

the risk of confusion with the notation for pairs.

.2 Operators and relations

prefix and infix operators have theiféonventional (exact) mathematical meaning. In particuld
5 part uses

= and < for logical implication and equivalence
+, —, /, |z|, |z], [x], and'round(z) on reals

- for multiplication dn yeals

<, <, =2, and > bletween reals

= and # between/real as well as special values
max on nown-empty upwardly closed sets of reals
min on nor=émpty downwardly closed sets of reals
U, N,ex\\€, &, C, C, €, #, and = with sets

x for“the Cartesian product of sets

£ for a mapping between sets

P for the divides relation between integers

For z € R, the notation |z] designates the largest integer not greater than x:

lx]€eZ and z—-1<|z| <z

the notation [z] designates the smallest integer not less than x:

[z]€Z and zxz<[z]<z+1

© ISO/IEC 2001 — All rights reserved

[=]

Symbols and definitions

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

and the notation round(x) designates the integer closest to x:
round(z) € Z and 2 — 0.5 <round(z) < z+ 0.5
where in case x is exactly half-way between two integers, the even integer is the result.
The divides relation (|) on integers tests whether an integer ¢ divides an integer j exactly:
ilj & (i#0andi-n=j for somen € 2)
NOTE - i|j is true exactly when j/i is defined and j/i € Z).

1 ANAri-d) 16 .-
L. IVIAUIICITIIAUICAal TUIICuIofnns

'his part specifies properties for a number of operations numerically approximating some) of
[ementary functions. The following ideal mathematical functions are defined in chapter”4 of
{andbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables [47] (4
he Napierian base)

x
e®, z¥, \/z, In, log,
sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot, arcsec, argcsec,
sinh, cosh, tanh, coth, sech, csch, arcsinh, arccosh, arctanh, arccoth’ arcsech, arccsch.

ot M~ D

Many of the inverses above are multi-valued. The selection.of)which value to return,
rincipal value, so as to make the inverses into functions, is dore in the conventional way. E
/z € [0,00] when = € [0,00[. The only one over which there is some difference of conventi

biving a sign symmetric function), or a positive return.value (giving a function that is continu
ver zero). In this part, arccot refers to the sign symmietric inverse function (with a branch
at 0), and arccotc refers to the continuous inverse~fénction.

arccosh(x) > 0, arcsech(z) > 0,
arcsin(x) € [—m/2, /2], arccos(z) € [0
arccot(z) € |—m/2, /2], arccotc(z)€ |

7], arctan(x) € |—m/2,7/2],
0, [, arcsec(x) € [0, 7], arcesc(x) € [—7/2,7/2].

NOTE - e =2.71828.... e ismot in any floating point datatype conforming to part 1, unless
added as a special value, which”is usually not done.

4.1.4 Exceptional values

The exceptional valu® underflow is used in this part as it is in part 1.

Three new eXweptional values, overflow, invalid, and infinitary, are introduced in this p|
eplacing thre¢ other exceptional values used in part 1. invalid and infinitary are in this p|
ysed instéag of the undefined of part 1. overflow is used instead of the integer_overfl
and floating_overflow of part 1. Bindings may still distinguish between integer_overflow 3
floating_overflow.

=

B
\
ig the arccot function. Conventions there vary for negative’ arguments; either a negative value
(
a

the
the
is

the

g
ns

us
cut

ATt
art
DW

nd

£ 42 1] 1. | N —c o | £ M 3o | P i 4
UILICT 1TICTW CTALCTPDUIULLAl Valut, aSUIUULC_pPITUISIULIL_UlIIuTIIIOW, 15 HIILTUUULCTU I UVILLS palt W

ith

no correspondence in part 1. The exceptional value absolute_precision_underflow is used when
the given floating point angle value argument is so big that even a highly accurate result from a
trigonometric operation is questionable, due to the fact that the density of floating point values

has decreased significantly at these big angle values.

4.1.8 Mathematical functions

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

For the exceptional values, a continuation value may be given in parenthesis after the excep-

tional value.

4.1

.5 Datatypes

The datatype Boolean consists of the two values true and false.

NOTE 1 - Mathematical relations are true or false (or undefined, if an operand is undefined).
In contrast, true and false are values in Boolean.

etd.

ST}

Sh(L
ol

Thiese values arenot part of the set I or the set F, but if iec_559r has the value true, these valug

arg

Eor pairs—define:
For et :
Square brackets are used to write finite sequences of values. [] is the sequence centaining n

values. [s], is the sequence of one value, s. [s1, s2], is the sequence of two values, syand then sg,

Integer datatypes and floating point datatypes are defined in part 1. Let I be the non-speci
value set for an integer datatype conforming to part 1. Let E\be the non-special value set for
flojiting point datatype conforming to part 1. Floating pdint’ datatypes that conform to part

The following symbaolsyrepresent special values defined in IEC 60559 and used in this part:

fst((z,y)) ==
snd((z,y)) =y

[©]

The colon operator is used to prepend a value to a sequence: x : [1, ..., L& [z, Z1, ..., Tp).
where S is a set, denotes the set of finite sequences, where each value in-a sequence is in S.
NOTE 2 — It is always clear from context, in the text of this part, if [X]isa sequence of one
element, or the set of sequences with values from X. It is also clear frgmy'context if [z, z2] is
a sequence of two values or an interval.

=

11, for use with this part, have a value for the parameter pr such that pr > 2-max{1, [log, (2
}, and have a value for the parameter eminp such that eminy < —pp — 1.

NOTES

3 This implies that fminNgp < 0.5 - epsilopgy/rp in this part, rather than just fminNp <
epsilong.

4 These extra requirements, which dowlot limit the use of any existing floating point datatype,
are made 1) so that angles in radians are not too degenerate within the first two cycles,
plus and minus, when represented in F', and 2) in order to be able to avoid the underflow
notification in specifications fer the expmip and Inlp operations.

5 F should also be suchsthat pr > 2 + [log,, (1000)], to allow for a not too coarse angle
resolution anywhere.in_the interval [—big_angle_rp, big_-angle_rg]. See clause 5.3.8.

—0, 400, —o0o,"gNaNN, and sNNaN.

[93)

included in-the floating point datatype corresponding to F'.

NOTEN6 — This part uses the above five special values for compatibility with IEC 60559. In
patpicular, the symbol —0 (in bold) is not the application of (mathematical) unary — to the
value 0, and is a value logically distinct from 0.

I'he speciiications cover the results to be returned by an operation 1i given one or more ol the

TEC 60559 special values —0, 400, —00, or NaNs as input values. These specifications apply only
to systems which provide and support these special values. If an implementation is not capable
of representing a —0 result or continuation value, the actual result or continuation value shall be

0.

If an implementation is not capable of representing a prescribed result or continuation value

Symbols and definitions

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

of the TEC 60559 special values +00, —o00, or gNalN, the actual result or continuation value is
binding or implementation defined.

The following symbols used in this part are defined in part 1:

Integer parameters:

bounded;, maxint;, and minintj.
Integer helper function:

wrapy.
Integer operations:

et s —andndy
Floating point parameters:

rF, PR, eming, emaxrp, denormp, and iec_559p.
Derived floating point constants:

fmax g, fming, fminNg, fminDg, and epsilon p.
Floating point rounding constant:

rnd_errorg.

Floating point value sets related to F":
F*, FD, and FN.
Floating point helper functions:
er, resultp, and rndp.
Floating point operations:
negr, addr, subp, mulp, divp, and ulpp.

4.2 Definitions of terms

Hor the purposes of this part, the following definitions apply:

dccuracy: The closeness between the trué“mathematical result and a computed result.

drithmetic datatype: A datatype whose non-special values are members of Z, R, or C.

NOTE 1 - This part(speécifies requirements for integer and floating point datatypes.
Complex numbers aze not covered by this part, but will be included in a subsequent part
of ISO/IEC 10967-{3}

dontinuation value: A.computational value used as the result of an arithmetic operation wlen
an exception oceurs. Continuation values are intended to be used in subsequent arithmgtic
processing. (A ¢ontinuation value can be a (in the datatype representable) value in R or|an
IEC 60559 _special value. (Contrast with exzceptional value. See clause 6.1 of part 1.)

denormalisation loss: A larger than normal rounding error caused by the fact that subnoripal
vajues have less than full precision. (See clause 5.2 of part 1 for a full definition.)

rror: ' (1) The difference between a computed value and the correct value. (Used in phrases like

[

o)

'V‘f\1‘lY]f‘]1T1fT‘ QY‘V‘I\‘V‘” Or “O'V"V‘I\Y' ‘]’\f\‘l1'|’\!q” \
¥ FO¥ ¥ Fror—bhoH

;;;;;;; S

(2) A synonym for ezception in phrases like “error message” or “error output”. Error and
exception are not synonyms in any other context.

exception: The inability of an operation to return a suitable finite numeric result from finite
arguments. This might arise because no such finite result exists mathematically (infinitary

4.2 Definitions of terms 7

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

(e.g. at a pole), invalid (e.g. when the true result is in C but not in R), or because the math-
ematical result cannot, or might not, be representable with sufficient accuracy (underflow,
overflow) or viability (absolute_precision_underflow).

NOTE 2 — The term exception is here not used to designate certain methods of handling
notifications that fall under the category ‘change of control flow’. Such methods of noti-
fication handling will be referred to as “[programming language name| exception”, when
referred to, particularly in annex C.

exceptional value: A non-numeric value produced by an arithmetic operation to indicate the

accurrence of an exception. Excentional values are not used in subsequent arithmetic pro-
by I S by

cessing. (See clause 5 of part 1.)

NOTES

3 Exceptional values are used as part of the defining formalism only. With respect’to
this part, they do not represent values of any of the datatypes described. Thexe is no
requirement that they be represented or stored in the computing system.

4 FExceptional values are not to be confused with the NaNs and infinities defined in
IEC 60559. Contrast this definition with that of continuation valuelabove.

helper function: A function used solely to aid in the expression of arequirement. Helper fun
tions are not visible to the programmer, and are not required to bepart of an implementatior.
However, some implementation defined helper functions are required to be documented.

implementation (of this part): The total arithmetic envirenfnent presented to a programmef,
including hardware, language processors, exception Kandling facilities, subroutine libraries,
other software, and documentation pertinent to this'part.

literal: A syntactic entity, that does not have any proper sub-entity that is an expression, denot
ing a constant value.

[¢)

maonotonic approximation: An approximation helper function h : ... x S x ... — R, where th
other arguments are kept constant, @nd where S C R, is a monotonic approximation of p
predetermined mathematical function f : R — R if, for every @ € S and b € S, where a < §,

a) f is monotonic non-decteasing on [a, b] implies h(...,a,...) < h(...,b,...),

b) f is monotonic nonsihcreasing on [a, b] implies h(...,a,...) = h(...,b,...).

—_

moénotonic non-decreasing: A function f : R — R is monotonic non-decreasing on a re
interval [a,] if fof every z and y such that a < x <y < b, f(x) and f(y) are well-define

and f(x) < f(w);

monotonic non-~increasing: A function f : R — R is monotonic non-increasing on a regl
intervalsfa; 0] if for every = and y such that a < x <y < b, f(x) and f(y) are well-define

and f2) = f(y)-

normalised: The non-zero values of a floating point type F' that provide the full precision allowefd
OIr by that type. (See Fyy in clause 5.2 of part 1 for a full definition.)

[@n

[om

notification: The process by which a program (or that program’s end user) is informed that an
arithmetic exception has occurred. For example, dividing 2 by 0 results in a notification.
(See clause 6 of part 1 for details.)

numeral: A numeric literal. It may denote a value in Z or R, —0, an infinity, or a NaN.

8 Symbols and definitions

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

numerical function: A computer routine or other mechanism for the approximate evaluation of
a mathematical function.

operation: A function directly available to the programmer, as opposed to helper functions or
theoretical mathematical functions.

pole: A mathematical function f has a pole at xg if xq is finite, f is defined, finite, monotone,
and continuous in at least one side of the neighbourhood of xp, and lim f(z) is infinite.
T—xQ

precision: The number of digits in the fraction of a floating point number. (See clause 5.2 of

part 1)

rounding: The act of computing a representable final result for an operation that is clogerto the
exact (but unrepresentable) result for that operation. Note that a suitable representable
result may not exist (see clause 5.2 of part 1).

rounding function: Any function rnd : R — X (where X is a given discrete and unlimited sfib-
set of R) that maps each element of X to itself, and is monotonic non-decreasing. Formally,
if x and y are in R,

reX=rndx)=c
x <y = rnd(z) <rndy)

Thus, if u is between two adjacent values in X, rnd(u) selects one of those adjacent valyes.

round to nearest: The property of a rounding functiomyrnd that when v € R is between fwo
adjacent values in X, rnd(u) selects the one nearest, w. If the adjacent values are equidistint
from w, either may be chosen deterministically,*but so that rnd(—u) = —rnd(u).

round toward minus infinity: The property *of a rounding function rnd that when v € R is
between two adjacent values in X, rnd(2) selects the one less than w.

-

ound toward plus infinity: The property of a rounding function rnd that when v € R is
between two adjacent values in. X ,*rnd(u) selects the one greater than w.

shall: A verbal form used to indicate requirements strictly to be followed in order to conform| to
the standard and from which no deviation is permitted. (Quoted from the directives [1]

~

should: A verbal form used ‘to indicate that among several possibilities one is recommended| as
particularly suitable/without mentioning or excluding others; or that (in the negative form)
a certain possibility is deprecated but not prohibited. (Quoted from the directives [1].)

signature (of a-fanction or operation): A summary of information about an operation or fupc-
tion. ACsignature includes the function or operation name; a subset of allowed argumgnt
values\to the operation; and a superset of results from the function or operation (includjng
exeeptional values if any), if the argument is in the subset of argument values given in the
signature. Approximation helper functions may be undefined for some argument values.

The cionatnire add. - L I L1 Javarflawl ctatoc that tho Aaneoration namaed add: ol all
The signatureadds——I < L feverfow] statesthatthe operationnamedaddy
accept any pair of values in I as input, and when given such input shall return either a
single value in I as its output or the exceptional value overflow possibly accompanied by a

continuation value.

A signature for an operation or function does not forbid the operation from accepting a
wider range of arguments, nor does it guarantee that every value in the result range will

4.2 Definitions of terms 9

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

actually be returned for some argument(s). An operation given an argument outside the
stipulated argument domain may produce a result outside the stipulated result range.

subnormal: The non-zero values of a floating point type F' that provide less than the full precision
allowed by that type. (See Fp in clause 5.2 of part 1 for a full definition. In part 1 and
IEC 60559 this concept is called denormal.)

ulp: The value of one “unit in the last place” of a floating point number. This value depends on
the exponent, the radix, and the precision used in representing the number. Thus, the ulp
of a normalised value z (in F), with exponent ¢, precision pp, and radix rpg, is r%_p T, and

the ulp of a subnormal or zero value 18 jmunlDp. (See clause 0.2 ot part 1.)

5| Specifications for integer and floating point operations

—+

Thiis clause specifies a number of helper functions and operations for integer and)floating poin
datatypes. Each operation is given a signature and is further specified by a number of cases. Theg
cades may refer to other operations (specified in this part or in part 1), to mrathematical function
angl to helper functions (specified in this part or in part 1). They also use\special abstract value
(—po, +00, —0, gNalN, sNalN). For each datatype, two of these abstract values may represe
seyleral actual values each: qINalN and sNNalN. Finally, the specifications may refer to exceptiong
valjues.

@

_—ct

The signatures in the specifications in this clause specify only all non-special values as inpyt
values, and indicate as output values a superset of all notixspecial, special, and exceptional valugs
thqt may result from these (non-special) input valuesiExceptional and special values that cap
neyer result from non-special input values are not inghitded in the signatures given. Also, signaturds
thgt, for example, include IEC 60559 special values as arguments are not given in the specifications
below. This does not exclude such signatures. from being valid for these operations.

5.1 Basic integer operations

—

Clause 5.1 of part 1 specifies integer-datatypes and a number of operations on values of an intege
datatype. In this clause some additional operations on values of an integer datatype are specified.

—

[is the set of non-specialvalues, I C Z, for an integer datatype conforming to part 1. Intege
datatypes conforming topart 1 often do not contain any NaN or infinity values, even though thefy
mdy do so. Therefore this clause has no specifications for such values as arguments or resulfls
other than as contimiation values.

NOTE —S&or some integer operations, infinitary notifications may occur. For infinitary
notifications, an infinitary continuation value is recommended. For bounded integer datatypes,
mazahtf or minint; may be used as replacement continuation values as appropriate, if infini-
taryvalues are not available in the datatype. For unbounded integer datatypes, however, no
muazint; and minint; in I are defined, and infinitary values should be used.

5.1.1 The integer result and wrap helper functions

The result; helper function:

resulty : Z — I U {overflow}

10 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

resultr(x) ==z ifeel
= overflow ifreZanda gl

The wrapy helper function:
wrapy : Z2 — 1

wrapr(z) =z ifxel
=1z — (n- (maxint; — minint; + 1))
ifreZandax &1

where n € Z is chosen such that the result is in I.

NOTES

1 n=|(x—minint;)/(mazint; — minint; + 1)] if x € Z and bounded; = true; or equivalentl
n = [(z — mazintr)/(mazint; — minint; + 1)] if z € Z and bounded; = true.

2 For some wrapping basic arithmetic operations this n is computed by the ‘_ov’_épérations
in clause 5.1.9.

3 The wrapy helper function is also used in part 1.

§.1.2 Integer maximum and minimum

maxry: I xIT—1T

maxy(x,y) = max{z,y} ifr,yel

ming: I x T — 1T

ming(x,y) = min{z, y} iftpyel

max_seqr : [I] — I U {infinitary}

maz-seq([21; ..., Tn])
= infinitary(-00) ifn=20
= max{xy, ..u@, } ifn>1and {x1,....,2,} C 1

min_seqy : [I] — I U {infinitary}
min_seqr([x1, ..., v4])
= infinitary (400) ifn=0
= min{xy,...,x,} ifn>1and {x1,....,2,} C 1

H.1.3 Integer diminish

domy - I x I — IU{overflow}

dimy(z,y) = result;(max{0,z —y}) if z,y € I

NOTE - dimy cannot be implemented as maz (0, subs(x,y)) for bounded integer types, since
this latter expression has other overflow properties.

5.1.2 Integer maximum and minimum

11

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.1.4 Integer power and arithmetic shift

powery : I x I — I U{overflow, infinitary, invalid}

powery(z,y) = resulty(z¥) ifr,yeland (y>0or|z|]=1)
=1 ifrelandx#0and y =0
= invalid(1) ifr=0andy=0
= infinitary(+o00) ifxr=0andyelandy<0
= invalid(0) ifr,yeland z¢{—1,0,1} and y <0

shift2; - I x I — I'U {overflow}
shift2;(x,y) = result;(|x - 2Y]) ite,yel

shift10; : I x I — I U {overflow}
shift10;(z,y) = result;(|z-10Y]) ife,yel

5.1.5 Integer square root

sqrty : I — I U{invalid}

sqrtr(x) = Vx| if x € I and 2.>'0
= invalid(gNaN) itz el and@y< 0

5.1.6 Divisibility tests

dividesy : I x I — Boolean

dividesy(xz,y) = true if z,y € I and x|y
= false if x,y € I and not x|y

NOTES
1 divides(0,0) = false, since 0 does not divide anything, not even 0.

2 divides; cannot be implemented as, e.g., eqr (0, mod;(y,x)), since the remainder functions
give notifications for a-zero second argument.

eveny : I — Boolean
eveny(x) = true if x € I and 2|x

= false if x € I and not 2|z

oddr: I — Boolean

oddy(x) = true if z € I and not 2|z
= false if x € I and 2|z

12 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.1.7 Integer division (with floor, round, or ceiling) and remainder

quoty : I x I — I U {overflow, infinitary, invalid}

quot(z,y) =result;(|x/y]) ifx,yelandy+#0
= infinitary(+o00) ifrelandz>0andy=0
= invalid(gNaN) ifr=0andy=0
= infinitary(—o0) ifrelandz <0andy=0
NOTE -~ quot;(minint;,—1), for a bounded signed integer datatype where minint; =

—maxint; — 1, is the only case where this operation will overflow.

mody : I x I — I'U {invalid}

mody(z,y) =z—(lz/y]-v) ifr,yelandy#0
= invalid(qNaN) ifrelandy=0

ratior : I x I — I U {overflow, infinitary, invalid}

ratior(x,y) = resultr(round(z/y)) ifz,y €l andy#0Q
= infinitary(+o00) ifrelandz>0andy=0
= invalid(gNaNN) ifx =0and y =0
= infinitary(—oo) ifrelande¢ <O0andy=0

residuey : I x I — I U {overflow, invalid}

residuer(x,y) = result;(x — (round(x/y) -§))
itr,ye lTand y #0
= invalid(gNaN) ifrelandy=0

groupy : I x I — I U {overflow,infinitary, invalid}

groupr(x,y) = result;(Jx/y]) ifz,yelandy#0
= infinitary(4o00) ifrelandoz>0andy =0
= invalid(gNaN) ifr=0andy=0
= infinitary(—o0) ifrelandz<0Oandy=0

pady : I x I <D U {invalid}

padl(xay) :([m/?ﬂy)—gﬁ 1fx,y€[andy7é0
= invalid(gqNaN) ifrelandy=0

H.1.8 "Greatest common divisor and least common positive multiple

gedr—t~F—t-foverflow—infinitary
gedr(x,y) = result;(max{v € Z | v|z and v|y})
if z,y € I and (z # 0 or y # 0)
= infinitary(+o00) ifr=0andy=0

lemp: I x I — IU{overflow}

5.1.7 Integer division (with floor, round, or ceiling) and remainder

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.1

Th

b

Q

14

lcm[([L‘, y)

= result;(min{v € Z | z|v and y|v and v > 0})
ifx,yeland x #0 and y # 0
=0 ifr,yeland (x=0o0ry=0)

ged_seqr : [I] — I U {overflow, infinitary}

ged_seqr([z1, ..., Ty)])

= resulty(max{v € Z | v|z; forall i € {1,...,n}})
if {z1,...,2n} C I and {z1,...,zn} € {0}

— infinitaruilas) S > L SOl
J T 7 | G 8 J

lem_seqr : [I] — I U {overflow}

lem_seqr([x1, ..., xp])

NOTE - These specifications imply: ged_seqr([]) = infinitary(4o0) ang lem_seq;([]) = 1.

T Tl) —

= result;(min{v € Z | z;v for all i € {1,...,n} and v > 0})
if {x1,....,2,} C T and 0 & {x1, (NTp}
=0 if {x1,....,2,} C T and 0 € {a1, ..., 2, }

.9 Support operations for extended integer range

ese operations can be used to implement extended ramgé integer datatypes, including ui
inded integer datatypes.

add_wrapy : I x I — 1
add_wrapr(z,y) = wrapr(z +y) ifz,yel

add_ovy : I x I — {-1,0,1}

add_ovi(z,y) = ((z+y) vadd-wrapr(z,y))/(mazint; — minint; + 1)
if z,y € I and bounded; = true
=0 if x,y € I and bounded; = false

sub_wrapy : I x I\=>T

subwrapr(x @)= wrapr(z — y) ifx,yel

sub_ovg YT x I — {—1,0,1}

subsovr(z,y) = ((z —y) — sub_wrapr(x,y))/(mazint; — minint; + 1)
if x,y € I and bounded; = true
=0 if x,y € I and bounded; = false

mul_wrapy : I x I — 1

mul_wrapr(z,y) = wrapr(z - y) ifx,yel

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

mul_ovy : I x I — T

mul_ovr(z,y) = ((z-y) — mul_wrapr(z,y))/(mazint; — minint; + 1)
if x,y € I and bounded; = true
=0 if z,y € I and bounded; = false

NOTE - The add_ovr and sub_ovy will only return —1 (for negative overflow), 0 (no overflow),
and 1 (for positive overflow).

i

.2 Basic floating point operations

(lause 5.2 of part 1 specifies floating point datatypes and a number of operations omjvalues d
floating point datatype. In this clause some additional operations on values of a ffloating pa
datatype are specified.

NOTE - Further operations on values of a floating point datatype, for elementary floating
point numerical functions, are specified in clause 5.3.

F' is the non-special value set, ' C R, for a floating point datatype conforming to part
loating point datatypes conforming to part 1 often do contain &0; infinity, and NaN valu
'herefore, in this clause there are specifications for such values &s arguments.

=

§.2.1 The rounding and floating point result helper/functions

[oe]

loating point rounding helper functions (F* is defined in part 1):
The floating point helper function
downp : R — F*
i the rounding function that rounds towards negative infinity. The floating point helper funct
upp : R — F*
i$ the rounding function that rounds towards positive infinity. The floating point helper funct
nearestp : R — F*

i$ the rounding function_that rounds to nearest. nearestr is partially implementation definl
the handling of ties is implementation defined, but must be sign symmetric. If iec_559F = tr
the semantics of nearestyr is completely defined by IEC 60559: in this case ties are rounded
that the result has-an even last digit.

result g is«helper function that is partially implementation defined. resultpr has a signaty
resultf : R x (R — F*) — F U {underflow, overflow }

Hor the everflow cases it is defined as:

E)

fa

int

eS.

jon

101N

TEeSTItF (T, Mearest) = overflow{+co) it T =R and mearest /(T > fmaz
resultp(x, nearesty) = overflow(—oo) if z € R and nearestp(x) < —fmazrp
resultp(z, upr) = overflow(+00) if x € R and upp(x) > fmazp
resultp(z, upr) = overflow(—fmazp) if x € R and upp(x) < —fmazp
resultp(z,downp) = overflow(fmazy) if x € R and downp(x) > fmazp
resultp(x,downp) = overflow(—o0) if z € R and downp(x) < —fmazp

5.2 Basic floating point operations

15

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

For other cases and for any rounding function rnd in (R — F™*), the following shall apply:

resultp(x,rnd) = x
= rnd(x)

ifxz=0

if x € R and fminNp < |z| and |rnd(z)| < fmazp
= rnd(z) or underflow(c)
if x € R and |z| < fminNp and |rnd(z)| = fminNp

and rnd has no denormalisation loss at x

= rnd(z) or underflow(c)

if x € R and denormp = true and
lrnd(x)| < fminNr and z # 0

whi

bet
ch

= underflow(c)
ere

¢ = rnd(z)

c=-0

c=0

c=-0

NOTES

no_resultp : F — {invalid}

no_resultp(x) = invalid(gNaN)
= qNaN
= invalid(gNalN)

no_result2p : F 6cF — {invalid}

no_result2p(x4)
= invalid(qNalN)

= invalid(gNaN)

implementation is allowed to choose between rnd(z) and underflow(rnd(x)) in the regio
ween 0 and fminNp. However, a subnormal value without an underflow notification can b
sen only if denormp = true and no denormalisation loss occur$,at .

1 This differs from the specification of resultr as given<n ‘part 1 in the following respects:
1) the continuation values on overflow and underflow are given directly here, and 2) all
instances of denormalisation loss must be accompanied with an underflow notification.

denormp = false implies tec_559r = false, and“wec_559r = true implies denormp = true.

3 If iec_559r = true, then subnormal or zerosresults that have no denormalisation loss do
not result in an underflow notification, ifithe notification is by recording of indicators.

Define the no_resultrp, no_result2r, and(no_result3r helper functions:

and rnd has no denormalisation loss at =
otherwise

when denormp = true and (rnd(z).% 0 or =
when denormp = true and rnd(z) = 0 and =
when denormp = false and ' >0,
when denormp = false and-z < 0

if x € FU{—00,—0,+00}
if is a quiet NaN
if x is a signalling NaN

if z,y € FU{—00,—0,400}

if at least one of z and y is a quiet NaN and
neither a signalling NaN

if x is a signalling NaN or y is a signalling NaN

16

no_result3p : F x F' x F' — {invalid}
no_result3r(z,y, 2)

= invalid(qNaN)

= qNaN

if z,y,2 € FU{—00,—0,400}
if at least one of z, y, and z is a quiet NaN and
neither is a signalling NaN

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

= invalid(gNaN)

ISO/IEC 10967-2:2001(E)

if at least one of x, ¥y, or z is a signalling NaN

These helper functions are used to specify both NaN argument handling and to handle non-NaN-
argument cases where invalid(qNaN) is the appropriate result.

NOTE 4 — The handling of other special values, if available, is left unspecified by this part.

5.2.2 Floating point maximum and minimum

o = e 0

marp F X F — F

= max{z,y}

= +o00

=Yy

=-0

=Yy

= +o00

x

=-0

x

= no_result2r(z,y)

mazp(z,y)

ming : F X F — F

= min{z, y}
=Y

=—-0

=Y

= no_result2p(x,y)

mmazp : FxF — F

111U appLupllatU J.Utl,ll.ll va}uc Uf t].lC lll(lAilllL,llll Clallll Llllllllllulll UlJCJ.CI.vtiUllD 5;VUJ.1 (e quict 1\‘T
qNalN) as one of the input values depends on the circumstances for each point of use. Sometiy]
NaN is the appropriate result, sometimes the non-NalN argument is the appropriate’resi
[herefore, two variants each of the floating point maximum and minimum operations @re specified
ere, and the programmer can decide which one is appropriate to use at each particular placq
sage, assuming both variants are included in the binding.

ifx,ye F

if x = 400 and y € FY{—00,—0}
ifr=—0andy &P andy >0
ifr=—-0and ({y € Fand y <0) ory =—0
if = —o00 dud y € F U {+00,—0}

if y = +o0vand = € F'U {+00,—0}
ify==0andz e Fandz >0
ify=<=0and x € Fand x <0

if = —oo and z € F'U {—00,—0}
otherwise

ifx,ye F

if x =400 and y € F'U {—00,—0}
ifr=—0andye Fandy >0
ifr=—-0and ((y € Fand y <0) ory=-0
if x = —o00 and y € F'U {+00,—0}

if y =400 and z € F'U {+00,—0}
ify=—0andz e Fandz >0
ify=—0and x € Fand x <0

if y = —o00 and z € F'U {—00,—0}
otherwise

N
hes
hlt.

of

TMaTF{T,) = TNaTF T, Y) if = Fo{Foo,—=0,=c0F
=z if x € FU{400,—0,—00} and y is a quiet NaN
=y if y € FU{+400,—0,—00} and z is a quiet NaN

= no_result2p(x,y)

mming : Fx F — F

5.2.2 Floating point maximum and minimum

otherwise

17

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

mming(z,y) = ming(x,y) if x,y € FU{+400,—0,—00}
= if v € FU{4+00,—0,—00} and y is a quiet NaN
=y if y e FU{+400,—0,—00} and z is a quiet NaN
= no_result2p(x,y) otherwise

max_seqr : [F| — F U {infinitary}

max_seqp([T1, ..., Tn])

5.2

.34 Floating point diminish

= infinitary(—o0) itn=0
— o — 1 and +. 1o nat o Nal\l
T T =T
= maxp(max_seqp([x1,...,Tn-1]), Tn)
ifn>2
= no_resultp(x1) otherwise

min_seqr : [F] — F U {infinitary}

min_seqp([x1, ..., Tn))

= infinitary(+o00) ifn=0
= if n =1 and 7 is not/aNalN
= ming(min_seqr([z1, ..., Tn—1]), Tn)
ifn>2
= no_resultp(x1) otherwise

mmax_seqr : [F| — F U {infinitary}

mmazx_seqr([21, ..., Tn))

= infinitary(—o0) ifr =0
=2 if n =1 and 1 is not a NaN
= mmax p(mmax_seqa(z1, ..., Tn-1]), Tn)
ifn>2
= no_resultp(x1) otherwise

mmin_seqp : [F| — F U {infinitary }

mmin_seqp([x1, ..., Tu))

= infinitary(+o00) ifn=0
=1 if n =1 and 7 is not a NalN
= mming(mmin_seqp([1, ..., Tn_1]), Tn)
ifn>2
= no_resultp(x1) otherwise

18

dimp : I X I — F U{underflow, overflow |

dimp(x,y) = resultp(max{0,z — y)},rndr)
ifx,ye F
=-0 ifr=—-0and y=0
= dimp(0,y) ifr=—-0andye€ FU{-00,—-0,400} and y # 0
= dimp(z,0) ify=—-0and z € FU{—00,+00}

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

= 400

=0

=0

=400

= no_result2r(z,y)

ISO/IEC 10967-2:2001(E)

if x =400 and y € FFU {—o0}
if x=—00 and y € F'U {+00}
ify=4ocoand z € F
ify=—o0cand z € F
otherwise

NOTE - dimp cannot be implemented by max g(—0, subp(z,y)), since this latter expression

has other overflow properties.

§.2.4 Floor, round, and ceiling

floorp : F — F
floor p(x) = |z]
=2z
= no_resultp(x)

floor_restp : F — F

=0
= no_resultp(x)

roundingr : F — F U {-0}
roundingp(x) = round(x)

= -0

=2z

= no_resultp(x)

rounding_restp : F — F
rounding_restp(z)
= &'=Jround(z)
=0
= no_resultp(x)

ceilingg~F — F U {—0}
ceilingr(x) = [z]
-0

T

= no resultp(r)

floor_restp(z) = resultp(x — |z]|,rndp)

ifxeF
if x € {—00,—0,+00}
otherwise

ifzxeF
ifz =-0
otherwise

if € F and (x > 0 or round(z) # 0)
itz € F and x < 0 and round(z) =0
if z € {—00,—0,+400}

otherwise

NOTE - roundp is a different operation specified in part 1.

ifxeF
ifz =-0
otherwise

if € Fand (x >0 or [z] #0)
ifre Fandx <0and [z] =0
if x € {—00,—0,400}

otherwise

cetling restp : F — F

5.2.4 Floor, round, and ceiling

19

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

ceiling restp(x)
= resultp(z — [z]|,rndp) if x € F
=0 ifx=-0
= no_resultp(x) otherwise

5.2.5 Remainder after division with round to integer

residuer : F' x F' — F U {—0,underflow, invalid}

’Y’DQ’I'I‘I/IIQF(’Y' y) = ’r‘qul]fF(/r' — (rnnnr‘](fr'//y) . :Ijl\) /nanfr’aeflﬁ)
ifx,y € F and y # 0 and
(x =0 or x — (round(x/y) - y) # 0)

=-0 ifx,y € F and y # 0 and
x <0 and x — (round(x/y) - y) =0
=-0 ift =—0and y € FU{—00,4ochdnd y # 0
=z if x € Fand y € {—00,400}
= no_result2r(x,y) otherwise

5.2.6 Square root and reciprocal square root

sqrtp : F — F U {invalid}

sqrtp(x) = nearestp(\/x) ifre Fanda >0
=z if v € {=0,400}
= no_resultp(x) othertise

rec_sqrtp : F — F U {infinitary, invalid }

rec_sqrtp(x) =rndp(1/y/x) ifre Fandz >0
= infinitary(+o00) if x € {—0,0}
=0 if z =400
= no_resultp{x) otherwise

5.2.7 Multiplication tohigher precision floating point datatype

Fot the following operation, F’ is a floating point datatype conforming to part 1, where rp =
andl ppr > pp.

mulp_ gt F x F — F'U{—0,underflow, overflow}

mulpsg(x,y) = mulp (convertp_ g (x), convertp_ g (y))
NOTES

) convertp_ s is specified in clause 5.4.4.

2 F’ has the same radix as, but higher precision than F. If the precision is sufficiently
much higher, rounding can be avoided. If also eming is sufficiently smaller than eming,
underflow can be avoided, and if emaxp is sufficiently greater than emax g, overflow can
be avoided.

20 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.2.8 Support operations for extended floating point precision

These operations are useful when keeping guard digits or implementing extra precision floating
point datatypes. The resulting datatypes, e.g. so-called doubled precision, do not necessarily
conform to part 1.

add_lop : F x F'— F U {underflow}

add_lop(xz,y) =resultp((x +y) —rndp(x +y),rndr)
ifryecF
=-0 ifx=-0andye FU{—00,—0,+00}
=-0 if x € FU{—00,400} and y = —0
=y if z =400 and y € FU {400}
=y ifr=—oc0andy € FU{—o0}
=z if x € F and y € {—00,+00}
= no_result2r(z,y) otherwise

sublop : F' x F — F U {underflow}
sublop(z,y) = addlop(x,negp(y))

NOTE 1 — If rnd_styler = nearest, then, in the absence of etifications, add_lor and sub_lop
return exact results.

mul_lop : F x F — F U{underflow, overflow}

mullop(xz,y) =resultp((z-y) — rndp(zLy), rndrp)
ifr,ye F
= mul_lor(0,y) ifx=—-0andy € FU{—00,—0,4+00}
= mul_lop(z,0) if v € FU{—00,400} and y = —0
= mulp(z,y) if x € {—o00,+00} and y € F U {—00,+00}
= mul p(z) if x € F and y € {—00,+00}
= no_resultZp(x,y) otherwise

NOTE 2 - In the absence of notifications, mul_log returns an exact result.

div_restp : FF — F U {underflow, invalid }
div_restg(@,y) = resultp(x — (y-rndp(z/y)),rndr)

ifr,ye F
= div_restp(0,y) ifx=—0and y € FU{—00,—0,4+00}
=z if x € F and y € {—00,+00}
=z if x € {—00,+00} and y € F
— TtU_7T Cbultmb’(ub, y) UtllUl WibU

sqrt_restp : F' — F'U {underflow, invalid }

sqrt_restp(x) = resultp(xr — (sqrip(x) - sqrtp(z)), rndr)
fzeFandz >0
=-0 ifz =-0

5.2.8 Support operations for extended floating point precision 21

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

=400 if x =400
= no_resultp(x) otherwise

NOTE 3 — sqrt_restp(x) is exact when there is no underflow.

5.3 Elementary transcendental floating point operations

The specifications for each of the floating point transcendental operations and the floating point
o o
helper functions are ideally identical to the true mathematical functions. However, that wduld
imply a maximum error for the corresponding operation of 0.5 ulp (i.e., the minimum value’fqr
op¢rations that are not always exact). This part does not require that the maximum erroris only
0.5 ulp for the operations specified in clause 5.3, but allows the maximum error to be/abit bigge
To| express this, the approximation helper functions need not be identical to theymathematicg
elefnentary transcendental functions, but are allowed to be approximate. The) approximatio
helper functions shall be defined for the elements of its given argument(signature where th
cofresponding mathematical function is also defined, unless otherwise noted,/The requirements o
approximation helper functions apply only where the approximation hélper functions are define

Tk ® B = .

5.3.1 Maximum error requirements

The approximation helper functions for the individual operations in these subclauses have max
mym error parameters that describe the maximum relative error, in ulps, of the helper functio
cofuposed with nearestyp, for non-subnormal and non-zero results. The maximum error paramg
terg also describe the maximum absolute error, in ulps, for —fminNg, fminNg, subnormal, or zer
regults and underflow continuation values if deformp = true. All maximum error parameteys
shgll have a value that is > 0.5. For the maxXimum value for the maximum error parameter
seq the specification of each of the maxiium error parameters. See also Annex A, on partig
comformity. The relevant maximum ertdr parameters shall be made available to programs.

]

[

)

—_—

When the maximum error for(an approximation helper function hp, approximating f,
mdx_error_opr, then for all arguments x, ... € F' x ... the following equation shall hold:

[@2)

| f(252..) — nearestp(hp(z,...))| < maz_error_opp - r;F(f(I""))_pF

NOTES

1 Partially.¢6nforming implementations may have greater values for maximum error param-
eters than stipulated below. See annex A.

2 Fenthost positive (and not too small) return values ¢, the true result is thus claimed to be in
the interval [t — (max_error_opp - ulpp(t)),t + (max_error_opr -ulpp(t))]. But if the return
value is exactly 7% for some not too small n € Z, then the true result is claimed to be in
themtervat [é = (lILLLJ,,CI TOT-OPF - uZpF\é) Fr)5t T\ TMaT—eTTOT—OpF uL'pF\L'))]. Strmitarty for
negative return values.

The results of the approximating helper functions in this clause must be exact for certain
arguments as detailed below, and may be exact for all arguments. If the approximating helper
function is exact for all arguments, then the corresponding maximum error parameter should have
the value 0.5, the minimum value.

22 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

5.3.2 Sign requirements

E)

For this part, the approximation helper functions shall be zero exactly at the points where the
approximated mathematical function is exactly zero. For this part, at points where the ap-
proximation helper functions are not zero, they shall have the same sign as the approximated
mathematical function at that point. For the radian trigonometric helper functions, these zero
and sign requirements are imposed only for arguments, x, such that |z| < big_angle_rp (see clause

5.3.8).

NOTE - For the operations, the continuation value after an underflow may be zero (including
Tiegative Zero) as givenl Dy resully, (see below), evenl though the approximation Nelper Tunction
is not zero at that point. Such zero results are required to be accompanied by an underflow
notification. When appropriate, zero may also be returned for IEC 60559 infinities arguments.
See the individual specifications.

H.3.3 Monotonicity requirements

[oe]

or this part, each approximation helper function shall be a monotoni¢. approximation to
mathematical function it is approximating, except:

a) For the radian trigonometric approximation helper functions e monotonic approximat
requirement is imposed only for arguments, x, such thaf<|z| < big_anglerp (see cla
5.3.8).

b) The argument angular unit trigonometric and arguiient angular unit inverse trigonomef
approximating helper functions, as well as the anguilar unit conversion helper functions,
excepted from the monotonic approximation requirement for the angular unit argument

H.3.4 The result* helper function

The resulty, helper function is similar<fo the resultp helper function (see clause 5.2.1), buf
simplified compared to resultr congetning underflow: resulty always underflows for non-z
arguments that have an absolute~value less than fminNg — (fminDp/rr), whereas resultp d
rjot necessarily underflow in that case. This difference from resulty is made since the argument
esult}, might not be exact..To return underflow or not, for a tiny result, based upon an inex
grgument would be misle¢ading. For the operations specified using result}. where the specificat

ihstead explicitly ayvgided.

resulti CR x (R — F*) — F U {underflow, overflow}

implies that there cannever be any denormalisation loss for certain tiny results, underflow

the

101N
l1se

ric
hre

is
eTO
bes

to
ACt
jon
is

restlfy(x,rnd) = underflow(c) if z € R and denormp = true and
|rnd(z)| < fminNp and x # 0
= resultp(z,rnd) otherwise
where
¢ =rnd(zx) when rnd(z) # 0 or z > 0,
c=-0 when rnd(z) =0 and z < 0

5.3.2 Sign requirements

23

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.5 Hypotenuse

There shall be a maximum error parameter for the hypotr operation:

max_error_hypotp € F

The max_error_hypotr parameter shall have a value that is < 1.

The hypot}. approximation helper function:
hypoty, : FF x FF — R

Th

Th
pa

5.4

Th

3.6 Operations for exponentiations and logarithms

m‘}(ﬂ" y\ returns a close approximation to A\ r2 4 3112 in R _with maximnm error max error hy

Further requirements on the hypot}. approximation helper function are:

hypoty.(x,y) = hypot;.(y, x) ifx,ye F
hypoty,(—x,y) = hypot}.(x,y) ife,yeF
hypoty.(x,y) > max{|z|, |y|} ife,ye F
hypoty:(z,y) <]:J:\ + [yl ife,yeF
hypoty(z,y) > if v,y € F and /22 + 92 >4
hypoty:(z,y) < ifx,y € F and /22 + y2¢ 1

The hypotr operation:
hypotr : F x F — F U {underflow, overflow}

hypotp(z,y) = resulty,(hypot}.(x,y), nearestr)
if x,y eF
= hypotr(0,y) if v =<0 and y € F U {—00,—0,400}
= hypotp(z,0) if y=—0 and z € F U {—00,+00}
= +00 if ' € {—00,+00} and y € F U {—00,+00}
= 400 it y € {—o0,400} and z € F
= no_result2p(z,y) otherwise

max_error_exrpr € F
max_error_powergne I

e mazx_error_erppparameter shall have a value that is < 1.5-rnd_errorgy. The max_error_pow
ameter shall have’a value that is < 2 - rnd_errorg.

.6.1 Integer power of argument base

e powery ; approximation helper function:

ere shall be two maximum etxor parameters for approximate exponentiations and logarithms

PoWeT - F X1 — R

© ISO/IEC 2001 — All rights reserved

OtF.

s

power;i’ ;(z,y) returns a close approximation to ¥ in R, with maximum error max_error_powerp.

24

Further requirements on the powery, ; approximation helper function are:

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

[(x,y)
I(xal)
I(SC,O)
0)
y)

powe
powe
powe

I
=8

* ’T?* “’1?* ’T?*

A

powery,

(z, fminDg /2
powery /(z, powerpl(x,y)
powerFJ(:E, y) = —powerFJ(—m, Y)

ISO/IEC 10967-2:2001(E)

ifreZNFandy € I and (|| =1o0ry > 0)
ifreF

ifre Fandx #0

ifz € Fand x> 0and y € I and 2¥ < fminDp/3
ifr € Fand x <0 and y € I and 2|y

if € F and z < 0 and y € I and not 2|y

The relationship to other powerg;, helper functions for any powerpp operations in the same

library shall be:

DOWET1 (T, J) — POWeT (L5)

The powerg; operation:

=0

=-0

= infinitary(4+00)
= infinitary(—o0|
= infinitary (+o0)
=0

= nolresultp (x)

NOTES

powerpr : F x I — F U {underflow, overflow, infinitary}

powerpr(x,y) = result}(powery;(x,y), nearesty)

1 powerpy(x yywill overflow approximately when z¥ > fmazp, i.e., if x > 1, approximately
when y>4dog,, (fmaz), and if 0 < z < 1, approximately when y < log, (fmaz) (which is
thendegative). It will not overflow when z = 0 or when = = 1.

2 powery (in clause 5.1.4) does not allow most negative exponents (unless |x| = 1) since the
exact result then is not in Z unless |z| = 1. powerp (in clause 5.3.6.6) does not allow any
negative bases since the (exact) result is not in R unless the exponent is integer. power gy
takes care of this latter case, where all exponents are ensured to be integers that have not

ttreFandye i

ifre Fandz#0andye [

if 1 = —oo0 and y € I and\y)> 0 and 2|y

if 1 =—o00 and y € I and’y > 0 and not 2|y
if t =—0and y €4 and y > 0 and 2|y

if = —0 and y.&I and y > 0 and not 2|y
ifr=0andy©l and y >0
ifzr=4ocand y €l and y >0

if z €{=00,-0,0,400} and y =0

if.z = —ooand y € I and y < 0 and 2|y

if x =—o00 and y € I and y < 0 and not 2|y
ifr=—0and y € [and y < 0 and 2|y

if t =—0and y € I and y < 0 and not 2|y
ifr=0andyelandy<0
ifr=4occandyeland y <0

otherwise

5.3.6.2 Natural exponentiation

The exp}. approximation helper function:

expy : FF— R

ATISEN [TOMT mpiicit fioating point Tounding.

5.3.6 Operations for exponentiations and logarithms 25

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

expj.(x) returns a close approximation to e” in R, with maximum error maz_error_expp.

Further requirements on the exp}. approximation helper function are:

expp(l) =e

expy(z) =1 if x € F and expj.(x) # e” and
In(1 — (epsilonp/(2-7F))) < z and
z < In(1 + (epsilong/2))

expp(x) < fminDp /2 if x € F and < In(fminDp) — 3

The expr operation:

expr : F — F U {underflow, overflow}

expr(x) = resulty(expy(x), nearesty)
ifexeF
=1 ifz =-0
= 400 if z =400
=0 if x =—00
= no_resultp(x) otherwise
NOTES

1 expp(l) = nearestp(e).

2 expp(z) will overflow approximately when = > In(fmaz).

5.3.6.3 Natural exponentiation, minus one

Thie expm17, approximation helper function:
expmlp : FF — R

expmly.(x) returns a close approximation toe* — 1 in R, with maximum error max_error_expg.
Further requirements on the expmIj, approximation helper function are:

expmlj(l) =e—1

expmlj(x) = x if x € F and ezpmlij(x) # e” — 1 and
—epsilong /rp < x < 0.5 - epsilonp /TR
expmlp(x) = —1 if x € F and ezpmlij(x) # e* — 1 and

x < In(epsilong/(3 - rr))

The relationship té-the exp?. approximation helper function for the expr operation in the same
libtary shall be:

expml1 j(5)< expi.(x) iteeF
The expm]y operation:

expmlp : F — F U {overflow}

expmlp(x) = result}.(expm1}(x), nearestr)
if x € F and |x| > fminNp
=2z if x € F and |x| < fminNp
=-0 ife=-0
=400 if z =400
=-1 if r =—o00
= no_resultp(x) otherwise

26 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

NOTES

1 underflow is explicitly avoided. Part 1 requires that fminNp < epsilonp. This part
requires that fminNp < 0.5 - epsilong/rp, so that underflow can be avoided here.

expmlp(1) = nearestp(e — 1).

expm1p(x) will overflow approximately when x > In(fmaz).

5.3.6.4 Exponentiation of 2

he ern2* annroxvimation helner function:
T err) g

explp: F — R

Q

P25 (x) returns a close approximation to 2% in R, with maximum error maz_error_erps.
Further requirements on the exp2; approximation helper function are:
exp2p(x) =1 if z € F' and exp2j(x) # 2° and
logs(1 — (epsilong /(2 - rE)))'< = and
x < logy(1 + (epsilong)2))
exp2p(x) = 2° ifx € FNZ and 2* €K
exp2p(x) < fminDp /2 if x € F and x < legy{fminDp) — 3
The exp2p operation:

exp2r : F — F U {underflow, overflow}

exp2p(x) = result},(exp2y(x), nearestr)
if x g
=1 if =-0
= +o00 if.x = 400
=0 if x = —00
= no_resultp(x) otherwise

NOTE - exp2r(z) will overflow approximately when = > log, (fmaz).

8.3.6.5 Exponentiation_of 10

The expl0y approximation helper function:
explOn : F' —(R:

P10 (x) returtis’a close approximation to 10% in R, with maximum error max_error_expp.

Q

Further reéquitements on the expl0; approximation helper function are:
expdOf(z) =1 if x € F and exp10}:(x) # 10” and
logo(1 — (epsilong/(2-rF))) < x and

x < logyo(1 + (epsilong/2))
omp1n:($>—1nx inC pﬂ7and1nch

expl0j:(z) < fminDp /2 if x € F and x < log,o(fminDp) — 3
The exp10 operation:

expl0p : F — F U {underflow, overflow}

5.3.6 Operations for exponentiations and logarithms 27

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

expl0p(x) = resulty,(expl05(z), nearestr)
iteeF
=1 ifx=-0
= 400 if z =400
=0 if z =—o00
= no_resultp(x) otherwise

NOTE - expl10p(x) will overflow approximately when x > log,,(fmaz).

© ISO/IEC 2001 — All rights reserved

5.4

Th

po
Th

thd

.6.6 Exponentiation of argument base

e powery, approximation helper function:

powerp : F' x F'— R

The relationship to the powery; approximation helper.fumctions for any powerr; operations i
same library shall be:

powerp(x,y) = powerg, ;(z,y) ife@Fandx>0andyeINF
The powerp operation:

powerg : F x F — F U {underflow, overflow, infinitary, invalid }

very(z,y) returns a close approximation to ¥ in R, with maximum error maz_érror_powery.

e powery helper function need be defined only for first arguments that are greater than 0.
Further requirements on the powery, approximation helper function axé:

powerp(1,y) =1 fyeF

powerf:(x,0) =1 ifzxe Fandz >0

powerj.(z,1) = x itz € F and 2z, >0

powery(x,y) < fminDp /2 if v € F and2‘> 0 and y € F and ¥ < fminDj

/3

]

28

powerp(x,y) = resulty(powery (% y), nearestr)
ifreFandx>0and y € F
= powerp(0{y) ifr=—-0andye FU{—00,—0,+00}
= powerg(x;0) ify=—-0and z € FU{—00,+00}
= 400 if z =400 and ((y € F and y > 0) or y = 400
= 400 ifxe Fand x > 1 and y = 400
= (ifre Fand 0 <x <1andy=+400
=0 ifr=0andye Fandy>0
= infinitary(4+00) ifr=0andye Fand y <0
=400 ifre Fand0<z<1andy=—o0
=0 ifxre Fand x > 1 and y = —00
=0 if £ =400 and ((y € F and y < 0) or y = —00
= no_result2p(x,y) otherwise

NOTE - powerp(x,y) will overflow approximately when z¥ > fmazp, i.e., if x > 1, approxi-
mately when y > log, (fmaz), and if 0 < x < 1, approximately when y < log, (fmaz) (which
is a negative number). It will not overflow when = = 0 or when z = 1.

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.6.7 Exponentiation of one plus the argument base, minus one

The powerIpmly. approximation helper function:

powerlpmly : F X FF— R

powerlpmlij:(z,y) returns a close approximation to (1 4+ z)¥ — 1 in R, with maximum error
mazx_error_powerr. The powerlpmlr helper function need be defined only for first arguments

that are greater than or equal to —1.

Further requirements on the poweripmly. approximation helper function are:

powerlpmlp(z,y) = (1 +x)¥ —1 Hzrz,yerfNZandx > —1landy >0
powerlpmlj(z,1) = x ifx,14x€ Fand x> -1
powerlpmlji(—1,y) = —1 ifye Fand y >0

poweripmlj(z,y) = —1 ifxre Fand x > —1and y € F and

powerlpmlj(z,y) # (1 + z)¥ &I and
(14 x)¥ < epsilong/(3 - rm)

The relationship to the powery, approximation helper function for the powerr operation in
spme library shall be:

powerlpmlj(z,y) < powers(1+ z,y) ifz,1+xz€ Fandx > —-1landye F

NOTE 1 - poweripmlp(z,y) ~y-In(l+z)ifx € Fand x > —landy € F and |y-In(1+x)| <
epsilong [rp.

The poweripmly operation:
powerlpmly : F X F — F U {—0,underflow, ovérflow, infinitary, invalid }

powerlpmlp(z,y)
= result},(powerlpmlj(zyh), nearesty)

ifre Fandx > —1and z# 0 and y € F an
= mulp(z,y) if x € {-0,0} and y € F and y # 0
= mulp(z,y) if y€ {—0,0} and z € F and = > —1
= +o00 if x =400 and ((y € F and y > 0) or y = +0
=400 ifx e Fand x >0 and y = 400
=-1 ifre Fand -1 <z <0and y =400
=-1 ifr=—-1landye Fandy >0
= infinitary(+o00) ifr=—1landye Fandy<0
= ¥oo ifre Fand -1 <z <0and y=—o00
= -1 ifxe Fand x >0 and y = —o0
=-1 if x =400 and ((y € F and y < 0) or y = —0
= no_result2r(z,y) otherwise

NOTE 2 - powerlpmlyp(x,y) will overflow approximately when (1 + z)¥ > fmaxp, ie., if

the

dy#0

z > 0, approximately when y > log,, ,(fmazg), and if —1 < 2 < 0, approximately when

3 ,- T 33 a N c 3
Y 1081, JTnaxr). 1L WILI oL OVETIIOW wWheh T © {—1,Uy.

5.3.6.8 Natural logarithm

The In}. approximation helper function:
Iny, : FU{e} = R

5.3.6 Operations for exponentiations and logarithms

29

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

In}:(x) returns a close approximation to In(z) in R, with maximum error maz_error_expr.
A further requirement on the In}. approximation helper function is:
Inp(e) =1
The Inp operation:
Inp : F — F U {infinitary, invalid}

Inp(x) = result},(In}(x), nearesty)
ifzre Fandz >0
= infinitary(—no) if » {—ﬂ ﬂ}
= 400 if z =400
= no_resultp(x) otherwise

5.3.6.9 Natural logarithm of one plus the argument

Thie Inlp} approximation helper function:
Inlpy : FU{e—1} =R
InipF(x) returns a close approximation to In(1+ z) in R, with maximam error max_error_expg.
Further requirements on the Inip} approximation helper function are:
Inlpp(e—1) =1
Inlpp(z) =x if x € F and Inipp(x) # In(1 4 x) and
—0.5 wepsilonp/rrp < x < epsilonp /TR

The relationship to the In} approximation helper function for the Inp operation in the same
libtary shall be:

Inlpp(x) = Inj(x) ifre Fandz>0
The Inipp operation:
Inlpp : F — F U {infinitary, invalid}

Inlpp(z) = result}, (Inlpy{z), nearestr)
if v € Fand x > —1 and |z| > fminNp
=z if z € F and |z| < fminNp
=-0 ife=-0
= infinitary(—oo0) ife=-1
=00 if x = +o00
= no_resultp(x) otherwise

NOTE_ ‘7~underflow is explicitly avoided. Part 1 requires that fminNp < epsilong. This
part réquires that fminNg < 0.5 - epsilong /v, so that underflow can be avoided here.

5.3.610 2-logarithm

The log2r approximation helper function:
log2; : F — R
log25-(x) returns a close approximation to logy(z) in R, with maximum error maz_error_expr.

A further requirement on the log2; approximation helper function is:

30 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

log2r(x) = logy(z) if x € F and logy(z) € Z
The log2r operation:
log2p : F — F U {infinitary, invalid }

log2p () = result},(log2p(x), nearestr)
iftre Fandz >0
= infinitary(—o0) if x € {-0,0}
= 400 if © = 400
= no_resultp(x) otherwise

§.3.6.11 10-logarithm

The log10; approximation helper function:
log10p : F — R
lbg10f(x) returns a close approximation to log;y(z) in R, with maximum error-max_error_expr.
A further requirement on the log!0y approximation helper function ig;
log105(x) = logyg(z) if x € F and logg(a) ¢ Z
The log10r operation:
log10p : F — F U {infinitary, invalid }

log10p(x) = result},(log10p(z), nearestr)
ifredandz >0
= infinitary(—o0) if x'€{-0,0}
= to00 if-¥’= +o0
= no_resultp(x) otherwise

§.3.6.12 Argument base logarithui

The logbase}. approximation helper-fanction:
logbaser. : ' x F' — R

bgbaseT,(x,y) returns a close approximation to log, (y) in R, with maximum error max_error_powerp.

o~

A further requirement-on the logbase}, approximation helper function is:
logbasey.(x, x)="1 ifre Fandx >0and z #1
The logbaseg~operation:
logbasep: F x F' — F U {—0,infinitary, invalid }

logbaser(z,y) = resulty,(logbasey(x,y), nearestr)
ifre Fandx>0and x # 1 and y € F andfy > 0
= logbaser(0,y) if x=-0andye FU{—00,—0,+00}
=l0gbaser (T, 0) itg=—0and r € F U{—00,F00}
= infinitary(4+00) ifr=1landye Fandy>1
= infinitary(—oo) ifr=1landye Fand 0 <y <1
=0 ifr=4occandye€ Fandy > 1
=400 ifre Fand 1<z andy=400

5.3.6 Operations for exponentiations and logarithms 31

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

= —00 ifre Fand 0 < x <1 and y =400
=-0 fr=0andye Fandy >1

=0 fr=0andye Fand 0 <y <1
= infinitary(+o00) ifreFand0<z<landy=0
= infinitary(—oo) ifreFandl<zandy=0
=-0 ifr=4occandye Fand 0 <y <1
= no_result2p(x,y) otherwise

Th

lo

N

.3.6.13 Argument base logarithm of one plus each argument

e logbaselplp} approximation helper function:
logbaselplpy : F X F — R

paselplpy(z,y) returns a close approximation to 10g(144)(1 +y) in R, with-mlaximum errqr
T_ETTOT _POWETF.

A further requirements on logbaselp1p} approximation helper functionis:
logbaselplpp(z,z) =1 ifxe Fand x > —1 dng x # 0
The logbaselplp . operation:

logbaselplpy : F x F — F U {—0,underflow, infinitary,invalid }

logbaselplpp(x,y)
= result};(logbaselplpy(z,y), nearesty)
if x €' #”and = > —1 and x # 0 and
g &€ F and y > —1and y #0

= divp(y,) if z € {—0,0} and
(e Fandy > —1 and y # 0) or y = +00)
= divp(y,) if y € {—0,0} and

((x € Fand x > —1) or x = 400)

=0 ifr=4occandye€ Fandy >0

= 400 ifxe Fand 0 < z and y = 400
=—-0 ifre Fand -1 <z <0and y=+400
=—0 ifr=—-landye Fandy >0

=0 fr=—-landye Fand -1 <y <0
= infinitary(+o0) ifre Fand -1<z<0andy= -1
= infinitary(—o0) ifre Fand0<zandy= -1

=-0 ifr=4occandye€ Fand -1 <y <0
= no_result2p(x,y) otherwise

5.3

.7 Introduction to operations for trigonometric elementary functions

Two different operations for each of sin, cos, tan, cot, sec, csc, arcsin, arccos, arctan, arccot,
arccotc, arcsec, and arccsc are specified. One version for radians and one version where the
angular unit is given as a parameter.

32

For use in the specifications below, define the following mathematical functions:

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

rad : R - R
azis_rad : R — {(1,0),(0,1),(—=1,0),(0,-1)} x R
arc: RXR—-R
The rad, angular value normalisation, function is defined by
rad(x) =z —round(z/(2 7)) 27
The axis_rad function is defined by
((1,0), arcsin(sin(x))) if cos(
((0,1), arcsin(cos(x))) if sin(x)
((—1,0), arcsin(sin(x))) if cos(
= ((0, —1), arcsin(cos(x))) if sin(z)

azis_rad(x)

The arc, angle, function is defined by

arc(z,y) = —arccos(z/\/ 22 +y?) ify <0
= arccos(z/\/22 +y?) ify>=0

§.3.8 Operations for radian trigonometric elementary functions

There shall be one radian big-angle parameter:
big_anglerp € F
It should have the following default value:

big_angle_rp = rl[?F/ﬂ

N

L binding or implementation can include a method t6° change the value of the radian big-an
darameter. This method should only allow the value’of this parameter to be set to a value grea
han 2 - 7 and such that ulpp(big-angle_rr) <«x/1000.

NOTE - Part 1 requires only that pp >2,"but see also A.5.2.0.2 in part 1. This part requires
that pp > 2-max{1, [log, (2-7)]}, in order to allow at least the first two cycles (plus and minus)

to be in the interval [—big_anglerg,big-angle_rr]. In order to allow ulpp(big-anglerp) <
/1000, pr > 2 + [log, , (1000)}:hould hold.

-

For use in the approximation h€lper function’s signatures, define
F*>™ = (FU{n 7/445:7/6 | n € Z})N|[-big_angle_rg,big_angle rr)
There shall be three maximum error parameters for radian trigonometric operations:

max_error_radp-€ F
mazx_error g € F
mazx_errortany € F

'he max_error_radp parameter shall have a value that is 0.5 (ulp). The max_error_sing paray

hatds(< 2 - rnd_errorg. If the binding standard requires that the max_error_radr paramg

1
tpr shall.have a value that is < 1.5-rnd_errorp. The max_error_tang parameter shall have a vajlue
t
s

cle
ter

ne-

ter

as-the value 0.5, that parameter need not be made available for programs.

5.3.8 Operations for radian trigonometric elementary functions

33

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.1 Radian angle normalisation

The rad}, approximation helper function:

rady : F' 2T LR
radj,(x) returns a close approximation to rad(z) in R, if || < big-angle_rp, with maximum error
max_error_radg.

The axis_rady. approximation helper function:

azisrady : F*™ — {(1,0),(0,1),(-1,0),(0,-1)} x R
axfs_rady(z) returns a close approximation to azis_rad(x), if |x| < big_angle_rp, with maxiniy
errpr mazx_error_radp for the second part of the result. The approximation consists of tlrat-th

sedond part of the result (the offset from the indicated axis) is approximate. The first part (th
negrest axis indication) shall be exact if |z| < big-angle_rp.

=

NOTE 1 - With the maximum error 0.5 ulp, these helper functions are not really~needed.
However, Annex A allows for partial conformity, such that the maximum erroryfon these two
helper functions may be greater than 0.5 ulp.

Further requirements on the rady and awxis_rady approximation helper‘functions are:

radp(x) = if v € F?™ and |x| <1
snd(azis_rad.(x)) = radj.(x) if x € F?7™ and fst(axis_radi(z)) = (1,0)

The radpr operation:

radp : F' — F U {underflow, absolute_precision_ufiderflow}

radp(x) = result};(rad}(x), nearesty)
if x € F and |z| > fminNp and |z| < big-anglelrp
=z if{g' € F and |z| < fminNp) or z = —0

= absolute_precision underflow(qNaN)
if x € F and |x| > big_angle_rp
= no_resultp(x) otherwise

The axis_radpr operation:
azis-radp : F — ({(1,0),€0,1),(—1,0), (0,—1)} x F') U {absolute_precision_underflow]

axis-radp(xz) = (fst{@ris_rady(x)), resulty,(snd(axis_rady(x)), nearestr))
if x € F and |z| > fminNp and |z| < big-anglelrp
=7(1,0),x) if (x € F and |z| < fminNp) or x = —0

= absolute_precision_underflow((gNaN, gNaN), gNaN)
if x € F and |x| > big_angle_rp

= ((gNaN, gNaN), gNaN)
if z is a quiet NaN

= invalid((gNaN, gNaN), gNaN)
otherwise

NOTE 2 - radp is simpler, easier to use, but less accurate than axis_radp. The latter may
still not be sufficient for implementing the radian trigonometric operations to less than the
maximum error stated by the parameters.

34 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.8.2 Radian sine

The sin}, approximation helper function:

inh: F*™ = R
sin},(z) returns a close approximation to sin(z) in R if |z| < big_angle_rp, with maximum er
max_error_sing.

Further requirements on the sin% approximation helper function are:

ror

sinp(n-2-m+7/6) =1/2 ifne Zand |n-2 -7+ 7/6| < big-angle_rp
sinp(n-2-m+7n/2)=1 Hnezand n-2-7m+7/2] < brg_angle_rg
sin(n-2-m+5-7/6) =1/2 ifneZand n-2-7+5-7/6| < big_angle rj
sinj(x) = if v € F?™ and sin’(z) # sin(x) and

|z| < /3 - epsilonp /1
sinj(—x) = —sinj(z) if v € F?™

The sing operation:

sinp : F'— F U {underflow, absolute_precision_underflow }

sing(x) = result}(sinj(x), nearesty)
if x € F and fminlNg< |z| and |z| < big-ang
= radp(x) otherwise
NOTE - underflow is here explicitly avoided for submnormal arguments, but the operation

may underflow for other arguments.

5.3.8.3 Radian cosine

=

'he cos?, approximation helper function:
0sy 1 I Ea—

Q

psT.(x) returns a close approximatiptito cos(z) in R if |z| < big-angle_rp, with maximum er
hax_error_sing.

Further requirements on the cos}. approximation helper function are:

cosj(n-2-m) =1 ifne Z and |n-2- 7| < big-angle_rp
cosp(n-2-m+w/3y=1/2 ifne Zand n-2 -7+ 7/3| < big.angle_rp
cosp(n-2-m27w/3) =—-1/2 ifne Zand |n-2-7+4+2-7/3| < big_angle_r
cosp(n-2 -G) =—1 ifne Zand |n-2 -7+ 7| < big.anglerp
cosy(z) 0 if x € F?™ and cos’(z) # cos(x) and
|z| < \/epsilong/rF
cospltx) = cosy(z) if v € F27

Theé/cosr operation:

ror

B

cosp . F — F'U {underflow, absolute precision underflow}

cosp(x) = result},(cos},(x), nearestr)
if z € F and |z| < big_angle_rp
=1 ife =-0
= radp(x) otherwise

5.3.8 Operations for radian trigonometric elementary functions

35

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.4 Radian tangent

The tan}, approximation helper function:
tany : F 2T LR

tany,(z) returns a close approximation to tan(z) in R if || < big_angle_rp, with maximum error
max_error_tang.

Further requirements on the tan}. approximation helper function are:

tanp(n-2-m+m/4) =1 ifne Zand|n-2 -7+ n/4] < big_angle_rp
tanp(n-2-m+3-m/4) = —1 tneZand n-2-7m+s5-7w/4] < big_angle_rp
tany,(z) =z if x € F?™ and tan’(z) # tan(x) and

o] < /epsilons /7
tany(—x) = —tanf(x) if ¢ € F27

NOTE 1 — tan has a smallest period of 7, but the above expresses a period of 2 - aiGyhich is
more in line with the other operations. The desired points of extra accuracy are §till covered.

The tanr operation:

tang : F' — F U {underflow, overflow, absolute_precision_underflow}

tanp(x) = result};(tan},(z), nearestr)
if x € F and fminlNp < |z| and |z| < big-anglelrp
= radp(x) otherwise

NOTE 2 — underflow is explicitly avoided for subnormal ‘arguments, but the operation may
underflow for other arguments.

5.3.8.5 Radian cotangent

Thie cot, approximation helper function:
coth, : F*™ - R
[k

coffj.(x) returns a close approximation to cot(z) in R if |z| < big_angle_rp, with maximum errdr
mdx_error_tang.

Further requirements on fh¢ cot}. approximation helper function are:

cotp(n-2-m+m/d) =1 ifne Zand |n-2 -7+ 7/4| < big.anglerp
cotp(n-2-m+8-m/d) = -1 ifne Zand |n-2 -7+ 3-7/4| < big_angle_rg
cotp(—x) = Leoty(x) if z € F?7

NOTE —¢¢ot ' has a smallest period of 7, but the above expresses a period of 2 - 7, which is

more in lin€ with the other operations. The desired points of extra accuracy are still covered.
The cotpoperation:

coty : F'— F U {underflow, overflow, infinitary, absolute_precision_underflow}

TOtr(T) =Tesutt (Tt Ty, eaTest)
if v € Fand z # 0 and |z| < big_angle_rp
= infinitary(+o00) ifx=0
= infinitary(—o0) ifz=-0
= radp(x) otherwise

36 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.8.6 Radian secant

The secy, approximation helper function:

sech : F?™ — R
secj(x) returns a close approximation to sec(z) in R if |z| < big_angle_rp, with maximum er
max_error_tang.

Further requirements on the secy. approximation helper function are:

ror

secp(n-2-m) =1 ifne Zand |n-2- 7| <big.anglerp
secp(n-2-w+m/3) =2 itneZandn -2 -7+ 7/3] < big_angle_rg
secp(n-2-m+2-71/3) = -2 ifne Zand n-2-7+2 7/3| < big.angle.r
secp(n-2-m+m)=-1 ifne Zand |n-2- -7+ 7| < big-angleTrp
secp(xz) =1 if x € F?™ and sech(x) # sec(z) and

|| < V/epsilonp
secp(—x) = secp(x) if z € F27

The secp operation:

secp : F'— F U {overflow, absolute_precision_underflow}

secp(x) = result},(secy(x), nearestr)
if x € F and |z]«<ig_angle_rp
=1 ifx =-0
=radp(x) otherwise

§.3.8.7 Radian cosecant

=]

'he cscy. approximation helper function:
cscp t F 2T LR

sc.(x) returns a close approximation 6 csc(z) in R if |z| < big_angle_rp, with maximum er

Q

hax_error_tang.

Further requirements on the dsgy approximation helper function are:

cscp(n-2-m+7/6) =2 ifne Zand |n-2 -7+ 7/6| < big.angle_rp
cscp(n-2-m+m/2))l ifne Zand |n-2 -7+ 7/2| < big.angle_rp
cscqp(n-2-m+ 5. mf6) =2 ifne Zand n-2-7+5-7/6] < big_angle_r
cscp(—x) = —eseh(x) if v € F?7

The cscp operation:

cscp : K~ F U {overflow, infinitary, absolute_precision_underflow }

B

ror

B

csciq(r) = result},(cscp(x), nearestr)
if z € F and = # 0 and |z| < big_angle_rp
= infinitary(+o00) ife=0
— inﬁnifnry(—m) fr—-—0
= radp(x) otherwise

5.3.8 Operations for radian trigonometric elementary functions

37

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.8.8 Radian cosine with sine

cossing : ' — (F x F) U {underflow, absolute_precision_underflow}
cossing(x) = (cosp(z), sinp(x))

NOTES

1 If there is an absolute_precision_underflow notification, then both result parts suffer
from the absolute_precision_underflow and the continuation values for both parts are
qNaN. Similarly for NaN and infinitary arguments.

5.4

Th

ar

5.4

Th

2 If there is an underflow notification, only one of the result parts suffer from the underflow,
and the other part has an absolute value greater than fminNg.

.8.9 Radian arc sine

e arcsiny approximation helper function:
arcsing : F' — R

sin},(x) returns a close approximation to arcsin(x) in R, with maximum.etror maz_error_sing.

Further requirements on the arcsiny. approximation helper function are:

arcsinj,(1/2) = w/6
arcsini,(1) = m/2

arcsiny,(z) = x if x € F and arcsin.(x) # arcsin(x) and
2] <N/2- epsilong/rF
arcsiny,(—x) = —arcsinj.(x) ifx e®
The arcsinﬁ range limitation helper function (for z € F):
#

arcsing.(x) = max{upp(—m/2), min{arcsiny,(z), downp(m/2)}}
The arcsing operation:

arcsing : F' — F U {invalid}

arcsing(x) = result} (arcsinﬁf(x), nearestr)
if x € F and fminNp < |z| <1
=z if (x € F and |z| < fminNp) or x = —0
= neJresultp(x) otherwise

NOTE - underflow is explicitly avoided.

.8.10 Radian arc cosine

e apceosy, approximation helper function:

drccosy . FF — R

arccos,(x) returns a close approximation to arccos(z) in R, with maximum error max_error_sing.

38

Further requirements on the arccosy, approximation helper function are:

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The arccos}, range limitation helper function (for x € F):
arccosff () = min{arccos}(z), downp(m)}
The arccosp operation:

arccosg - F — F U {invalid}

arccosp(x) = result}(arccosﬁ (z),nearestr)
ifxe Fand|z|] <1
= arccosp(0) ife=-0
= no_resultp(x) otherwise

§.3.8.11 Radian arc tangent

The arctan}, approximation helper function:

arctany : F' — R

S

rctan,(x) returns a close approximation to arctan(z) in R, witiimaximum error max_error_ta
Further requirements on the arctany. approximation helper function are:

arctan,(1) = /4

arctanj.(x) = x if x € and arctan},(v) # arctan(z) and
2| < \/1.5 - epsilong/rF
arctany,(x) = m/2 if x € F and arctan},(z) # arctan(z) and
x > 3-rp/epsilong
arctany,(—xz) = —arctany,(z) ifeeF
The arctcm}iE range limitation helper function (for z € F):

arctanﬁ () = max{upp(—=/2), min{arctan},(x), downp(7/2)}}

The arctang operation:

arctanp : F — F

arctanp () =, result*F(arctanﬁ(:E), nearestp)
if x € F and fminNp < |z|
=z if (x € F and |z| < fminNp) or z = —0
= upp(—7/2) if x = —o00
= downp(m/2) if z =400
= no_resultp(x) otherwise
NOTES

, . o .
t—arctons(r)y~arceE (T —(arer s specified i subctause 53-8 15 betow)

2 underflow is explicitly avoided.

5.3.8 Operations for radian trigonometric elementary functions

39

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.8.12 Radian arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)

arccotc.
The arccot}. approximation helper function:

arccotp : F'— R

arccot},(x) returns a close approximation to arccot(z) in R, with maximum error max_error_tang.

© ISO/IEC 2001 — All rights reserved

'L'he arccotcy approximation helper tunction:
arccotcy, : F — R

ar

arccot},(1) = /4
arccoty,(0) = 7/2
arccoty,(—x) = —arccot,(x)

arccotcy,(x) = arccoty, ()
arccotcy(—1) =3 -7 /4
arccotcy(z) =

#

The arccot}iE and arccotc;

The arccotp operation:

arccotp : F' — F U {underflow}

1 arccotppegr(x)) = negr(arccotp(x)).

The arceotcr operation:

arccotcp : F' — F U {underflow}

cotc}:(x) returns a close approximation to arccotc(z) in R, with maximum error max @7ror_ta

Further requirements on the arccot} and arccotcy, approximation helper functigns are:

ifre Fandx #0
fxeFandz >0

if x € F and drccotcy;(x) # arccote(x) and
x < =3 4'r/epsilong

range limitation helper funetions (for z € F'):

arccotﬁ(x) = max{upp(—n/2), min{arccoty,(z){downp(mw/2)}}
arccotcﬁ(w) = min{arccotcy,(z), downp(m)}

arccotp(x) = result}(arccotﬁf(x), nearestr)
ifxeF
= upp(—a/2) ifx=-0
=-0 if x =—00
=0 it 2 = 400
= no_resultp(x) otherwise
NOTES

2 Dug forthe range limitation, arccot(0) need not equal arccotcr(0).

L
QTCCOLCF(X) = TESUIL (AT CCOICY (X))

= nearestp(n/2)
= downp ()

=0

= no_resultp(x)

40

ifrxekF

if x =-0
if x = —00
if £ =400
otherwise

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

NOTE 3 - arccotcp(z) = arcp(z,1). (arcp is specified in subclause 5.3.8.15 below.)

5.3.8.13 Radian arc secant

The arcsecy. approximation helper function:
arcsecp : F'— R

arcsecj(x) returns a close approximation to arcsec(x) in R, with maximum error max_error_tang.

Further requirements on the arcsecy approximation helper function are:

arcsecy,(2) =7/3

arcsecy(—2) =2-7/3

arcsecF(1) =

arcsecy,(x) <7r/2 ifze Fandz >0

arcsecp(x) > m/2 ifz € Fandx <0

arcsecp.(x) = m/2 if x € F and arcsecj;(x) % arcsec(z) and

|x| >3- rp/epsilong

The arcsec}% range limitation helper function (for z € F'):
arcsecﬁ (z) = min{aresecy,(z), downp(m/2)}
fxz>1
= max{upp(7/2), min{arcsecy(x){downp(r)}}
if v <=1

The arcsecr operation:

arcsecp : F'— F U {invalid}

arcsecp(x) = result}(arcsecfﬁ (2)nearestr)
ifx € Fand 1 < |z
= upp(m/2) if 2 = —o00
= downp(7/2) if 2 =400
= no_resulty(x) otherwise

5.3.8.14 Radian arc(cosecant

The arcescy, approXimation helper function:

arcescp AN R

S

rcesch. () returns a close approximation to arcesc(z) in R, with maximum error max_error_tapr.
Furtherrequirements on the arccscy. approximation helper function are:

arcesc(2) = /6
arcescy,(1) =m/2

arcesc(—x) = —arcescy(x) ifeeF
The arccsc}iE range limitation helper function (for z € F):

arccscﬁf () = max{upp(—n/2), min{arcescy.(x), downp(n/2)}}

The arccscg operation:

arccscp : F'— F U {underflow, invalid }

5.3.8 Operations for radian trigonometric elementary functions 41

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

arcescp(x) = resulty; (arccsclf (z),nearestr)
if x € F and 1 < |z|
=-0 if £ =—o00
=0 if x =400
= no_resultp(x) otherwise

5.3.8.15 Radian angle from Cartesian co-ordinates

The arc}, approximation helper function:

ar

42

arcp : F x F — R
(2, y) returns a close approximation to arc(z,y) in R, with maximum error max_errorstanyg.
NOTE 1 — The arc operations, with the arguments swapped, are often called arctan?.

Further requirements on the arcy approximation helper function are:

arcp(z,0) = ifre Fandz >0
C*F($,.%‘)—7T/4 ifre Fandz >0
arcy(0,y) =m/2 ifye Fandy >0
arcp(x, —:L‘)—3 /4 ifre Fandz <0
arcp(z,0) = ifreFanda <0
arcy(z, —y) = —arc}(w,y) if x,y € F and (% 0 or z > 0)

The arcﬁf range limitation helper function (for z,y € F):

arcﬁ (x,y) = max{upp(—n), min{arcy(z,y), downp{r)}}

The arcp operation:

arcp : F x F — F U {underflow}

arcp(x,y) = result}(arcﬁf(m, y), édrestr)
ifx,y € Fand (x# 0 or y #0)
=0 ifr=0and y=0
= downp(m) ifr=—-0andy=0
= arcp(0,y) ifr =—0and y € FU{—00,400} and y # 0
= negp{arcr(z,0)) ify=—-0and z € FU{—00,—0,4+00}
=0 ifr=4occandye€ Fandy >0
=—0 ifxr=+4oc0and y€ Fand y <0
—nearestp(m/4) if z =400 and y = 400
= nearestp(n/2) if v € Fand y = 400
= nearestp(3 - 7/4) it = —o0 and y = 400
= downp(m) ifx =—oc0and y € Fandy >0
= upp(—m) ifx=—oc0oandy € Fand y <0
= nearestp(—3 - w/4) if £ = —00 and y = —o0
= nearestp(—m/2) ifre Fandy=-—
— curt Cbtfv'(_ll /4) lf L — —i_w (lvlld g — "X
= no_result2r(z,y) otherwise
NOTE 2 - Note that the arc operations do not return an invalid notification at the origin

(both arguments in {—0,0}). See B.5.3.8. Bindings may choose to alter this behaviour.

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

5.3.9 Operations for trigonometrics with given angular unit

There shall be one big-angle parameter for argument angular-unit trigonometric operations:
big_angle_up € F

It should have the following default value:
big-angle_up = [T?F/ﬂ/fﬂ

A binding or implementation can include a method to change the value of this parameter. T

E)

his

method should only allow the value of this parameter to be set to a value greater than or equal

tp 1 and such that wlp p(0rg_angle_upr) < 1/2000.
NOTE 1 — In order to allow ulp(big-angle_ur) < 1/2000, pr > 2+log,. (1000) should hold-
There shall be a derived parameter signifying the minimum allowed angular unit:
min_angular_unityp = rp - fminNp /epsilonp
NOTE 2 — That is, min_angular unitp = rgfmmeHpF)
For use in the approximation helper function’s signatures, define
F'=(FU{n-u/8n-u/l2 | ne€ Z})N|[-big-angleup - |u|,bigangle-up - |u|]

Note that u is a parameter here, a parameter which is the valué-of the first argument to
gpproximation helper function. To signify this, the notation (u =) is used below.

To make the specifications below a bit easier to express,-let
Grp={x € F | min_angular_unitp < |z|}.

Let T' = {1,2,360,400,6400}. T consists of anglesvalues for exactly one revolution for so
dommon non-radian angular units: cycles, half-cyclés, arc degrees, grades, and mils.

There shall be two parameterised maximum exror parameters for argument angular-unit trigo
metric operations:

max_error_sinup : F' — F U {invalid }
max_error_tanup : F' — F U {invalid}

[oe]

or u € G, the max_error_sinuf(u) parameter shall have a value that is < 2 - maz_error_si

-

€ G, the mazx_error_tanup(u) parameter shall have a value that is < 2 - maz_error_ta
The max_error_tanup () yparameter shall have the value of maz_error_tanp if |u| € T. 1]
az_error_sinup(u) @nd mazx_error_tanup(u) parameters return invalid(gNaN) if u ¢ Gp.

9.3.9.1 Argiment angular-unit angle normalisation

.|

'he argument angular-unit normalisation computes exactly rad(2 - - x/u) - u/(2 - 7), where
he angular value, and u is the angular unit.

—

The cycler operation:

'he maz_error_sinup(u) parameter shall have the value of mazx_error_sing if |u| € T. F

the

me

Nno-

is

cyclep : F' x F'— F U {—0, absolute_precision_underflow, invalid }

cycler(u, x) = residuep(z,u) if ue Gp and (z = —0 or
(x € F and |x/u| < big_angle_ur))
= absolute_precision_underflow(qNaN)

ifue Gp and x € F and |x/u| > big_angle_up

= no_result2r (u, x) otherwise

5.3.9 Operations for trigonometrics with given angular unit

43

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

The axis_cycler operation:

axis—cyCleF FXF — ({(170)7 (Oa 1)7 (_170)7 (07 _1)} X (F U {_0}))U
{absolute_precision_underflow, invalid }

azis_cyclep(u, x)
= (azis(u,), resultp(x — (round(x - 4/u) - u/4), nearestr))
ifue Gp and x € F and |z/u| < big-angle_ur and
(/u>0or x — (round(z - 4/u) - u/4) # 0)

= (axis(u,x),—0) ifue Gp and x € F and |z/u| < big-angle_ur and
/Y'/’Il n QY\A el /Y’f\“v\fq{m /I //ll\ 21 //I\ — n
T S Gt 7T

= ((1,0),—0) itfue Gp and x = -0

= absolute_precision_underflow((gNalN, gNaN), gNaN)
if u e Gp and x € F and |z/u| > big_angle_up
= ((qNaN, gNaN), gNaN)
if at least one of x and u is a quiet-NaN and
neither is a signalling NaN
= invalid((gNalN, gNaN), gNaNN)

otherwise
whiere
awis(u, x) = (1,0) if round(z - 4/u) ~4-n
=(0,1) if round(z - 4/u) =4-n+1
= (-1,0) if round(x~4/u) =4 -n+ 2
=(0,-1) if round(x ~4/u) =4-n+3

forsome n € Z.

NOTES

1 awis_cyclep(u,x) is exact when divp (u,4) = u/4.

2 cycler is an exact operation.

3 cyclep(u,x) is —0 or has a resulf in the interval [—|u/2|, |u/2]] if there is no notification.
4 A zero resulting angle is negative if the original angle value is negative.
5

The cycler operation is_used also in the specifications of the unit argument trigonometric
operations. This doe$ not imply that the implementation has to use the cycler operation,
when implementing.the operations. It only implies that the results (including notifications)
must be as if the ¢ycler operation was used.

5.3.9.2 Argwnent angular-unit sine

Thie sinupfapproximation helper function:
sty : (u: F) x F* =R

sifiu,) returns a close approximation to sin(z - 2 - 7/u) in R if u # 0, with maximum errdqr
maz_error_sinup(u).

Further requirements on the sinu} approximation helper function are:

sinuy,(u,n - u+) = sinuj(u,) ifne Zandue Fand u# 0 and x € F*
sinuy(u,u/12) =1/2 ifue Fandu#0
sinup(u, u/4) =1 ifue Fandu#0

44 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

sinuy(u, b5 - u/12) = 1/2 ifue Fandu#0
sinuy(u, —) = —sinuj(u,) ifue Fand u#0and ze F"
sinuy,(—u,) = —sinuj(u, x) ifue Fandu#0andzeF"

NOTE - sinui(u,z) =z -2 -w/uif |z-2-7/u] < fminNg.
The sinup operation:

sinup : F x F — F U {—0, underflow, absolute_precision_underflow, invalid }

sinup(u,) = result}; (sinu}, (u,), nearestr)
if cyclep(u,xz) € F and cyclep(u,z) & {—u/2,0,u/2}
= dwrp(0,u) if cyclep(u,x) € {0,u/2}
= divp(—0,u) if cyclep(u,z) € {—u/2,—0}
= cyclep(u, x) otherwise

g.3.9.3 Argument angular-unit cosine

The cosu}, approximation helper function:
cosup : (u: F)x F* - R

psu},(u,) returns a close approximation to cos(z - 2 - w/u) in R ifw'# 0, with maximum ergor

ax_error_sinup(u).

Q

Further requirements on the cosu} approximation helperdunction are:

cosuf(u,n - u+ x) = cosui(u,) if ne Zéand v € F and v # 0 and x € F*
cosuy(u,0) =1 if u € Frand u # 0

cosuj(u,u/6) =1/2 if u &F and u # 0

cosup(u,u/3) = —1/2 ifwe F and u # 0

cosup(u,u/2) = —1 itue Fandu+#0

cosuf,(u, —x) = cosuj(u, x) ifue Fandu#0andzeF"
cosuy(—u,x) = cosui(u,) ifue Fand u#0and z e F*

NOTE - cosul(u,z) = 1 should-hold if |z -2 - 7/u| < \/epsilong/rp
The cosup operation:

cosup : F' x F — F U {underflow, absolute_precision_underflow, invalid }

cosup(u,x) =cresulty,(cosu},(u,), nearest)
if cyclep(u,z) € F
=1 if cyclep(u,xz) = —0
= cyclep(u, x) otherwise

H.3.9.4 <{Argument angular-unit tangent

Thetahuy, approximation helper function:

TSPV SVAS L VR AT/)

Lot 7

-
tanu},(u,) returns a close approximation to tan(x -2 - 7/u) in R if u # 0, with maximum error
mazx_error_tanup(u).

Further requirements on the tanu}. approximation helper function are:

5.3.9 Operations for trigonometrics with given angular unit 45

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

tanuy,(u,n - u+) = tanuj(u, x) iftne Zandue Fand u# 0 and x € F"
tanuj.(u,u/8) =1 ifue Fandu#0

tanuy,(u,3 - u/8) = ifue Fand u#0

tanuy(u, —x) = —tcmuF(u, x) ifue Fandu#0and z € F*

tanuy,(—u, x) = —tanuj,(u, v) ifue Fandu#0andzeF"

NOTE 1 - tenufp(u,z) = z-2-7/uif |z -2-7/u| < fminNg.
The tanup operation:

tanup : F x F'— F U {—0, underflow, overflow, infinitary,

5.4

Th

cot

1 h B > 1 £ : 321
dDS0IULE_precision_anacriiow iiivalia y

tanup(u,x) = resulty(tanuj (u, x), nearestr)
if cyclep(u, x) € F and
cyclep(u,z) & {—u/2,—u/4,0,u/4, uj2}

= divp(0, u) if cyclep(u,x) € {—u/2,0}
= divp(—0,u) if cyclep(u, x) € {—0,u/2}
= 1nﬁn1tary(+oo) if cyclep(u,x) = u/4
= infinitary(—o0) if cyclep(u,x) = —u/4
= cyclep(u, x) otherwise

NOTE 2 — The infinitary notification can arise for tanup(u, z) oulf)when u/4 is in F.

9.5 Argument angular-unit cotangent

e cotuy. approximation helper function:
cotup : (u: F) x F* =R

wi,(u,) returns a close approximation to cot(z~2 - m/u) in R if u # 0, with maximum errdr
x_error_tanup(u).

Further requirements on the cotu}. approximation helper function are:

cotuwy(u,n - u+) = cotuj(u, x) iftne Zandue Fand u# 0 and x € F"
cotul,(u,u/8) =1 ifue Fandu#0

cotwy(u,3 - u/8) = —1 ifue Fandu#0

cotul,(u, —x) = —cotuj(ur) ifue Fandu#0and z € F"

cotul,(—u, x) = —cotuu,) ifue Fandu#0andzeF"

The cotup operation:
cotup : F' x F-=~"F U {—0, underflow, overflow, infinitary,
absolute_precision_underflow, invalid}

cotup () = result};(cotul,(u, x), nearesty)
if cyclep(u,x) € F and
cyclep(u,z) & {—u/2,—u/4,0,u/2}

46

=-0 if cyclep(u,x) = —u/4
= IUF U, L[aNUE (G, T)) it cycler(u, T) € {—u/2,—0,0,u/2}
= cyclep(u, x) otherwise

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.9.6 Argument angular-unit secant

The secu}, approximation helper function:
secup : (u: F) x F* - R

secu’;(u, x) returns a close approximation to sec(x -2 - m/u) in R if u # 0, with maximum error
maz_error_tanup(u).

Further requirements on the secuy approximation helper function are:

secup.(u,n - u+ x) = secu(u,) ifne Zand ue Fand u#0and x € F"
securp(u,0) =1 Huet andu#0

secu,(u, u/6) = 2 ifue Fandu#0

secut.(u,u/3) = —2 ifue Fandu#0

secut(u,u/2) = —1 ifue Fandu#0

secut.(u, —x) = secus.(u,) ifue Fand u#0andze F*
secuf,(—u, x) = secu(u,) ifue F and u# 0 and z € B4

The secup operation:
secup : F x F — F U {overflow, infinitary, absolute_precision.underflow, invalid}

secup(u,x) = result},(secul.(u, x), nearesty)
if cycler(u, z) & and

x
cyclep(u,z) & {—u/4,u/4}
= divp(1,cosup(u,z)) if cyclep(d, %) € {—u/4,—0,u/4}
= cyclep(u, x) otherwise

§.3.9.7 Argument angular-unit cosecant

The cscul. approximation helper function:

cscup : (u: F)x F* =R

Q

scut.(u, x) returns a close approximation to csc(x - 2 - 7/u) in R if u # 0, with maximum ergor
ax_error_tanup(u).

Further requirements on the escuj. approximation helper function are:

cscup(u,n - u + x) = cseuy (u,) ifne Zandu € Fand u €0 and x € F*
cscup(u,u/12) =2 ifue Fandu#0

escuf(u, u/4) =1 ifue Fandu#0

cscup(u, 5 @wf2) = 2 ifue Fandu#0

cscuf(unse) = —cscuy(u,) ifue Fand u#0andze F*
cscup(Su, x) = —esculy(u,) ifue Fandu#0andze F"

The cscup operation:

cscup : F x F'— F U {overflow, infinitary, absolute_precision_underflow, invalid }

cscumlu) — resyltt (cseu (u x) nearestz=)
I X 7 r\ '\ 77 7

if cyclep(u,x) € F' and
u

x
cyclep(u, x) & {—u/2,0,u/2}
= divp(1, sinup(u,z)) if cyclep(u,x) € {—u/2,—-0,0,u/2}
= cyclep(u, x) otherwise

5.3.9 Operations for trigonometrics with given angular unit 47

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.9.8 Argument angular-unit cosine with sine

cossinup : F' x F — (F x (FU{-0})) U{underflow, absolute_precision_underflow,
invalid}

cossinup(u,z) = (cosup(u,x),sinup(u,x))

NOTES

1 If there is an absolute_precision_underflow notification, then both result parts suffer
from the absolute_precision_underflow and the continuation values for both parts are

Th

ar

5.4
o

Th

.3.9.9 Argument angular-unit arc sine

gNaN. Similarly for NaN and infinitary arguments, as well as an angular unit with too
small absolute value.

2 If there is an underflow notification, only one of the result parts suffer from the underflow
and the other part has an absolute value greater than fminNg.

e arcsinuy approximation helper function:
arcsinup : F X F — R

sinu},(u,) returns a close approximation to arcsin(x) - u/(2 <o)*in R, with maximum errdr
x_error_sinup(u).

Further requirements on the arcsinuy. approximation helper function are:

arcsinuy(u,1/2) = u/12 itue F
arcsinuy(u,1) = u/4 itugF
arcsinuy,(u, —x) = —arcsinup(u,) ifa, e € F
arcsinuy,(—u, r) = —arcsinu(u,) if u,x € F

NOTE - arcsinui(u,z) = u/(2-7) if |23 fminNg.

The arcsinuﬁ range limitation helper*fimction (for u,z € F):

arcsinuﬁf(u, x) = max{upp(=ju/4]), min{arcsinuj,(u, z), downp(|u/4])}}
The arcsinug operation:

arcsinup : F x F — FYJ—0, underflow, invalid }

arcsinup(u,x) =-resulty (arcsinuﬁ(u, x),nearesty)
ifueGpandx € Fand |z <1and z #0
= mulp(u,) if u e Gp and z € {-0,0}
= no_result2r(u, x) otherwise

.9.10<=Argument angular-unit arc cosine

elayccosuy. approximation helper function:

arccosup : ' x F — R

arccosuj;(u, x) returns a close approximation to arccos(z) - /(2 - 7) in R, with maximum error
maz_error_sinup(u).

48

Further requirements on the arccosu}, approximation helper function are:

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

arccosuy,(u,1/2) = u/6 ifueF

arccosuj(u,0) = u/4 ifueF

arccosuy,(u, —1/2) = u/3 ifueF

arccosuj(u, —1) = u/2 ifueF

arccosuy,(—u,r) = —arccosuj(u, x) if u,z € F
#

The arccosuj. range limitation helper function (for u,z € F):
arccosu}% (u,) = max{upp(—|u/2|), min{arccosu},(u, z), downp(|u/2|)}}

The arccosup operation:

arccosup : F' x F' — F U {underflow, invalid }

arccosup(u,x) = result}(arccasuﬁ (u,x),nearestp)
ifueGpandz e F and |z| <1
= nearestr(u/4) ifue Gpand x =—-0
= no_result2r (u, x) otherwise

H.3.9.11 Argument angular-unit arc tangent

=

'he arctanu}. approximation helper function:

arctanuy : F x F'— R

S

rctanu},(u,) returns a close approximation to arctan(x)~/(2 - 7) in R, with maximum ergor
ax_error_tanup(u).

Further requirements on the arctanuy, approximation helper function are:

arctanuj(u,1) = u/8 ife F
arctanuy,(u, z) = u/4 if u,z € F and arctanuj.(u,z) # arctan(z) - 4/(2 - 7)
and x > 3 - rp/epsilonp
arctanuy,(u, —z) = —arctanuj(u,) if u,z € F
arctanuy,(—u,r) = —arctanuy(u,x) ifu,x e F
NOTE 1 - arctanuf(u,z) ~upN2 - 7) if |x| < fminNp
The arctanuﬁ range limitation helper function (for u,z € F):

arctanuﬁ (u, x) = max{upp(—|u/4|), min{arctanu},(u,), downp(|u/4])} }

The arctanur operation:

arctanup : F5OF — F U {—0,underflow, invalid }

arctanup(,T) = Tesult}(arctanuﬁ(u, x),nearestr)
ifueGrpandx € Fand z #0

= mulp(z,u) if u € Gp and z € {—0,0}

= upp(—u/4) ifue Gpand x = —o00 and u > 0
= downp(u/4) ifue Gr and £ = 400 and u > 0
= doump(—u/4) fueGrpandr=—coandu<(
= upp(u/4) ifue Gp and z =400 and u < 0
= no_result2r (u, x) otherwise

NOTE 2 - arctanup(u,z) = arcup(u,1,z). (arcur is specified in subclause 5.3.9.15 below.)

5.3.9 Operations for trigonometrics with given angular unit 49

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.3.9.12 Argument angular-unit arc cotangent

This clause specifies two inverse cotangent operations. One approximating the sign symmetric
(but discontinuous at 0) arccot, the other approximating the continuous (but not sign symmetric)
arccotc (both for non-radian angular units).

The arccotu}. approximation helper function:

arccotuy, : F x F' — R

arccotu},(u,) returns a close approximation to arccot(z) - u/(2 - m) in R, with maximum error

mqg

ar

£ Lo
L _CT T U Wit \UA}-
The arccotcu}, approximation helper function:
arccotcuy : FFx F'— R

cotcuy,(u, x) returns a close approximation to arccotc(x) - u/(2-7) in R, with maxilum errdr
x_error_tanup(u).

Further requirements on the arccotuy and arccotcuy, approximation helper functions are:

arccotuj,(u,1) = u/8 ifueF
arccotu},(u,0) = u/4 itueF
arccotuy,(u, —z) = —arccotu},(u,) ifu,z € F and z A0
arccotcuy,(u, x) = arccotuy,(u,) ifu,z € Fandrx > 0
arccotcuj(u,—1) =3 - u/8 ifueF
arccotcuy(u, x) = u/2 if u, z ¥ and arccotcu},(u, x) # arccote(x) - w
and<p’< —3 - rp/epsilonp
arccotcuy,(—u, x) = —arccotcuy.(u, x) ifanw e F
The arccotul{tE and arccotcuﬁ range limitationhelper functions (for u,xz € F):
arccotu}ié (u,x) = max{upp(—|u/4]), min{arccotu},(u, x), downp(|u/4])}}

arccotcu}iE (u, x) = max{upp(—|u/2[)ymin{arccotcuy,(u, x), downp(ju/2|)}}

The arccotupr operation:
arccotup : F x F'— F U {underflow, invalid }

arccotup(u, x) = Tesult}(arccotuff (u,x),nearestp)
fueGrpand x € F

= negr(arccotup(u,0)) if u e Gp and x = —0
= divp(u,) if u e Gp and x € {—00,+00}
= no_result2p(u, x) otherwise

NOTES
1 arceotur(u,negr(x)) = negr(arccotup(u, x)).

2 \Due to the range limitation, arccotur(u,0) need not equal arccotcur(u,0).

The arccotcup operation:

50

arccotcup : F' x F'— F U {underflow, invalid }

arccotcup(u,x) = result (arccotcu? (u,x),nearest)

fueGrpand x € F
= nearestp(u/4) ifue Gp and x = -0
= downp(u/2) ifueGpand x =—o0 and u >0

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

= upp(u/2) ifue Gp and x = —00 and u < 0
= divp(u,) if u € Gp and x = 400
= no_result2r (u, x) otherwise

NOTE 3 — arccotcur(u,x) = arcup(u,z,1). (arcup is specified in subclause 5.3.9.15 below.)

5.3.9.13 Argument angular-unit arc secant

The arcsecu}, approximation helper function:

a»)

b3 I I
7 bOCbLl/F o L L A%

=)

rcsecuy,(u,) returns a close approximation to arcsec(z) - /(2 - m) in R, with maximuiner
ax_error_tanup(u).

Further requirements on the arcsecu} approximation helper function are:

arcsecut,(u,2) = u/6 ifueF

arcsecuy(u, —2) = u/3 ifueF

arcsecuy,(u, —1) = u/2 ifueF

arcsecuwy(u,r) < u/4 if u,z € F and z > 0 axid’u > 0

arcsecup(u,) > u/4 ifu,z € Frand z <0 and u > 0

arcsecuf,(u,) = u/4 if u,z € F' and aresecu,(u,) # arcsec(z) - u

and |z| > 3 -@F /epsilonp
arcsecuy,(—u,x) = —arcsecuy.(u, x) if u,x € F,
The arcsecuﬁ range limitation helper function (forw,» € F):

arcsecuﬁ(u,:v) = max{upp(—|u/4|), min{arcsecuy.(u,), downp(ju/4()}}

o> 1

= max{upp(u/4), min{ascsecu},(u, z), downp(u/2)}}
fr<—-landu>0
= max{upr(u/2),min{arcsecu},(u, z), downp(u/4)}}
fz<—-landu<O
The arcsecur operation:

arcsecup : F x F — F \J {underflow, invalid}

arcsecup(u,xr) = 7“esult>“F(arcsecu}‘?£ (u,x),nearestp)
ifue Gpand z € F and 1 < ||
= downp(u/4) ifue Gp and x = —o00 and u > 0
= upp(u/4) ifue Gp and = +o0 and u > 0
= upp(u/4) ifue Gp and x = —o00 and u <0
= downp(u/4) ifue Gp and z =400 and u < 0
= no_result2r (u, x) otherwise

ror

H.8:9.14 Argument angular-unit arc cosecant

The arcecscuy, approximation helper function:

arcescuyp : FFX F— R

5.3.9 Operations for trigonometrics with given angular unit

51

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

arccscuy.(u, x) returns a close approximation to arccsc(z) - u/(2 - m) in R, with maximum error
max_error_tanup(u).

5.4

Further requirements on the arccscu}. approximation helper function are:

arcescuy(u,2) = u/12
arcescuy,(u, 1) = u/4

arccscus(u, —x) = —arcescuf(u, x)
arcescuy,(—u, x) = —arcescu,(u,)
The arccscuﬁ

ifueF
ifueF
ifu,xz e F
ifu,x e F

range limitation helper function (for u,x € F):

#

The arccscup operation:

arcescup(u,) i3

= mulp(—u,0)

= mulp(u,0)
= no_result2r(u, x)

.9.15

Thie arcu}, approximation helper function:

ar

52

arcup : F X FxF —TR

x_error_tanup(u).

arcuy,(u,z,x) = u/8

arcull (u, x,y)

The arcup 6peration:

areuwp(u, x,y)

arcescul (u, x) = max{upp(—|u/4]), min{arccscuy.(u,), downg(|u/4()}}

arccscup : F' x F'— F U{underflow, invalid }

= resulty(arcescul (u, x), nearestr)

Argument angular-unit angle from Cartesian ce-ordinates

uy(u, z,y) returns a close approximation to arel@,y) - u/(2 - 7) in R, with maximum errdr

[Further requirements on the arcuy, approximation helper function are:

arch(u 0,y) =u/4 ifu,y € Fand y >0
arcuy,(u,z, —x) =3 - u/8 ifu,z € Fand 2 <0
arcu*F(u x 0)—u/2 ifu,x € Fand z <0
arcuy,(u, x, —y) = —aredp(u, ,y)
arcuj(—u, x,y) = —@retg(u, z,y) ifu,z,y e F
The arcu}iE range limitation helper function (for u,z,y € F):
#

= max{upp(—|u/2|), min{arcu},(u, z,y), downp(|u/2|)}}

arcug)F x F x F — F'U{-0,underflow, invalid }

= result}, (arcuﬁf (u,z,y), nearestp)

fueGrand z € Fand 1 <
ifu € Gp and x = —00

if u € Gg and x = 400
otherwise

|

ifu,z € Fand z >0

if u,z,y € F and (y # 0 or x > 0)

ifuedGp

and z,y € F and (x < 0 or y # 0)

= mulp(u,0) nHueGprpandor € andx > 0and y =0

= downp(u/2) ifueGrpand x =—0and y=0and u >0

= upp(u/2) ifueGrpand x =—0and y=0and u <0

= arcup(u,0,y) ifue Gp and x =—0 and y € F U {—00,+00} and
y#0

= negr(arcup(u,z,0)) ifu € Gp and y =—0 and z € F U {—00,—0,+00}

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)
= mulp(0,u) ifueGpand x =400 and y € Fand y >0
= mulr(0, —u) ifueGrpand x =400 and y € Fand y <0
= nearestp(u/8) if u € Gp and x = 400 and y = 400
= nearestp(u/4) ifue Gp and x € F and y = 400
= nearestp(3 - u/8) if u € Gp and x = —00 and y = 400
= downp(u/2) if ue Gp and x = —o0 and y € F' and
y>0and u>0
= upp(—u/2) if u€ Gr and z = —o0 and y € F and
y<0and u >0
= upp(u/2) if u e Gr and z = —oo and y € F and
y>0and u<0
= downp(—u/2) if u € Gp and x = —o00 and y € F,and
y<0and u <0
= nearestp(—3 - u/8) if u € Gp and x = —00 and y="-00
= nearestp(—u/4) ifue Gp and x € F and y =—00
= nearestp(—u/8) if u € Gp and x = +ooand y = —o0
= no_result3p (u, z,y) otherwise
NOTE - Note that the arc operations do not return an 4avalid notification at the origin
(both second and third arguments in {—0,0}). See B.5.3.8 and B.5.3.9. Bindings may choose
to alter this behaviour.
f.3.10 Operations for angular-unit conversions
§.3.10.1 Converting radian angle to argument angular-unit angle
IPefine the mathematical function:
rad_to_cycle: R x R - R
rad_to_cycle(x,w) = arccos(cos(z))-w/(2-m) ifsin(x) >0 and w #0
= «=arccos(cos(z)) - w/(2-m) if sin(x) <0 and w # 0
The rad_to_cycle}, approximation helper function:
rad_to_cycle}. ; F2"«x F >R
nad_to_cycle}.(x, W)returns a close approximation to rad_to_cycle(x,w) in R, with maximum erfor

ax_error_radpif |z| < big-angle_rp.
Furtherreéquirements on the rad_to_cycle}, approximation helper function are (for w € F):

T+ 7/6,w) =w/12 ifne Zand|n-2 -7+ 7/6| < big.angle-rp
w4 7r/4w)=w/8 ifnéeZand|n-2 -7+ 7/4| < big.anglerp

[\)

rad-to_cyclej,(n -
rad_to_cyclej,(n -

rad to cyclep(n -

2
r4+r/3w)=w/6 ifneZandn-2-w+7/3| < biganglery
T+ 7m/2,w)=w/4 ifnéeZand|n-2 -7+ 7/2| < big.angle-rp
T+ 2-7w/3,w) =w/3

rad_to_cyclej,(n -
rad_to_cyclej,(n -

N NN DN

ifne Zand n-2-7+2-7/3| < big_anglerp

rad_to_cycley,(n-2 -7+ 3-7/4,w) =3 -w/8

ifne Zand |n-2 -7+ 3-7/4| < big-anglerp

5.3.10 Operations for angular-unit conversions

53

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

rad_to_cyclep,(n-2-m+5-7/6,w) =5 w/12
ifneZand n-2-74+5-7/6| < big-anglerp

rad_to_cyclej,(n -2 -1+ m,w) =w/2 ifne Zand |n-2 7+ 7| < big_angle_rp
rad_to_cyclel,(—x, w) = —rad_to_cycle},(z, w)

if z € F2™ and rad_to_cycle(z,w) # w/2
rad_to_cyclej,(x, —w) = —rad_to_cycle},(z, w)

if z € F?™ and rad_to_cycle(z,w) # w/2

The rad_to_cycler operation:

/'r'nr];fni ynla I N In Nl |I11nr]nv-'ﬂn117’ thn]ufnipwnn;a;nn711nr]awﬂn1v1vr ;“‘v")];d}

rad_to_cyclep(z,w)
= result};(rad_to_cycle},(x,w), nearesty)
if we Gp and z € F and |z| < big_artgle_rp anjd

x#0
= mulp(w,) if we Gp and z € {-0,0}
= absolute_precision_underflow(qNaN)
if we G and z € F and/|x}> big_angle_rp
= no_result2r (z,w) otherwise

5.3.10.2 Converting argument angular-unit angle to radian angle

Define the mathematical function:
cycle_torad : R X R — R

cycle_to_rad(u,z) = arccos(cos(x-2-m/u)) if sin(z-2-7/u) =0
= —arccos(cos(z - 2 - 7/w))" if sin(x-2-7/u) <0

The cycle_to_rady, approximation helper function:
cycletorady, : (u: F) x F* - R

cydqle_to_rady.(u, x) returns a close appréximation to cycle_to_rad(u,x) in R, if u # 0, with max
mum error max_error_radp.

Further requirements on the ‘cycle_to_rad}, approximation helper function are (for v € H,
u# 0):
cycle_to_rady.(u,n - w4 x) = cycle_to_rady,(u,)
ifne Zand x € F*
cycle_to_radjfuyu/12) = w/6
cycle_toradp(u,u/8) = m/4
cycle_tosvady,(u,u/6) = m/3
cycletorrady,(u,u/4) = m/2
cyeleto_rady,(u,u/3) =2-m/3
cycle_to_rady,(u,3 - u/8) =3 - m/4
f’y/‘]pffnj“nﬂi (717 5. 01//1 ‘)) —5. w//ﬁ
cycle_to_rady,(u,u/2) =m

cycle_to_rady,(u, —x) = —cycle_to_radj.(u, x)
if x € F* and cycle_to_rad(u,z) # 7
cycle_to_rady,(—u,z) = —cycle_to_rady(u, x)

if x € F* and cycle_to_rad(u,z) # 7

54 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The cycle_to_radp operation:
cycletoradp : F x F — F U {—0,underflow, absolute_precision_underflow, invalid}

cycle_to_radp(u,x)
= result};(cycle_to_rady,(u, x), nearestr)
if cyclep(u,z) € F and cyclep(u,z) # 0
= mulp(cyclep(u,x),u) if cyclep(u,z) € {—0,0}
= cyclep(u, x) otherwise

.3.10.3 Converting argument angular-unit angle to (another) argument angular-
unit angle

IDefine the mathematical function:
cycle_to_cycle : RXR XR —>R
cycle_to_cycle(u, z,w)
= arccos(cos(z - 2-7/u)) - w/(2-)
if u#0and w# 0 and§in(z-2-7/u) >0
= —arccos(cos(z -2 -7m/u)) - w/(2-m)
if u# 0 and w #0%and sin(z -2 - 7/u) <0
The cycle_to_cycle}. approximation helper function:
cycle_to_cycley, : (u: F) x F* x FF - R

ycle_to_cyclef,(u, z, w) returns a close approximation to.cycle_to_cycle(u, z, w) in R if u # 0 gnd
e /u| < big_angle_up, with maximum error max_errovradp.

Q

Further requirements on the cycle_to_cycle}, approximation helper function are (for u,w €|F,
#0):
cycle_to_cycley,(u,n - u + x,w) = cycteto_cycle},(u, x,w)
ifne Zand xz e F*

S

cycle_to_cycley,(u, u/12, w) = w12
cycle_to_cyclel,(u, u/8, w) £ w/8
cycle_to_cycles,(u, u/6,w) = w/6
cycle_to_cycley,(u, u/Aw) = w/4
cycle_to_cycley, (u, ¢/37w) = w/3
cycle_to_cycley,(@)3 - u/8,w) =3 - w/8
cycle_to_cycleglu, 5 - u/12,w) =5 - w/12
cycle_to_cyeley,(u, u/2, w) = w/2

(

cycle_totycley,(u, —x, w) = —cycle_to_cycley, (u, z, w)

if z € F* and cycle_to_cycle(u, z,w) # w/2
cyete’to_cyclel,(—u, x, w) = —cycle_to_cyclel.(u, z, w)

if x € F* and cycle_to_cycle(u,z,w) # w/2
cycle_to_cyclet(u, x, —w) = —cycle_to_cyclet:(u, x, w)

if x € F* and cycle_to_cycle(u,z,w) # w/2
The cycle_to_cycler operation:

cycle_to_cyclep : F x F x F' — F U {—0,underflow, absolute_precision_underflow,
invalid}

5.3.10 Operations for angular-unit conversions 55

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

cycle_to_cyclep(u, x,w)
= result};(cycle_to_cycley,(u, z,w), nearestr)

if w e Gp and cyclep(u,z) € F and cyclep(u,x) # 0

mulp(w, cyclep(u,z)) if w e Gp and cyclep(u, x) € {—0,0}
= absolute_precision_underflow(qNaN)
if w € Gr and
cycler(u, z) = absolute_precision_underflow
= no_result3p(u,z,w) otherwise

5.4

Th

iny

Th

pa.

5.4

Th

st

.11 Operations for hyperbolic elementary functions

ere shall be two maximum error parameters for operations corresponding to the hyperbolic and
erse hyperbolic functions:

max_error_sinhp € F
max_error_tanhp € F

|

e max_error_sinhp parameter shall have a value that is < 2-rnd_errorg./Ihé maz_error_tanh
ameter shall have a value that is < 2 - rnd_errorg.

.11.1 Hyperbolic sine

e sinhy, approximation helper function:
sinhp : F — R
h}.(x) returns a close approximation to sinh(z) in;R; with maximum error max_error_sinhyg.

Further requirements on the sinh}. approximation helper function are:

sinhp(x) = if x € F and sinh},(z) # sinh(x) and
2| < /2 epsilong /T
sinhj(—x) = —sinhj(x) iteeF

The sinhp operation:

sinhp : F — F U {overflow}

sinhp(x) = result};(sinh},(x), nearestr)
if x € F and |x| > fminNp
=2 if x € F and |z| < fminNp
=z if x € {—00,—0,+00}
= no_resultp(x) otherwise
NOTES

1 underflow is explicitly avoided.

2 \sinhp(x) will overflow approximately when |z| > In(2 - fmaz).

5.3.11.2 Hyperbolic cosine

The cosh}, approximation helper function:

56

coshp : F'— R

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

cosh},(z) returns a close approximation to cosh(z) in R, with maximum error maz_error_sinhp.

Further requirements on the cosh}. approximation helper function are:

coshi(z) =1 if x € F and cosh},(x) # cosh(x) and
|z| < v/epsilong
cosh},(—x) = coshj.(x) ifreF

The relationship to the sinh% approximation helper function for the sinhp operation in the
same library shall be:

coshi(x) > sinhi(x) ifveF

The coshg operation:

coshp : F — F U {overflow}

coshp(z) = result},(cosh},(z), nearestr)
ifeeF
=1 ifx =-0
= 400 if x € {—o00,+00}
= no_resultp(x) otherwise

NOTE - coshp(z) will overflow approximately when |z| > In(2 «fiaz).

§.3.11.3 Hyperbolic tangent

The tanh}, approximation helper function:
tanhy : F — R

tpnh}.(x) returns a close approximation to tanh(2) in R, with maximum error maz_error_tanfp.
Further requirements on the tanh}. appteximation helper function are:
tanhj(x) = x if z € F' and tanh},(x) # tanh(z) and
|z| < /1.5 - epsilong/rF
tanhj(x) =1 if z € F' and tanhj,(x) # tanh(z) and
x > arctanh(1 — (epsilong /(3 -rFp)))
tanhy,(—x) = —tanhp(w) ifeeF
The tanhg operationt
tanhp : F — F
tanhp(x) = result},(tanh}.(x), nearestr)
if x € F and |z| > fminNp
==z if z € F and |z| < fminNp
=-0 ifx=-0
=-1 if v =—00
=1 if ¢ = 400
= no_resullp(x) otherwise

NOTE - underflow is explicitly avoided.

5.3.11 Operations for hyperbolic elementary functions 57

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.11.4 Hyperbolic cotangent

The coth}, approximation helper function:
cothp, : F'— R

coth¥,(x) returns a close approximation to coth(z) in R, with maximum error maz_error_tanhp.

© ISO/IEC 2001 — All rights reserved

Further requirements on the coth}. approximation helper function are:

coth(xz) =1

if x € F and coth},(x) # coth(z) and
x > arccoth(1 + (epsilonp/4))

cothp(—x) = —cothp(x)

The cothp operation:
cothp : F — F U {infinitary, overflow}
cothp(x)

= infinitary(+o00)
= infinitary(—oo)
-1

1

= no_resultp(x)

5.3.11.5 Hyperbolic secant

Thie sech}. approximation helper function:
sechp, : ' — R

se¢h}.(x) returns a close approximation te'sech(x) in R, with maximum error maz_error_tanhy.

sech,(z) =1

sechy,(—x) = sech},(#)
sechi(x) < fminDp/2

The sechp operation:
sechp : F < F'U {underflow}
sechp ()

=1
=0

Hxel

= result},(coth},(x), nearesty)

ifreFandx #0

ifx=0
ifz =-0
if x = —00
if x =400
otherwise

NOTE - cothp(x) will overflow approximately when |1/2{>)fmaz .

Further requirements on the sechi{approximation helper function are:

if x € F and sech}.(x) # sech(x) and
|z| < \/epsilong/rE

iteeF

if v € F and > 2 — In(fminDr /4)

= result};(sech}.(x), nearestr)

fxekF
ifz=-0
if x € {—00,+00}

AV
—TO_TESTHE{T)

58 Specifications for integer and floating point operations

+1 .
OUIICTWISC

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

5.3.11.6 Hyperbolic cosecant

The csch}, approximation helper function:
cschy : FF — R

cschy,(z) returns a close approximation to csch(x) in R, with maximum error max_error_tanhp.

Further requirements on the csch}. approximation helper function are:

cschiy(—x) = —eschy () ifereF
cschi(x) < fminDp /2 if x € F and x > 2 — In(fminDr/4)

The relationship to the sech}. approximation helper function for the sechr operation in the
spme library shall be:
cschi(x) > sechi.(x) ifre Fandx >0
The cschp operation:
cschp : F — F U {underflow, overflow, infinitary }
cschp(x) = result};(cschi,(z), nearestr)
ifxe Fand z #0
= divp(1,x) if x € {—00,—0,0,F00}
= no_resultp(x) otherwise
NOTE - cschp(x) will overflow approximately when [V/x] > fmaz .
§.3.11.7 Inverse hyperbolic sine
The arcsinh} approximation helper function;
arcsinhy : FF' — R
arcsinh’,(x) returns a close approximation to arcsinh(z) in R, with maximum error maz_error_yinhp.
Further requirements on the qr¢sinhy. approximation helper function are:
arcsinh},(z) = if z € F and arcsinh},(z) # arcsinh(z) and
lz| < \/3 -epsilong /rp
arcsinhj,(—z) = “arcsinhj(x) ifereF
The arcsinhp opeération:
arcsinhp ~F)— F
arcsinftg(x) = result}(arcsinhi,(z), nearestr)
if x € F and |z| > fminNp
=z if x € F and |z| < fminNp
=z if x € {—00,—0,+00}
= no_resultp(x) otherwise
NOTE - underflow is explicitly avoided.
5.83.11 Operations for hyperbolic elementary functions 59

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

5.3.11.8 Inverse hyperbolic cosine

The arccosh}, approximation helper function:

arccoshp, : ' — R

© ISO/IEC 2001 — All rights reserved

arccosh};(x) returns a close approximation to arccosh(x) in R, with maximum error max_error_sinhp.

The relationship to the arcsinh? approximation helper function for the arcsinhr operation in
the same library shall be:

arccoshy,(x) < arcsinh(x) iteeF

5.4

Th

ar

The arccoshp operation:

arccoshp : F'— F U {invalid }

arccoshp(x) = resulty;(arccoshi,(z), nearestr)
fxeFandz>1
= +o00 it z =400
= no_resultp(x) otherwise

.11.9 Inverse hyperbolic tangent

e arctanh}. approximation helper function:
arctanhy, : F' — R
tanh},(x) returns a close approximation to arctanh(z) in“R, with maximum error max_error_t(

Further requirements on the arctanhy, approximatienwhelper function are:

arctanhj(x) = x if o€ F and arctanh},(z) # arctanh(z) and
[x| < \/epsilong/rE
arctanhy(—z) = —arctanhi,(x) ifreF

The arctanhp operation:

arctanhp : F' — F U {infinitary; invalid }

arctanhp(x) = result}.(arctanh},(x), nearestr)
if x € F and fminNp < |z| <1
=z if x € F and |z| < fminNp
=-—0 ifx=-0
=_infinitary(+o0) ife=1
= infinitary(—o0) ife=-1
= no_resultp(x) otherwise

NOTE\/+ underflow is explicitly avoided.

5.4

.12.10 Inverse hyperbolic cotangent

Th

e arccothy. approximation helper function:

arccothp, : ' — R

’rth.

arccoth’;(z) returns a close approximation to arccoth(x) in R, with maximum error max_error_tanhp.

60

A further requirement on the arccoth}, approximation helper function is:

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

arccothy,(—x) = —arccoth},(x) ifeeF
The arccothg operation:

arccothp : F — F U {underflow, infinitary, invalid }

arccothp(x) = resulty,(arccoth},(x), nearestr)
ifx € Fand || > 1
= infinitary(+o00) ife=1
= infinitary(—o0) ifx =-1
=-0 if v =—00
=10 I v =400
= no_resultp(x) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point, types,
e.g. IEC 60559 ones.

§.3.11.11 Inverse hyperbolic secant

The arcsech}, approximation helper function:
arcsech : ' — R
rcsech’,(x) returns a close approximation to arcsech(z) in R with maximum error max_error_
The arcsechp operation:

arcsechp : F' — F U {infinitary, invalid}

arcsechp(x) = result};(arcsech},(x), neanesty)
fre FandO0<z <1
= infinitary(+o00) if x € {—0,0}
= no_resultp(x) otherwise

§.3.11.12 Inverse hyperbolic cosecant

The arccschy, approximationhélper function:
arccschyp : F' — R
rceschy () returns aelose approximation to arcesch(z) in R, with maximum error max_error_
A further requirément on the arccsch}, approximation helper function is:
arceschp{=x) = —arceschi, () ifeeF
The arcésehr operation:

arcesthp : F — F U {underflow, infinitary}

arceschp(x) = result},(arceschy,(x), nearestr)
ifre Fandao #0
= divp(1,x) if x € {—00,—0,0,4+00}
= no_resultp(x) otherwise

NOTE - There is no underflow for this operation for most kinds of floating point types,
e.g. IEC 60559 ones.

5.3.11 Operations for hyperbolic elementary functions

anhp.

anhp.

61

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.4 Operations for conversion between numeric datatypes

Numeric conversion between different representation forms for integer and fractional values can
take place under a number of different circumstances. E.g.:

a) explicit or implicit conversion between different numeric datatypes conforming to part 1;

b) explicit or implicit conversion between different numeric datatypes only one of which con-
forms to part 1;

c¢) explicit or implicit conversion between a character string and a numeric datatype.

Thie latter includes outputting a numeric value as a character string, inputting a numeric valy
from a character string source, and converting a numeral in the source program to a val@ern
nujneric datatype (see clause 5.5). This part covers only the cases where at least one of the/sourd
angl target is a numeric datatype conforming to part 1.

o D 0

'When a character string is involved as either source or target of a conversion, tli§ part does ng
spé¢cify the lexical syntax for the numerals parsed or formed. A binding standard should specif]
the lexical syntax or syntaxes for these numerals, and, when appropriate, how the lexical syntaj
for| the numerals can be altered. This could include which script for the digifs to use in a positio
syqtem (Latin-Arabic digits, Arabic-Indic digits, traditional Thai digitsy.etc.). With the exceptio
of the radix used in numerals expressing fractional values, differences’in lexical syntactic detai
thgt do not affect the value in R denoted by the numerals should not affect the result of th
comversion.

D »n B B R <

Character string representations for integer values can include representations for —0, +oq,
—o0, and quiet NaNs. Character string representations.for floating point and fixed point valuds
shguld have formats for —0, +00, —o0, and quiet.NaNs. For both integer and floating poirt
values, character strings that are not numerals nor-special values according to the lexical syntax
us¢d, shall be regarded as signalling NaNs whenused as source of a numerical conversion.

For the cases where one of the datatypes.nvolved in the conversion does not conform to part]
thq values of some numeric datatype parameters need to be inferred. For integers, one need t|
infpr the value for bounded, and if thdt’is true then also values for maxint and minint, and fd
string formats also the radiz. For_Hoating point values, one need to infer the values for r, j
angl emax or emin. In case a precise determination is not possible, values that are ‘safe’ for tha
ingtance should be used. ‘Safe* values for otherwise undetermined inferred parameters are such
that

o <

[

—+

) monotonicity of e conversion function is not affected,

b) the error in(the conversion does not exceed that specified by the maximum error parametg
(see below);

=]

[

)
~—

if theswalue resulting from the conversion is converted back to the source datatype by
cowversion conforming to this part, the original value should be regenerated if possible, an

[on

)~overflow and underflow are avoided if possible.

If, and only if, a specified infinite special value result cannot be represented in the target
datatype, the infinity result shall be interpreted as implying the infinitary notification. If, and
only if, a specified NaN special value result cannot be represented in the target datatype, the
NaN result shall be interpreted as implying the invalid notification. If, and only if, a specified

62 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

—0 special value result cannot be represented in the target datatype, the —0 result shall be
interpreted as 0.

5.4.1 Integer to integer conversions

Let I and I’ be non-special value sets for integer datatypes. At least one of the datatypes
corresponding to I and I’ conforms to part 1.

convert;_p : I — I' U {overflow}

COMUETt IS (L) = TeSwi(T) ifre=T
=z if x € {—00,—0,+00}
= qNaN if x is a quiet NaN
= invalid(gNaN) if = is a signalling NaN

NOTE - If both I and I’ are conforming to part 1, then this conversion is covered-by part 1.
This operation generalises the cvt;_ - of part 1, since only one of the integer datatypes in the
conversion need be conforming to part 1.

H.4.2 Floating point to integer conversions

—

et I be the non-special value set for an integer datatype conferming to part 1. Let F' be the
on-special value set for a floating point datatype conforming,to part 1.

=

floorp_;: F'— I U {overflow}

floor p_, () = resultr(|z]) if e F
=z if.xr € {—00,—0,400}
= qNaN if x is a quiet NaN
= invalid(gNaN) if is a signalling NaN

roundingp_y : F — I U {—0,overflow}

roundingp_(x)
= result;(round(z)) if x € F and (z > 0 or round(z) # 0)
=—0 if x € F and x < 0 and round(z) =0
=\z if x € {—00,—0,+00}
= qNalN if z is a quiet NaN
= invalid(gNaNN) if x is a signalling NaN

ceilingp>,; : F — I U {—0, overflow}

cesbirlgr_r(x) = result;([z]) if x € Fand (x>0 or [z] #0)
=-0 ifr e Fand x <0and [z] =0
=z if x € {—00,—0,+00}
= qNalN if z is a quiet NaN
= invalid(gNaN) if x is a signalling NaN

5.4.1 Integer to integer conversions 63

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

5.4.3 Integer to floating point conversions

Let I be the non-special value set for an integer datatype. Let F' be the non-special value set for
a floating point datatype. At least one of the source and target datatypes is conforming to part 1.

convert;p : I — F U {overflow}

convert;p(x) = resultp(z,nearesty) ifx el
=z if x € {—00,—0,+00}
= qNaN if z is a quiet NaN
= invalid(gNaN) if > is a signalling NaN

NOTE - When both I and F conform to part 1, integer to nearest floating point conversious
are covered by part 1. In this case the operations cvt;_ g and convert;_ p are identical.

5.4.4 Floating point to floating point conversions

Define the least radix function, (b, defined for arguments that are greater than 0:
b:Z2—-Z2
Ib(r) = min{n € Z | n > 1 and there is an m € Z such that r<"n"}

Let F', F', and F” be non-special value sets for floating point_datatypes. At least one of thie
soyrce and target datatypes in the conversion conforms to partil.

There shall be a max_error_converty parameter that.gives the maximum error when convert
ing from F to F’ and lb(rp) # Ib(rg/). The maz_errors¢onvertp parameter shall have the valy
0.5 If the binding standard requires that this parameter has the value 0.5 (see annex A), th
parameter need not be made available for programs:

n O

If b(rp) = lb(rpr), the maximum error shall be 0.5 ulp when converting from F to F’, eve
whien the implementation is only partially conforming (see Annex A), but this is not reflected i
any parameter.

= =

The converty,_, , approximation‘helper functions:
converty, g F—R
copverty,_ p,(x) returns a clgseapproximation to x in R, with maximum error max_error_convertp:.

NOTE 1 — With the maximum error 0.5 ulp, this and the below conversion helper functions
are not really needed./However, Annex A allows for partial conformity, such that the maximum
error for these helper functions may be greater than 0.5 ulp.

Further requiferhents on the convert},_ p, approximation helper functions are:

converti m(x) =« itreZNF
conuerty, i (x) >0 ifxe Fandz >0
converty, p(—x) = —converty,_ p(x) iteeF
converty, p(x) < converty, m(y) ifr,y€ Fand x <y

Relationship to other floating point to floating point conversion approximation helper functions
for conversion operations in the same library shall be:

converty,_ g (x) = converty,_ g (x) if Ib(rpr) = Ib(rp) and z € F N F”
The converty_ g operation:

convertp_ g : F — F' U {overflow, underflow}

64 Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

convertp_ g (x) = resultp(x,nearestp) if x € F and Ib(rp) = Ib(rp)
= result}, (converty._ p(x), nearestpr)
if x € F and lb(rp) # 1b(rF)

=z if x € {—00,—0,+00}
= qNalN if x is a quiet NaN
= invalid(gNaNN) if = is a signalling NaN

NOTES

2 Modern techniques allow, on the average, efficient conversion with a maximum error of 0.5
ulp even when the radices differ. C99 [17], for instance, requires that all floating point value
conversion is done with a maximum error of 0.5 ulp.

3 IEC 60559 requirements imply that the max_error_convert p, parameter has a value < 0.9%
Such a large maximum error for the conversion is only partially conforming. See Annéx A.

4 When the maximum error is 0.5, the conversion helper function above can be the identity
function.

5 When both datatypes conform to part 1, and the radices for both of these\floating point

datatypes are the same, floating point to nearest floating point conversiens are covered by
part 1. In this case the operations cvtp_. g and convertp_. g/ are idenpical.

§.4.5 Floating point to fixed point conversions

]

et F' be the non-special value set for a floating point datatype conforming to part 1. Let D
he non-special value set for a fixed point datatype.

—

A fixed point datatype D is a subset of R, characterised by a radix, rp € Z (> 2), a dens
p € Z (> 0), and if it is bounded, a maximum positive value, dmaxp € D* (> 1). Given th
vialues, the following sets are defined:

D* = {n/(r?) | neZ}

S

D =D* if D is not bounded
D = D* N [-dmaxp, dmaxp) if D is bounded

NOTE 1 - D corresponds(to*scaled(rp, dp) in ISO/IEC 11404 Language independent
datatypes (LID) [10]. LIDhas no parameter corresponding to dmaxp even when the datatype
is bounded.

The fixed point rounding helper function:
nearestp : R &-P*
i$ the rounding fufiction that rounds to nearest, ties round to even last digit.

The fixed @oint result helper function, resultp, is like resultp, but for a fixed point dataty]
It will retiitn overflow if the rounded result is not representable:

resultp : R X (R — D*) — DU {—0,overflow}

E)

be

ese

resultp(xz,rnd) = rnd(x) if rnd(xz) € D and (rnd(xz) # 0 or = > 0)
=—0 Trnd(z) =0 and T < 0
= overflow if x € R and rnd(x) € D

There shall be a max_error_convertp parameter that gives the maximum error when convert
from F to D and lb(rr) # lb(rp). The maz_error_convertp parameter shall have the value 0.5

ing
CIf

the binding standard requires that this parameter has the value 0.5 (see annex A), this parameter

need not be made available for programs.

5.4.5 Floating point to fixed point conversions

65

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

convert}._ () returns a close approximation to x in R, with maximum error max_error_convertp.

© ISO/IEC 2001 — All rights reserved

If Ib(rp) = Ib(rp), the maximum error shall be 0.5 ulp when converting from F' to D, even
when the implementation is only partially conforming (see Annex A), but this is not reflected in
any parameter.

The converty._, , approximation helper function:

* .
convertp_p: F —TR

Further requirements on the convert}._, ;, approximation helper functions are:

for

5

5.4

r'n'nom”r'fi U(ﬁr\ = freceZAOFE
converty,_, p(z) >0 ifre Fandz >0
converty,_ p(—x) = —converty,_ p(x) iteeF

converty,_, p(x) < converty,_ 5 (y) ifz,ye Fand z <y

Relationship to other floating point to fixed point conversion approximation helper function
conversion operations in the same library shall be:

converty,_ p(x) = converth, (x) if Ib(rpn) = Ib(rp) and © € F MF”
The convertp_,p operation:
convertp_.p : F'— D U{—0,overflow}

convertp_.p(x) = resultp(x,nearestp) if x € F and lb(rf) = lb(rp)

= resultp(converty,_ (x), nearestp)

if x € F and lb(rp) # 1b(rp)

=z if v € {=006,—0,+00}
= qNaN if x istaquiet NaN
= invalid(gqNaN) if 2% a signalling NaN
NOTES
2 The datatype D need not be visible in the’programming language. D may be a subtype of

strings, according to some format. Eyen‘so, no datatype for strings need be present in the
programming language.

This covers, among other things{ foutput” of floating point datatype values, to fixed point
string formats. E.g. a binding mhay say that float_to_fixed_string(z, m, n) is bound
to convertp_.s,, , (x) where.Sy, ,, is strings of length m, representing fixed point values in
radix 10 with n decimals. The binding should also detail how NaNs, signed zeroes and
infinities are represented in S, ,, as well as the precise format of the strings representing
ordinary values. AINote that if the length of the target string is limited, the conversion may
overflow.)

IEC 60559.requirements imply that the max_error_convertp parameter has a value < 0.97.
Such aarge maximum error for the conversion is only partially conforming. See Annex A.

When¢the maximum error is 0.5, the conversion helper function above can be the identity
funetion.

1.6 Fixed point to floating point conversions

93]

Let F be the non-special value set for a floating point datatype conforming to part 1. Let D and
D’ be the non-special value set for fixed point datatypes.

66

The convert},_, approximation helper function:

* .
convertp_p: D — R

Specifications for integer and floating point operations

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

convert}, ., p(z) returns a close approximation to x in R, with maximum error max_error_convertp.

Further requirements on the convert},_, » approximation helper functions are:

converty, p(z) =2 iftreZnND
convert}, p(x) >0 ifzeDandx>0
converty, p(—x) = —convert}, p(z) ifxeD

convert}, p(x) < converty, n(y) ifr,ye Dandx <y

Relationship to other floating point and fixed point to floating point conversion approximation
helper functions for conversion operations in the same library shall be:

converty, p(x) = converty, p(x) if Ib(rp/) =1b(rp) and x € DN D’
convert},_ p(x) = converty, p(z) if Ib(rg) =1b(rp) and z € DN F’

The convertp_,rp operation:
convertp_,r : D — F U {overflow, underflow}

convertp_,p(x) = resultp(z,nearestp) if x € D and Ib(rp) = Ib(rp)
= result},(convert}, p(z),nearestr)
if x € D and Ib(rp) # Wrr)

=z if x € {—00,—0,+00%}
= qNalN if z is a quiet NaN
= invalid(gNaNN) if = is a signallifig NaN

NOTES

1 This covers, among other things, “input” of floating point datatype values, from fixed point
string formats. E.g. a binding may say that string:te_float(s) is bound to converts,, , —.r(s)
where S, , is strings of length m, where m is thellength of s, and n is the number of digits
after the “decimal symbol” represented in Sy,.i%/as well as the precise format of the strings
representing ordinary values.

2 When the maximum error is 0.5, the cenversion helper function above can be the identity
function.

8.5 Numerals as operations.in a programming language

NOTE - Numerals in strings, or input, is covered by the conversion operations in clause 5.4.

Each numeral is a parameterless operation. Thus, this clause introduces a very large number
df operations, since the number of numerals is in principle infinite.

§.5.1 Numerals for integer datatypes

Ilet I’ be a non-special value set for integer numerals for the datatype corresponding to I.

An_integer numeral, denoting an abstract value n in I’ U {—0, 400, —00,qNaN, sNalN}, (for
aln integer datatype with non-special value set I, shall result in

converta o(n)

i e LX)

For each integer datatype conforming to part 1 and made directly available, there shall be
integer numerals with radix 10.

For each radix for numerals made available for a bounded integer datatype with non-special
value set I, there shall be integer numerals for all non-negative values of I. For each radix for

5.5 Numerals as operations in a programming language 67

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

numerals made available for an unbounded integer datatype, there shall be integer numerals for

all

non-negative integer values smaller than 10%°.

For each integer datatype made directly available and that may have special values:

a) There should be a numeral for positive infinity. There shall be a numeral for positive infinity

if there is a positive infinity in the integer datatype.

b) There should be numerals for quiet and signalling NaNs.

5.5.2 Numerals for ﬂnafing Pninf annfyppq

Le
Le

a f]

for

be

be
At

av

no
ex|
lar

by

6

A fixed point numeral, denoting an abstract value x in D U{—0,400, —00, qNalN;sNaN}, fq
oating point datatype with non-special value set F', shall result in

convertp_,p(x)

A floating point numeral, denoting an abstract value x in F’ U {—0, 4067 =00, qNaN, sNaN}
a floating point datatype with non-special value set F', shall resultin

convertp _ p(x)

For each floating point datatype conforming to part 1 and made-directly available, there shoul
radix 10 floating point numerals, and there shall be radix10 fixed point numerals.

For each radix for fixed point numerals made availabledfor a floating point datatype, there sha

least a precision (dp) of 20 should be available,~&t least a range (dmaxp) of 10%° should h
ilable.

For each radix for floating point numeralsimade available for a floating point datatype wit
h-special value set F, there shall be nmmerals for all bounded precision and bounded rang
ressible non-negative values of R. Ihe precision and range bounds for the numerals shall b
be enough to allow all non-negativervalues of F' to be reachable.

For each floating point datatype made directly available and that may have special values:

h) There should be a numeral for positive infinity. There shall be a numeral for positive infinit
if there is a positive (infinity in the floating point datatype.

b) There should be&naumerals for quiet and signalling NaNs.

The conversion~Operations used for numerals as operations should be the same as those use
default for €onverting strings to values in conforming integer or floating point datatypes.

Notification

D be a non-special value set for fixed point numerals for the datatype corresponding~te’ H.
F’ be a non-special value set for floating point numerals for the datatype corresponding to H.

numerals for all bounded precision and bounded range expressible non-negative values of R.

L

—

|1

[©)

o O =

Notification is the process by which a user or program is informed that an arithmetic operation
cannot return a suitable numeric result. Specifically, a notification shall occur when any arith-
metic operation returns an exceptional value. Notification shall be performed according to the
requirements of clause 6 of part 1.

68

An implementation shall not give notifications for operations conforming to this part, unless
the specification requires that an exceptional value results for the given arguments.

Notificatio

n

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

The default method of notification should be recording of indicators.

6.1 Continuation values

ISO/IEC 10967-2:2001(E)

If notifications are handled by a recording of indicators, in the event of notification the imple-
mentation shall provide a continuation value to be used in subsequent arithmetic operations.
Continuation values may be in I or F' (as appropriate), or be special values (—0, —oo, 400, or a
gNaN).

n

< 0O 2 &

o =

=0 Ny

N

F‘]nafing pnim— Aafafypnc that satisfv the rnq11iramnn+c of TEC 60559 have qpar-ia] value
ddition to the values in F. These are: —0, 400, —oo, signalling NaNs (sNaN), and g
NaNs (qINalN). Such values may be passed as arguments to operations, and used as resiilts
pntinuation values. Floating point types that do not fully conform to IEC 60559 caxi &lso h
alues corresponding to —0, +00, —oo, or NalN.

Continuation values of —0, 400, —00, and NalN are required only if the parameter iec_54
as the value true. If the implementation can represent such special values in'the result dataty)
hey should be used according to the specifications in this part.

4

Relationship with language standards

L computing system often provides some of the operations gpeeified in this part within the cont
f a programming language. The requirements of the present standard shall be in addition to th
mposed by the relevant programming language standards.

This part does not define the syntax of arithmeti®¢ expressions. However, programmers need
now how to reliably access the operations specified in this part.
NOTE 1 — Providing the information reguired in this clause is properly the responsibility of

programming language standards. An_individual implementation would only need to provide
details if it could not cite an appropriate clause of the language or binding standard.

An implementation shall documént the notation that should be used to invoke an operat
pecified in this part and made available. An implementation should document the notation t
hould be used to invoke an_dperation specified in this part and that could be made available

NOTE 2 - For example) the radian arc sine operation for an argument x (arcsing(z)) might
be invoked as

arcsin(z) in Pascal [27] and Ada [11]

asin (&) in C [17] and Fortran [22]

(agin/x) in Common Lisp [42] and ISLisp [24]
funetion asin(z) in COBOL [19]

withye suitable expression for the argument ().

An implementation shall document the semantics of arithmetic expressions in terms of com

iet
or
hve

0

Pt
DSe

to

jon
hat

DO-

tiens of the operations specified in clause 5 of this part and in clause 5 of part 1.

NOTE 3 — An arithmetic expression might not be executed as written.

For example, if z is declared to be single precision (SP) floating point, and calculation is done
in single precision, then the expression

arcsin(x)

might translate to

6.1 Continuation values

69

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

no
ari

Onlly transformations which alter the semantics of an expression (the values produced, and th

no
be

ap

In

fol

70

arcsingp(x)

If the language in question did all computations in double precision (DP) floating point, the
above expression might translate to

arcsinpp(convertsp—,pp(x))

Alternatively, if x was declared to be an integer, and the expected result datatype is single
precision float, the above expression might translate to

convertpp_,sp(arcsinpp(convert;_,pp(x)))

[43

-+

Comupilers offen “ountimize’ cade as nart of compilation Thue an arithmetic ovnrecssion miah
] i i i 7 i ls)

—

be executed as written. An implementation shall document the possible transformations
thmetic expressions (or groups of expressions) that it permits. Typical transformations-fuglud

@

) Insertion of operations, such as datatype conversions or changes in precision.

b) Replacing operations (or entire subexpressions) with others, such as “cos (-x)'>— “cos (x)[’
(exactly the same result) or “pi - arccos(x)” — “arccos(-x)” (more aecurate result) g
“exp(x)-1" — “expml(x)” (more accurate result if z > —1, less accurate result if x < —1,
different notification behaviour).

—

) Evaluating constant subexpressions.

1) Eliminating unneeded subexpressions.

= O

ifications generated) need be documented. Only the rahge of permitted transformations nee
documented. It is not necessary to describe the specifi¢ choice of transformations that will b

[¢)

plied to a particular expression.

The textual scope of such transformations shall be documented, and any mechanisms that
vide programmer control over this process shiould be documented as well.

NOTE 4 - Tt is highly desirable that_programming languages intended for numerical use
provide means for limiting the transformrations applied to particular arithmetic expressions.

Documentation requirements

[¢)

order to conform to thispart, an implementation shall include documentation providing th
owing information t6 programmers.

NOTE - Mugh“of'the documentation required in this clause is properly the responsibility of
programming language or binding standards. An individual implementation would only need
to providefdetails if it could not cite an appropriate clause of the language or binding standard.

h) A listof 'the provided operations that conform to this part.

) For'each maximum error parameter, the value of that parameter or definition of that paran|
eter function. Only maximum error parameters that are relevant to the provided operation
need be given.

»n

¢) The value of the parameters big_angle_rp and big_angle_up. Only big angle parameters that
are relevant to the provided operations need be given.

d) For the nearestp function, the rule used for rounding halfway cases, unless iec_559p is fixed
to true.

Documentation requirements

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

—

ISO/IEC 10967-2:2001(

E)

e) For each conforming operation, the continuation value provided for each notification condi-
tion. Specific continuation values that are required by this part need not be documented. If

the notification mechanism does not make use of continuation values (see clause 6), cont
uation values need not be documented.

in-

For each conforming operation, how the results depend on the rounding mode, if rounding

modes are provided. Operations may be insensitive to the rounding mode, or sensitive to
but even then need not heed the rounding mode.

For each conforming operation, the notation to be used for invoking that operation.

it,

)

m)

Since the integer and floating point datatypes used in conforming operations shall satisfy
pquirements of part 1, the following information shall also be provided by any conforming imy
hentation.

For each maximum error parameter, the notation to be used to access that parameter.
The notation to be used to access the parameters big_angle_rp and big_angle_u gt

For each of the provided operations where this part specifies a relation to anether operat
specified in this part, the binding for that other operation.

For numerals conforming to this part, which available string conversion operations, includ
reading from input, give exactly the same conversion results, evendf'the string syntaxes
‘internal” and ‘external’ numerals are different.

The means for selecting the modes of operation thay énsure conformity.

The translation of arithmetic expressions into ‘¢embinations of the operations provided
any part of ISO/IEC 10967, including any_ase made of higher precision. (See clause
part 1.)

The methods used for notification, and'the information made available about the notificati
(See clause 6 of part 1.)

The means for selecting among the notification methods, and the notification method u
in the absence of a user selection. (See clause 6.3 of part 1.)

When “recording of indig¢ators” is the method of notification, the datatype used to repres
Ind (see clause 6.1,2'of part 1), the method for denoting the values of Ind, and the notat
for invoking each~ofthe “indicator” operations. E is the set of notification indicators. 'l
association ofaltes in Ind with subsets of E must be clear. In interpreting clause 6.1.2
part 1, the Set*of indicators E shall be interpreted as including all exceptional values lis
in the signatures of conforming operations. In particular, £ may need to contain infinit4
and absolute_precision_underflow.

1on

ing
for

the

by

1 of

pn.

bed

et
jon
'he

of
bed
Iry

. Documentation requirements

71

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

72 Documentation requirements

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

Annex A
(normative)

Partial conformity

E)

If an implementation of an operation fulfills all relevant requirements according to the main
normative text in this part, except the ones relaxed in this Annex, the implementation of that

TTation 1S Said to partiaiiy CoTfoTTIT tO tIS Part.
Conformity to this part shall not be claimed for operations that only fulfill partial conferm

Partial conformity shall not be claimed for operations that relax other requirements,than th
relaxed in this Annex.

A.1 Maximum error relaxation

This part has the following maximum error requirements for conformity.
mazx_error_hypotr € [0.5,1]

max_error_expp € [0.5,1.5 - rnd_errorp]
mazx_error_powerp € [0.5,2 - rnd_errorg]

max_error_radrg = 0.5
max_error_sing € [0.5,1.5 - rnd_errorg]
max_error_tang € [0.5, 2. rnd,errorp]

max_error_sinup : F' — F U {invalid}
max_error_tanup : F' — F U {invalid}

max_error_sinhp € [0.5,2 - rnd_errory)
max_error_tanhp € [0.5,2 - rnd_ervory]

max_error_converty = 0.5
max_error_convertp = 0.5

Hor v € Gp, the mazx_epifor sinup(u) parameter shall have a value in the interval [0.5,
hax_error_singp|, and the-max_error_tanup(u) parameter shall have a value in the intey
[0.5,2 - max_error_tamiy}. For u € T, the max_error_sinup(u) parameter shall be equal
haz_error_sing, andthe max_error_tanur(u) parameter shall be equal to max_error_tang,
the same library.

In a partially conforming implementation the maximum error parameters may be greater tl
Fhat is spegified by this part. The maximum error parameter values given by an implementat
shall stilladequately reflect the accuracy of the relevant operations, if a claim of partial conform

<

i$ made.

&

y.
pse

9.
val

to
for

Lan
jon

ity

A fio11 £ 3 3 1 Lot Loll 1 4 Lol 3 4 1.
7Y paltiary CONTOr g T preirCIItatioSrarr COCUHTCIIT W HITCIT TG XTHTO T CTTOT D ar e veT s 1T

greater values than specified by this part, and their values.

A. Partial conformity

ve

73

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

A.2 Extra accuracy requirements relaxation

This part has a number of extra accuracy requirements. These are detailed in the paragraphs
beginning “Further requirements on the opy approximation helper function are:”.

In a partially conforming implementation these further requirements need not be fulfilled. The
values returned must still be within the maximum error bounds that are given by the maximum
error parameters, if a claim of partial conformity is made.

The extra accuracy requirements together with the sign and monotonicity requirements imply
a number of requirements that are not stated explicitly, due to that they are implied. Removi
on¢ or more of thee given requirements may thus remove some weaker requirements that wer
not intended to be removed. Some of the remaining weaker requirements may need to be(state
explicitly if a stronger requirement is removed.

@

[on

A partially conforming implementation shall document which extra accuracy regairements aie
not fulfilled by the implementation, and which weaker requirements that are stillfulfilled.

AJ3 Relationships to other operations relaxation

[

Thiis part has a number of requirements giving relations to other opérations. These are detaile
in [the paragraphs beginning with wordings like “Relationship to‘the op}. approximation helpd
funjction for operations in the same library shall be:”.

—

In a partially conforming implementation these relationships need not be fulfilled. The value
retjurned must still be within the maximum error bounds.that are given by the values provide
for[the maximum error parameters, if a claim of partial.conformity is made.

= »n

—+

A partially conforming implementation shall déctiment which operation relationships are nd
fulfilled by the implementation.

Al Very-close-to-axis angular normalisation relaxation

[om

Thiis part requires, explicitly and By implication, that angular normalisation (sometimes calle
argument reduction) is done sq_that the (intermediate or explicit) result is accurate within les
thgn an ulp. For angular valugs; especially in radians, that denote an angle very close to an axig,
thgt requires extra high précision in the calculation of the normalised value.

[73)

]

In a partially conforiming implementation the accuracy requirements for angular normalisatio
forf angles that are wéry’ close to an axis need not be fulfilled.

A partially cenforming implementation shall document which trigonometric operations and fqr
whiich (small)iintervals near axes angular values, that are not so large that absolute_precision_
underflow notifications would be the result, the angular normalisation accuracy requirements
ard not fulfilled by the implementation. The implementation shall also document how large thle
abgohute error for angular normalisation is also for angles that are in those intervals very negr

an d;)&ib. It llld,y btf applupllatc fUL d billdillg tU bl)b'l.,ify UII1C Ol 1IIUIT pdzld,llltittflb L}Ubblibillg tll S
relaxation if this relaxation is allowed by a binding. The maximum error parameter values given
by an implementation shall still adequately reflect the accuracy of the relevant trigonometric oper-
ations for angular values outside of those very-near-axis intervals, if a claim of partial conformity
is made.

74 Partial conformity

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

A.5 Part 1 requirements relaxation

Part 2 depends on the datatypes and operations specified in part 1. Part 1 allows for partial
conformity. Part 2 operations may thus be only partially conforming if a relevant datatype or
part 1 operation is only partially conforming to part 1.

A.5 Part 1 requirements relaxation 75

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

76 Partial conformity

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Annex B
(informative)

Rationale

This annex explains and clarifies some of the ideas behind Information technology — Language
independent arithmetic — Part 2: Elementary numerical functions (LIA-2). This allows the stan-
T v v T b P o b b v gh

—

[1C alldard, altllo

B.1 Scope

he scope of LIA-2 includes the traditional arithmetic operations, that are mot-already covered
Hy LIA-1, usually provided in programming languages. This includes operations that are numéric
Approximations to real elementary functions. Even though these operdtions usually are imiple-
mented in software rather than hardware they are still to be regarded-as*atomic in the sense that
they are never (as seen by the user) interrupted by an intermediaté-notifiacation.

B.1.1 Inclusions

—

IA-2 is intended to define the meaning of some operations on integer and floating point types
s specified in LIA-1 (ISO/TEC 10967-1), in addition*to the operations specified in LIA-1. LIA-2
oes not specify operations for any additional arithinetic datatypes, though fixed point datatypes
are used in some of the specifications for convetsion operations.

jov)

The specifications for the operations covered by LIA-2 are given in sufficient detail to

a) support detailed and accurate numerical analysis of arithmetic algorithms,
b) enable a precise determination:éf conformity or non-conformity, and

c¢) prevent exceptions (like,overflow) from going undetected.

LIA-2 only covers operations that involve integer or floating point datatypes, as specified| in
IITA-1, and in some cases also a Boolean datatype, but then only as result. In order to inclide
dlso fixed point string\formats for floating point values, fixed point datatypes are also involved in
spme of the LIA-2-conversion operations.

The operations covered by LIA-2 are often to some extent covered by programming language
tandards, like the operations sin, cos, tan, arctan, and so on. Annex C also surveys whiich
perations.are already covered by various programming languages.

o . mn

LIA2 includes some operations that are not (yet) common in programming languages. Ljike
dperations to normalise angular values, and to convert angular values between different angylar
units. These operations are closely related to the other operations included in LIA-2, and these
operations are non-trivial to implement with high accuracy. The angular normalisation operations
are useful to keep high accuracy in the angular values used when increasing angular values are
used.

LIA-2 does in no way prevent language standards or implementations including further arith-
metic operations, other variations of included arithmetic operations, or the inclusion of further

B. Rationale 77

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

arithmetic datatypes, like rational number or fixed point datatypes. Some of these may become
the topic of standardization in other parts of LIA.

B.1.2 Exclusions

LIA-2 is not concerned with techniques for the implementation of numerical functions. Even when
an LIA-2 operation specification is made in terms of other LIA-1 or LIA-2 operations, that does
not imply a requirement that an implementation implements the operation in terms of those other
operations. It is sufficient that the result (returned value or returned continuation value, and
exd¢eption behaviour) is as if it was implemented in terms of those other operations.

[¢)

LIA-2 does not provide specifications for operations which involve no arithmetic processifg),lik
asdignment and parameter passing, though any implicit conversions done in association-with suc
op¢rations are in scope. The implicit conversions should be made available to the progtammer 4
explicit conversions.

[ZH=E

LIA-2 does not cover operations for the support of domains such as linear ‘algebra, statistics,
angl symbolic processing. Such domains deserve separate standardization, if\standardized.

LIA-2 does not cover how to represent numeric values, internally (as/bit patterns) or externallly
(ad character strings).

B.2 Conformity

Conformity to this standard is dependent on the existenice of language binding standards. Each
prggramming language committee (or other organization responsible for a programming language
or pther specification to which LIA-1 and LIA-2 may apply) is encouraged to produce a binding
coyering at least those operations already required by the programming language (or similar) anf
alsp specified in LIA-2.

The term “programming language” is hépe used in a generalised sense to include other comput
ing entities such as calculators, spread~sheets, page description languages, web-script languages,
angl database query languages to thesextent that they provide the operations covered by LIA-2.

A conforming system consists of an implementation (which obeys the requirements) togethe
with documentation which shows how the implementation conforms to the standard. This do
unfentation is vital since(itygives crucial characteristics of the system, such as the range fd
trigonometric operatiors,)and the accuracy of the operations.

—

[

The binding of ATA-2 facilities to a particular programming language should be as natural
as |possible. ExiSting language syntax and features should be used for operations, parameters,
notification, and so on. For example, if a language expresses application of cosine as “cos(x),
th¢n LIA-2¢cosine operations cosp should be bound to (overloaded) “cos” functions.

Suggestions for bindings are provided in annex C. Annex C has partial binding examples fqr
a Illumber of existing programming languages and LIA-2. In addition to the bindings for the
OpETations i LIA-Z, it IS also Necessary 10 provide bindings for the Maxiimuill eITor paraineters
and big angle parameters specified by LIA-2. Annex C contains suggestions for these bindings. To
conform to this standard, in the absence of a binding standard, an implementation should create
a binding, following the suggestions in annex C.

78 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

LIA-2 has fairly strict accuracy requirements. Annex A deals with the case that an implemen-
tation (or binding standard) conforms to most aspects of LIA-2, but not necessarily all of the
accuracy requirements.

Some implementations, or binding standards, may wish to conform to most of the requirements
in LIA-2, but make exceptions from the specifications given by LIA-2 in certain cases. Some of
the bindings examples in annex C also exemplify, in different ways, such changes of specification.
Real bindings are expected to elaborate such differences much more than in the examples given
in annex C.

B.2.1 Validation

—

IA-2 gives a very precise description of the operations included. This will expedite thé ¢onstrjuc-
on of conformity tests. It is important that objective tests are available.

-

LIA-2 does not define any process for validating conformity.

Independent assurance of conformity to LIA-2 could be by spot checks-on“products by a yal-
lation suite. Alternatively, checking could be regarded as the responsibility of the vendor, who
would then document the evidence supporting any claim to conformity;

—e

B.3 Normative references

The referenced IEC 60559 standard is identical to the IEEE\754 standard and the former IEC $59
standard.

B.4 Symbols and definitions

p—

TA-2 uses the same specification mechanismsas LIA-1. LIA-2, however, uses helper functions to a
huch higher degree, in particular for the @pecification of the operations approximating elementry
transcendental functions.

=

As in LIA-1, operations specifiedin LIA-2 are done so by cases, and in some of the cases helper
flinctions are used. In contrast.to LIA-1, LIA-2 also cover cases that involve “special valups”
for the floating point operations. The specification of how to handle these “special values”| as
arguments and results far the included operations is one of the major added-values of LIA-2.

The cases in each-operation specification are non-overlapping, though there is an “otherwige
case at the end of:many lists of cases.

B.4.1 Symbols

B.4.1'13> Sets and intervals

MESSEEET DTN R V-V 0 LD U P-EE L =W -V-C S E CCU=C ~UE T P=] I+ bocbonry ocbhocny ~xone 41 +thor ooy 110 1ntad 1
héinterval-notationisinecommon-se—H-hasbeen—chosenoverthe-othercommonly—used-interva

notation (with brackets and round parentheses mixed) because the chosen notation has no risk of
confusion with the pair notation.

B.2.1 Validation 79

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.4.1.2 Operators and relations

Note that all operators, relations, and other mathematical notation used in LIA-2 is used in their
conventional exact mathematical sense. They are not used to stand for operations specified by
IEC 60559, LIA-1, LIA-2, or, with the exception of program excerpts which are clearly marked, any
programming language. For example, z/u stands for the mathematically exact result of dividing
x by u, independently of whether that value is representable in any floating point datatype or
not, and z/u # divp(z,u) is often the case. Likewise, = is the mathematical equality, not the eqp
operation: 0 # —0, while eqr(0,—0) = true.

B.1.1.3 Mathematical functions

Thie elementary functions named sin, cos, etc., used in LTA-2 are the exact mathematical functions,
no} any approximation. The approximations to these mathematical functions areCintroduced i
clajuses 5.3 and 5.4 and are written in a way clearly distinct from the mathematical functions.
E.g., sin},, cos}., etc., which are unspecified (or, more precisely, partially specified) mathematic
furjctions approximating the targeted exact mathematical functions to a¢specified degree; sing
codp, etc., which are the operations specified by LIA-2 based on the-zespective approximatin
furfction; sin, cos, etc., which are programming language names that“may be bound to LIA-
op¢rations. sin and cos are thus very different from sin and cos.

-

—_—

NO 0%

B.#1.1.4 Exceptional values

LIA-2 uses a modified set of exceptional values comparedto LIA-1. Instead of LIA-1’s undefined,
LIA-2 uses invalid and infinitary. IEC 60559 distinguishes between invalid and divide_by _zer
(tHe latter is called infinitary by LIA-2). The distinction is valid and should be recognised, sing
infinitary indicates that an infinite but ezacfdesult is (or can be, if it were available) returned,
whiile invalid indicates that a result in the target datatype (extended with infinities) cannot, g
shguld not, be returned with adequate accuracy.

© O

—

[@2)

LIA-1 distinguished between integer_overflow and floating_overflow. This distinction
mdot, since no distinction was madé between integer_undefined and floating undefined. I
adglition, continuing this distin¢tion would force LIA to start distinguishing not only integer|_
overflow and floating_overflow, but also fixed_overflow, complex_floating_overflow, comj
pléx_integer_overflows.et¢. Further, there is no general consensus that maintaining this distin
tiop is useful, and mafy, programming languages do not require a distinction. A binding standar
can still maintain_distinctions of this kind, if desired.

=)

(o

infinitary iS/Aused for integer operations, when the operation rightfully should return an infin}
taily value, but'no infinitary value occurs among the arguments. infinitary is also used for floatinig
polnt operations for the same circumstances. That includes when the approximated real-valued
furfctienthas a pole at the argument point.

T IA allows for three methods for handing notifications: recording of indicators change f
control flow (returnable or not), and termination of program. The LIA-2 preferred method is
recording of indicators. This allows the computation to continue using the continuation values.
For underflow and infinitary notifications this course of action is strongly preferred, provided
that a suitable continuation value can be represented in the result datatype.

80 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Not all occurrences of the same exceptional value need be handled the same. There may be
explicit mode changes in how notifications are handled, and there may be implicit changes. For
example, invalid without a specified continuation value may cause change of control flow (like
an Ada [11] exception), while invalid with a specified continuation value may use recording of
indicators. This should be specified by bindings or by implementations.

The operations may return any of the exceptional values overflow, underflow, invalid,
infinitary, or absolute_precision_underflow. This does not imply that the implemented op-
erations are to actually return any of these values. When these values are returned according to
the LIA specification, that means that the implementation is to perform a notification handling
for that exceptional value. If the notification handling is by recording of indicators, then whap is
actually returned by the implemented operation is the continuation value.

Most bindings are expected to be such that underflow and infinitary are “quietdy”.handled.
f infinities are guaranteed to be representable, infinitary may even be disregardeéd complet¢ly,
uietly returning the infinitary result without even any setting of any indicator(

NoXl el

B.4.1.5 Datatypes

The sequence types [I] and [F] appear as input datatypes to a few operations: max_seqr, min_sdqr,
ged_seqr, lem_seqr, mazr_seqp, min_seqr, mmax_seqr, and mmin>seqr.

In effect, a sequence is a finite linearly ordered collection,of elements which can be indexed
from 1 to the length of the sequence. Equality of two ei\ihore elements with different indilkces
i$ possible. Sequences are used in LIA-2 as an abstragtion of arrays, lists, other kinds of one-
dimensional sequenced collections, and even variableength argument lists. As used in LIA-2 the
drder of the elements and number of occurrences offeach element, as long as it is more than one,
oes not matter, so sets, multi-sets (bags), and\tuples also qualify.

B.4.2 Definitions of terms

=

[ote the LIA distinction between exéeptional values, exceptions, and exception handling (hapd-
ng of notification by non-returnable change of control flow; as in, e.g., Ada). LIA exceptiopal
vialues are not the same as Ada exceptions, nor are they the same as IEC 60559 special valugs.

Note also that LIA-l-used the term denormal for what IEC 60559 and LIA-2 refer tolas
subnormal.

—

B.5 Specifications for the numerical functions

=

'he abstract values used in the specifications are independent of datatype, just like the mathe-
haticalsmambers are. That they are represented differently in, say, single precision and in doupble
Hrecision is out of scope for LTA-2.

=

Phe onpiﬁr‘-gﬁnnc in LIA-2 for ﬂnnfi‘ng pni‘nf npnraﬁn‘nq gix o details about certain Qpnr-iq] vallies

(they are ‘special’ in that they are not in R). These special values are commonly representable in
floating point datatypes, in particular all floating point datatypes conforming to IEC 60559.

B.4.2 Definitions of terms 81

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.5.1 Basic integer operations

Integer datatypes can have infinity values as well as NaN values, and also may have a —0. A
corresponding I must, however, be a subset of Z. —0 is commonly available when the integer
datatype is represented using radix-minus-1-complement, e.g., 1’s complement. When using, e.g.,
2’s complement, the representation that would otherwise represent the most negative value can
be used as a NaN. Especially for unbounded integer types, the inclusion of infinities is advisable,
not for overflow, since these do not occur, but in order to have a smallest and a largest value in
the type.

B.pb.1.1 The integer result and wrap helper functions

Thie result; helper function notifies overflow when the result cannot be represented,in [F. Whe
an|overflow occurs, and recording of indicators is the method for handling (integef), overflows,
comtinuation value must be given. For bounded integer datatypes, maxinty and minintp ca
be|suitable continuation values, if infinities are not representable. In some instances a wrappe
redult, see below, may be used as continuation value on overflow. Few dnteger datatypes offq
repiresentations for positive and negative infinity. In case such representations are offered, the
call be used as continuation values on overflow, similar to their use in fleating point datatypes. LI}
do¢s not specify the continuation value in this case, that is left t& bindings or implementations,
bup LIA does require that the continuation value(s) be documénted.

< = =B & B

@

The wrap; helper function wraps the result into a valie“hat can be represented in I. Th
redult is wrapped in such a way that the value returned can be used to implement extended rang
intpger arithmetic.

)

B.p.1.2 Integer maximum and minimum

Thie operations for integer maximum and(minimum are trivial, except taking the maximum qr
mihimum of an empty sequence (emptylarray, empty list, zero number of parameters, or similar).
Thie case for zero number of parameéters is often syntactically excluded (as in Fortran, Commo
Lidp, and ISLisp), while an empty array or empty list given as a single argument must usually b
possible to handle at ‘runtime’\LIA specifies an infinitary notification for this case. infinitar
is fo be interpreted as “exaet/infinite result from finite operands”, in this case an empty list d
numbers. The infinitary, motification is not specified if any of the arguments is an infinity.

[}
- oSN D =

If infinity values aré’required to be available for a particular integer datatype, a binding majy
require the continuation values specified to be returned without any infinitary notification. Whep
thq specified cemtinuation value, +00 or —o0o, is not available, other suitable continuation valugs
mgy be usedydnd if so they must be documented. If the integer datatype is bounded, but without
infinities,smdzintr may be used in place of 400 and minintr may be used instead of —oo.

Infinities as arguments are not specified for these operations, since infinities are rarely availabl

in nteger ann‘ryppq However compare the Qpp(‘iﬁ(’ﬂﬁﬁ‘n for max and min npp‘m‘rinnq for floatin

[¢)

point datatypes (clause 5.2.2).

B.5.1.3 Integer diminish

Integer diminish is sometimes called ‘monus’.

82 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(

B.5.1.4 Integer power and arithmetic shift

E)

The integer arithmetic shift operations can be used to implement integer multiplication and integer
division more quickly in special cases (assuming the shift operation is supported by the hardware,

and that support is used).

The shift operations shift either ‘right’ or ‘left’ depending on the sign of the second argument.
‘Right’ shift is done with a positive second argument, and ‘left’ shift with a negative second

argument.

Any continuation value used on overflow here must be documented, either by the bind

ing

sfandard or by the implementation.

B.5.1.5 Integer square root
B.5.1.6 Divisibility tests

Hven and odd are simple special cases of the divisibility test offered as separately named operati
h several programming languages.

e

B.5.1.7 Integer division (with floor, round, or ceiling) and remainder

When the result of a division between integers is not an integer, but the final result is required
He an integer, the quotient must be rounded. There are several ways of doing this; floor, ceili
and unbiased round to nearest being the most important. Truncating, rounding towards zg
i$ often provided, which, however, may introducesubtle program errors. Integer division, 4
remainder, is often used for grouping into groupswef n items, it is natural to put item ¢ into grd
divide(i,n). If i can be negative, and truncation is used, group 0 will get 2 -n — 1 items, rat
than the desired n.

pady returns the negative of the remainder after division and ceiling. The reason for thi
wofold: 1) for unsigned integer datafypes the remainder is < 0, and would thus often not
epresentable unless negated, and 2) it is intuitively easier to think of the “places left in the]
nfilled group of equi-sized and packed groups” as a positive entity, a padding.

o = oo

residuey can overflow dnly for unsigned integer datatypes (minint; = 0), and does so for

rany cases, and negating-/it does not change this. residue; should therefore not be provided
nsigned integer datatypes. residuer rounds in the same way as residuer. residuer is of
bferred to as IEEENfemainder.

L T ol

When there is'no exception, for n € Z these operations fulfill:
quotp(t + n - y,y) = quot;(z,y) +n,
rattor(x +2-n-y,y) = ratior(z,y) + 2 - n,
groupy(z +n-y,y) = groupr(z,y) + n,

1ns

nd

up
ner

is
be
Ast

00
for
ben

mod;(x +n-y,y) = modr(z,y),

residuer(x +2-n-y,y) = residuer(x,y), and
padi(z +n-y,y) = padr(z,y).

Note that the divt and rem’ from LIA-1 do not fulfill similar useful equalities, due to the

disruption around 0 for this pair of operations.

And, when there is no exception, the sign rules are:

B.5.1 Basic integer operations

83

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

quoty(z,y) = —groupr(—z,y),
quoty(z,y) = —groupr(z, —y),
ratior(x,y) = —ratior(—x,y),
ratior(x,y) = —ratior(x, —y),

mOdI(xv y) = —padj(a:, _y)v and
residuer(z,y) = residuer(z, —y).

Finally, when there is no exception, the integer division and remainder operations come in pairs
that fulfill:

aerotola o o ar Lo od (v o)) —
a1 I\ J) o TOTTEVRRELNYY I 9

ratior(z,y) - y + residuer(z,y) = x, and
groupy(z,y) -y — padi(z,y) = .

B.p.1.8 Greatest common divisor and least common positive multiple

Thie greatest common divisor is useful in reducing a rational number to its lowest.terms. The leaqdt
common multiple is useful in converting two rational numbers to have thessame denominator.

[

Returning 0 for ged(0,0), as is sometimes suggested, would be ineerrect, since the greates
cofnmon divisor for 0 and 0 should be the supremum (upper limit) 6 Z7, since elements of Z
divfide 0. The supremum of Z* is infinity. Note also that for an n> 0, gcdr(n,+00) should be 1,
givlen a reasonable extension of gedy to cover infinity arguments.

=+

@

gedr will overflow only if bounded; = true, minint; = <mdxint; — 1, and both arguments ax
mipint;. The greatest common divisor is then —miénintpowhich then is not in 1.

Least common positive multiple, lem(x,y), overflows for many “large” arguments. E.g., if
angl y are relatively prime, then the least common niultiple is |z - y|, which may be greater tha
mdxinty.

]

B.p.1.9 Support operations for extended integer range

Thiese operations would typically be wsed to extend the range of the highest level integer datatyp|
supported by the underlying hardware of an implementation.

[¢)

@

The two parts of an integet product, mul_ovy(z,y) and mul_wrapr(x,y) together provide th
complete integer product.\Similarly for addition and subtraction. The use of wrap; guaranteq
that overflow will not ‘eccur.

[@2)

B.p.2 BasicdAloating point operations

F must benansubset of R. Floating point datatypes can have infinity values as well as NaN value
angl alsopmiay have a —0. These values are not in F'. The special values are, however, commonlly
available in floating point datatypes today, thanks to the wide adoption of IEC 60599.

Note that for some operations the exceptional value invalid is produced only for argument
values involving —0, 400, —o0, or sNalN. For these operations the signature given in LIA-2 does
not contain invalid.

The report Floating-Point C Extensions [57] discusses possible ways of exploiting the IEC 60559
special values, much of which is now integrated in C. The report identifies some of its suggestions

84 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

as controversial and cites Branch Cuts for Complex Elementary Functions, or Much Ado about
Nothing’s Sign Bit [52] as justification.

The following paragraphs is a short summary of the specifications of IEC 60559 regarding the
creation and propagation of signed zeros, infinities, and NaNs. There is also some discussion of
the material in references [52, 53, 50] where suggestions on this matter are made.

IEC 60559 specifies that 0 and —0 compare equal. The sign is supposed to indicate the direction
of approach to zero. The sign is reliable for a zero generated by underflow in a multiplication
or division operation, and should be reliable also for operations that approximate elementary

transcendental functions{seethe LIA secif onRs—in e not—reliablefo oTO

gdenerated by an implied subtraction of two floating point numbers with the same value, for-whiich
case the zero is arbitrarily given a + sign. The phrase “implied subtraction” indicates either the
addition of two oppositely signed numbers or the subtraction of two like signed numbers:

On occurrence of floating overflow or division of a non-zero number by zero, andniplementatjon
pnforming to IEC 60559 sets the appropriate status flag (if trapping is notenabled) and then
ontinues execution with a result of +00 or —oo if rounding is to nearest. Infinities as such do pot
hdicate that an overflow or division by zero has occurred; infinities can berexact values. ITEC 60559
tates that the arithmetic of infinities is that associated with mathematical infinities. Thus,|an
finity times, plus, minus, or divided by a non-zero finite floating point number yields an infiffity
br the result; no status flag is set and execution continues. Thegse'rules are not necessarily vglid
r infinities generated by overflow, though they are valid if thesinfinitary arguments are exact.

et Ml il e Mo

NaNs are generated by invalid operations on infinities, 0\divided by 0, and the square root df a
egative number (other than —0). Thus NaNs can represént unknown real or complex values) as
rell as totally undefined values. TEC 60559 requires that the result of any of its basic operatipns
lith one or more NalN arguments shall be a NaN. Fhis principle is not extended to the numerical
hinctions by Floating-Point C' Extensions [57].\The controversial specifications in Floating-Pdint
' Extensions [57], Branch Cuts for Complex, ®lementary Functions, or Much Ado about Nothirg’s
ign Bit [52], and Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Pdint
| rithmetic [53] are based on an assumption that all NaN operands represent finite non-zero r¢al-

< N T A Mg 4 =

alued numbers.

The LIA-2 policy (for clauses*5.2 and 5.3) for dealing with signed zeros, infinities, and NgNs
i$ as follows:

a) The output is a quiet-NaN for any operation for which one (or more) arguments is a qiiet
NaN, and none of\the other arguments is a signalling NaN. There is then no notification.

b) If a mathenragical function h(z) is such that h(0) = 0, the corresponding operation opp[z)
returns z<if)z € {0,—0} and h has a positive derivative at 0, and opr(z) returns negp(zf) if
x € {0;=0} and h has a negative derivative at 0.

c¢) Fersan argument vector, 7', where that argument vector involves 0, —0, +00, or —oo, the
résult of the operation opp() is

L A=)
— = O\ /

zZ— T

where an approach to zero is from the positive side if @ = (...,0,...), and the approach
is from the negative side if @ = (...,—0,...). There is no notification if the limit exists,
is finite, and is path independent. The returned value is 400 or —oo if the limiting value
is unbounded, and the approach is towards a point infinitely far from the origin. The

returned value is infinitary(4o00) or infinitary(—oo) if the limiting value is unbounded,

B.5.2 Basic floating point operations 85

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.

Th

value in F'. The resultp helper function notifies underflow when there is (risk for) denarmalisatio,

los
thd
OV¢

ovgrflow or underflow, a continuation value must be provided. LIA-2 specifies’a continuation valug,

an

value. If the parameter iec_559r has the value true, then IEC, 60559 in many cases requiie

pa;

pa

B

As
flo

CO1

cofnparisons to implement. The signs of zeroes may need to be inspected using copysign d

18

B

.p.2.2 Floating point maximum and minimium

.p.2.3 Floating poeint diminish

and the approach is towards a finite point. The result is —O0 if the limit is zero and the
approaching values are path independently negative. The result is 0 if the limit is zero and
the approaching values are path independently positive. If a path independent limit does
not exist the value returned is invalid, and a notification occurs, with a continuation value
of gNaNN if appropriate.

An exception is made for the arcg and arcup operations, where it is found significantly more
useful to return certain non-exceptional values for the origin and for the four double infinity
argument cases, than to return an exceptional value, even with non-NaN continuation values.

5.2.1 The rounding and floating point result helper functions

e resultp helper function notifies overflow when the result is too large to be approximated by

continuation value when a zero is appropriate for an underflow continuation value. When a

2}
h
5 for a tiny result. The resultr helper function also ensures that a properli'signed zero {s
h
rflow or underflow occurs, and recording of indicators is the method for handling (floating point))

] if that can be represented in the target datatype, that value should be used as continuatiop

ticular continuation values (consistent with what is specified by LIA-2) to be used.

The continuation values for overflow are defined to be uf\accordance with IEC 60559. Thed
ticular choices for continuation values are useful for interval arithmetic.

@

for the integer case, the maximum and minitnum of empty sequences need be handled, but fgr
iting point datatypes, infinities are usually available.

For floating point datatypes there islalso usually a negative zero available, and returning th
rect sign on a zero result for the maximum and minimum operations requires more than simp]

= O®© @

egativezero.

for the integer,easeé, this operation computes the positive difference. Note that dimp(+00,400] =
ralid (qINalN(Jisconsistent with that subp(4+00,400) = invalid(qNalN) according to IEC 60559.

An implémentation of dimp could be if x >= y then x-y else 0.

.p2.4 Floor, round, and ceiling

Since fmaxp always has an integral value for floating point types that conform to LIA-1, no
overflow can occur for these operations.

86

Note that the sign of a zero result is maintained in accordance with IEC 60559:

Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

floor p(x) = negp(ceilingr(negr(x)))
roundingr(z) = negr(roundingr(negr(z)))
ceilingp(z) = negp(floor p(negr(z)))
Negative zeroes, if available, are handled in such a way as to maintain these identities.

Note that rounding restp always is an exact operation, while floor_rest is not always exact
for negative arguments, and ceiling_resty is not always exact for positive arguments.

B.5.2.5 Remainder after division and round to integer

The remainder after division and unbiased round to integer (IEC 60559 remainder, ox IEEE
pmainder) is always an exact operation (unless there is an implied division by zero), eves if phe
oating point datatype only conforms to LIA-1, but not to the more specific IEC 60559.

—

jumn)

Remainder after floating point division and floor to integer cannot be exactifor all pairq of
arguments from F. For a small negative numerator and a positive denominater, the resulting
vialue loses much absolute accuracy in relation to the original value. Such an operation is therefpre
rot included in LIA-2. Similarly for floating point division and ceiling.

See also the radian normalisation and the argument angular-unit)‘'normalisation operatipns
(p.3.8.1, and especially 5.3.9.1).

B.5.2.6 Square root and reciprocal square root

-

'he inverses of squares are double valued, the two possible results having the same magnitude wjith
pposite signs. For a non-zero result, LIA-2 requires*that each of the corresponding operatipns
bturn a positive result.

= O

v/ cannot be exactly halfway between twe values in F' if z € F. For \/x to be exactly halfway
etween two values in F' would require that it had exactly (p + 1) digits (last digit non-zero) [for
s exact representation. The square of suc¢h a number would require at least (2-p+1) digits wjith
st p 4+ 1 digits not all zero, which eould not equal the p-digit number x.

The extensions sqrtp(4+00) =\#oo and sqrtp(—0) = —0 are mandated by IEC 60559. LIA-2
also requires that these hold for implementations which support infinities and signed zeros. How-
gver, it should be noted thdt while the second is harmless, the first may lead to erroneous results|for
a 400 generated by an addition or subtraction with result just barely outside of [—fmax ., fmaf]
dfter rounding. Henee_its square root would be well within the representable range. The possi-
Hility that LIA-2-should require that sqrtp(+o00) = invalid(4o00) was considered, but rejected
Hecause of the principle of regarding arguments as exact, even if they are not exact, when ther¢ is
a non-degenerate neighbourhood around the argument point, for which the mathematical functjon
ogn R is defired. In addition sqrtp(4+00) = 400 is already required by IEC 60559.

—.

—

Note-that the requirement that sqrtp(z) = invalid(gNaN) for z strictly less than zerq is
rhandated by IEC 60559. It follows that NaNs generated in this way represent imaginary valies,
which would becolie complex throughi addition and subtraction, and even imaginary intinities on
multiplication by ordinary infinities.

The rec_sqrtp operation will increase performance for scaling a vector into a unit vector. Such
an operation involves division of each component of the vector by the magnitude of the vector or,
equivalently and with higher performance, multiplication by the reciprocal of the magnitude.

B.5.2 Basic floating point operations 87

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.5.2.7 Multiplication to higher precision floating point datatype

This operation is intended for the case that there exist at least two floating point datatypes F
and F”, ideally such that the product of two numbers of type I is always exactly representable in
type F".

To obtain higher precision for multiplication, in the absence of a suitable level of precision F’,
a programmer can exploit the paired mulr and mul_lor operations.

B.5.2.8 Support operations for extended floating point precision
r I r L= g Ir

Thiese operations would typically be used to extend the precision of the highest level floating
polnt datatype supported by the underlying hardware of an implementation. There is; however,
nolintent to provide a set of operations suitable for the implementation of a complete, package fqr
th¢ support of calculations at an arbitrarily high level of precision.

O

The major motivation for including them in LIA-2 is to provide a capability for accuratelly
evdluating residuals in an iterative algorithm. The residuals give a measutejof the error in thle
cufrent solution. More importantly they can be used to estimate a cor¥éction to the current
solution. The accuracy of the correction depends on the accuracy of the/residuals. The residuals
ard calculated as a difference in which the number of leading digits”cancelled increases as thie
acquracy of the solution increases. A doubled precision calculdtion of the residuals is usuallly
ad¢quate to produce a reasonably efficient iteration.

For the basic floating point arithmetic doubled precision operations, the high parts may ble
calculated by the corresponding floating point operatious as specified in LIA-1. Note, howevef,
that in order to implement exact floating point addition and subtraction, rndr must round tp
negrest. If addp(x,y) rounds to nearest then the high and low parts represent x + y exactly.

When the high parts of an addition or subtraction overflows, the low parts, as specified by
LIA-2, return their results as if there was no'overflow. add_lop and sub_lop can underflow onl
whien subnormals are not supported. In addition, if the high part underflows, then the low payj
is gero.

- <

The product of two numbers, each with p digits of precision, is always exactly representable i
at most 2 - p digits. The high and low parts of the product will always represent the true product.

)

The remainder for divigion“is more useful than a 2 - p-digit approximation. The remainder wi]l
belexactly representabléif-the high part differs from the true quotient by less than one ulp. Th
trye quotient can be«¢onstructed p digits at a time by division of the successive remainders by th
divfisor.

o O

The remainder for square root is more useful than a low part for the same reason that th
rerhainder i§ more useful for division. The remainder for the square root operation will be exactl
repiresentable only if the high part is correctly rounded to nearest, as is required by the specificatio
for| sgrtp.

@

= <

lal Q o L 12 W i o D d) o ol ¢ el i | i
DCC IeTrmtaniits Jur Lt 1mtowlernty 1 UtTit JPETaiiuTis LULJ 101 1ITIOIT IIIIULIIIAUIULIL Ul €©XA4ACU [1IUAUILL
point operations.

See Proposal for Accurate Floating-Point Vector Arithmetic [63] for more information on exact,

or high accuracy, floating point summation and dot product. These operations may be the subject
of an amendment to LIA-2.

88 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

B.5.3 Elementary transcendental floating point operations

The basic floating point operations of LIA-2 and the elementary transcendental floating point
operations have been separated into two different clauses of LIA-2, since they use slightly different
specification mechanisms. The basic floating point operations need no approximation helper
functions. The elementary transcendental floating point operations need approximation helper
function in order to express the wider error tolerance for these operations.

B.5.3.1 Maximum error requirements

The max_error_opr parameters measure the discrepancy between the computed value opp(a) gnd
the true mathematical value f(x) in ulps of the true value. The magnitude of the errof |pound is
thus available to a program from the computed value opr(x). Note that for results at am expongnt
Houndary for F', y, the error away from zero is in terms of ulpr(y), whereas the egror toward zpro
i$ in terms of ulpp(y)/rp, which is the ulp of values slightly smaller in magnitudé than y.

Within limits, accuracy and performance may be varied to best meet customer needs. Note glso
hat LIA-2 does not prevent a vendor from offering two or more implefaéntations of the varipus
perations.

o+

The operation specifications define the domain and range for\the operations. This is d¢ne
artly by the given signature, and partly by the specification of(¢ases that do not return invalid.
h addition, the computational domain and range are maredimited for the operations than |for
he corresponding mathematical functions because the ‘arithmetic datatypes are subsets of [R.
urther, any (conforming) F' is limited in range, and ‘the operations may return an overflow| or
an underflow. Thus the actual domain of expp(x) is approximately given by = < In(fmazy). For
hrger values of x, expp(x) will overflow, though for'z = 400 the exact result +o0o will be returned.
'he actual range extends over positive F, although there are non-negative values, v € F', for whiich
here is no x € F satisfying expp(x) = v.

— o =

o e

The thresholds for the overflow and*underflow notifications are determined by the parametjers
efining the arithmetic datatypes. Tthe threshold for an invalid notification is determined by the
omain of arguments for which the mathematical function being approximated is defined. The
hfinitary notification is the gperation’s counterpart of a mathematical pole of the mathematical
Inction being approximated by the operation. The threshold for absolute_precision_underflow
determined by the paranieters big_angle_rp and big_angle_up.

Strh o=e o O

LIA-2 imposes aAfairly tight bound on the maximum error allowed in the implementation| of
hch operation. Fhetightest possible bound is given by requiring rounding to nearest, for whiich
he accompanying performance penalty is often unacceptably high for the operations apprgxi-
hating elementary transcendental functions. LIA-2 does not require round to nearest for sfich
perations,)but allows for a slightly wider error bound characterised via the max_error_opr pa-
hmeters. The max_error_opp parameters must be documented by the implementation for each
ich parameter required by LTA-2. A comparison of the values of these parameters with the valjies

7

n_ = o = <+ @

f tHe Qpnr‘iﬁpﬂ maximum value for each such pgrnmn‘rar azill givﬂ some indication of the “qnﬂ]i by
of the routines provided. Further, a comparison of the values of this parameter for two versions
of a frequently used operation will give some indication of the accuracy sacrifice made in order to
gain performance.

Language bindings are free to modify the error limits provided in the specifications for the
operations to meet the expected requirements of their users.

B.5.3 Elementary transcendental floating point operations 89

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Material on the implementation of high accuracy operations is provided in for example [50, 52,
59].

B.5.3.2 Sign requirements

The requirements imply that the sign of the result or continuation value is to be reliable, except
for the sign of an infinite result or continuation value, where except for a signed zero argument,
it is often the case that one cannot determine the sign of the infinity. Still for sign symmetric
mathematical functions, the approximating operation is also sign symmetric, including infinitar
regults.

=

Note that the sign requirements stated generally imply some requirements that are nof give

explicitly for each operation specification in LIA-2. For example, sinj,(n -2 -7 + m)y="0 is |
reduirement implied by the general sign requirements.

B.pb.3.3 Monotonicity requirements

A maximum error of 0.5 ulp implies that an approximation helper function“must be a monotonic

approximation to the mathematical function. When the maximum error is greater than 0.5 ulp,
angl the rounding is not directed, this is not automatically the case.

There is no general requirement that the approximation helper functions are strictly monotone
on|the same intervals on which the corresponding exact fuiiction is strictly monotone, howeveft,
sinice such a requirement cannot be made due to the fact.that all floating point types are discrete,
no{ continuous.

The monotonicity requirements are not extended to the angular unit arguments (for the operd-
tiops that take such an argument or arguments). The reason for this is that it is thought both har{d
to implement, and also of no interest to user$.$0 have monotonicity on that (those) argument(s
sinfce the angular unit is not normally varied, except when converting between angular units, an
evén then the unit arguments involved.are usually constants.

[®FEe

The monotonicity requirementstogether with the extra accuracy requirements also imply r¢
qujrements not explicitly stated. -For example —1 < sin}.(z) < 1 is such an implied requirement.
Thierefore, even if some of thewextra accuracy requirements are relaxed (see annex A), it may b
negessary to reintroduce seme’of the requirements that were implied.

[¢)

B.p.3.4 The result*helper function

Thie resulty, helper function is more suitable than the resultr helper function when the approx
mdtion is net, 'guaranteed to be 0.5 ulp nor guaranteed to be directed.

Ideally,however, though not expressed in the LIA-2 specifications, also the operations approx
imhting, elementary transcendental functions obey the rounding mode (if the implementation ha

rounding mnﬂﬂc) in the sense that “round towards ﬂPngiVﬂ inﬁ‘nify” giqu a result that is leds
=]

n

than or equal to the true result (and similarly for “round towards positive infinity”). However,
and in contrast to the basic arithmetic operations, the error may then be more than 1 ulp. So
even if the rounding modes are heeded also for the operations approximating elementary tran-
scendental functions, the interpretation of the rounding modes are still looser than for the basic
arithmetic operations. LIA-2 as such does not require even this looser interpretation. It is up
to implementations, and the accompanying documentation, to implement this, if desired, and to

90 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

document the behaviour of these operations under different rounding modes. To get reliable upper
and lower bounds of the true result, that are also close to the true result, is useful for interval
arithmetic. Still, using the returned result, within the error bounds specified by LIA-2, together
with the relevant max_error_opp parameter, one can get a (perhaps slightly wider) safe interval
containing the true result.

B.5.3.5 Hypotenuse

The hypotr operation can produce an overflow only if both arguments have magnitudes very close
b the overflow threshold. hypotr only underflows if both arguments are subnormal numbers. \Chre
hust be taken in its implementation to either avoid or properly handle overflows and underflgws
Fhich might occur in squaring the arguments. The function approximated by this. operatjon

mathematically equivalent to complex absolute value, which is needed in thecaléulation| of
he argument (also called phase; see arcp) and modulus (also called absolute value; hypotr) qf a
pmplex number. It is important for this application that an implementation sdtisfy the constraint
n the magnitude of the result returned.

O O ot = o = ot

LIA-2’s hypotr does not follow the recommendations in Branch Cutsfor Complex Elementpry
lunctions, or Much Ado about Nothing’s Sign Bit [52] and in Lecture(Notes on the Status of IEJEE
Standard 754 for Binary Floating-Point Arithmetic [53] which recommend that

hhypotr(+00,qNaN) = 400
hhypotp(—o00,qNaN) = 400
hhypot p(qNaN, +00) = 400
hhypotr(gNaN, —o0) = 400

~~

<

rhich are based on the claim that a qINalN represénts an (unknown) real valued number. Such a
dlaim is not always valid, though it may sometimes be.

B.5.3.6 Operations for exponentiations and logarithms

(=]

or all of the exponentiation operations, overflow occurs for sufficiently large values of the argu-
hent(s).

=

There is a problem for powerg(x,y) if both & and y are zero:

— Ada raises an ‘excéption’ for the operation that is close in semantics to powerr when bpth
arguments are zerp; in accordance with the fact that 0° is mathematically undefined.

— The X/OPEN"Portability Guide, as well as C99, specifies for pow(0.0, 0.0) a return value
of 1, and'noé notification. Those specifications agree with the recommendations in [50, H2,
53, 56}

Thespecification in LIA-2 follows Ada, and returns invalid for powerg(0,0), because of the
risksdndierent in returning a result which might be inappropriate for the application at hand. Npte
However, that powerp 1(0,0) is 1, without any notification. The reason is that the limiting vajue
for the corresponding mathematical function, when following either of the only two continuous
paths, is 1. This also agrees with the Ada specification for a floating point value raised to a power
in an integer datatype, as well as that for other programming languages which distinguish these
operations. The C99 (and X/OPEN) specification for the pow can be regarded as a combination
of the powergp and powerp operations. Due to this combination, LIA-2 has a requirement that

B.5.3 Elementary transcendental floating point operations 91

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

powerp for integral second arguments and powerg (in the same library) are related by equality
for positive first arguments.

Along any path defined by y = k/In(z) the mathematical function z¥ has the value e*. It
follows that some of the limiting values for ¥ depend on the choice of k, and hence are undefined,
as indicated in the specification.

The result of the powerp operation is invalid for negative values of the base x. The reason
is that the floating point exponent y might imply an implicit extraction of an even root of x,
which would have a complex value for negative x. This constraint is explicit in Ada, and is widely

im osed i oxvisting nuieorical nackacos nrovided by vondore oo woll oo govaral othor nraoranin
™ S <> Seoo1 v S ™ \az ey g S

larjguages.

The arguments of powerp are floating point numbers. No special treatment is provided fqr
intpger floating point values, which may be approximate. The cases for integer values of the
arguments are covered by the operations powerg and power;. In the example binding for C g
spécification for powp is supplied. powr combines powery and powerpz in a wayg.suitable for Cis
poy operation.

For implementations of the powerg operation there is an accuracy problem with an algorithin
baged on the following, mathematically valid, identity:

y-log, ()
Y F
oY =rp

Thie integer part (floor plus one, not truncation) of the produet, y=log, (z) defines the exponer
of the result and the remaining fractional part defines the réduced argument. If the exponent
large, and one calculates pg digits of this intermediate result| there will be fewer than pr digits fd
th¢ fraction. Thus, in order to obtain a reduced argumentaccurately rounded to pp digits, it maj
be|necessary to calculate an approximation to y -logZ(z) to a few more than log, (emaxr)-+p
bage rp digits.

T < R »

D

In Ada95 the operation closest to powerr 1. specified to be computed by successive multipl
caflions, for which the error in the evaluation increases linearly with the size of the exponent. In
strjct Ada implementation there is no way that a prescribed error limit of a few ulps can be mdq
forflarge exponents.

= D

=

The special exponentiation operations, corresponding to 2% and 10%, have specifications whic
ard minor variations on those forexrpp(x). Accuracy and performance can be increased if they ax
sp¢cially coded, rather than.evaluated as, e.g., expp(mulp(x,inp(2))) or powerp(2,z). Similg
comments hold for the pase”2 and base 10 logarithms operations.

= O

The ezxpmlp operation has two advantages: Firstly, expmip(x) is much more accurate thap
subp(expr(x), 1) whén the exponent argument is close to zero. Secondly, the expmI . operatiop
do¢s not underflow for “very” negative exponent arguments, something which may be advail-
tageous if underflow handling is slow, and high accuracy for “very” negative arguments is ndt
neg¢ded. Note in addition that underflow is avoided for this operation. This can be done only
sinfce KIA-2 adds requirements beyond those of LIA-1 regarding minimum precision (see clauge
4).| ¥those extra requirements were not done, underflow would not be justifiably removable fdr
this operation. Similar argumentation applies to Inipp.

Similarly, there are two advantages with the poweripm1y operation: Firstly, poweripm1y (b, x)
is much more accurate than subp(powerp(addr(1,b),z),1) when the exponent argument is close
to zero. Secondly, the powerlpml1y operation does not underflow for “very” negative exponent
arguments (when the base is greater than 1), something which may be advantageous if underflow
handling is slow, and high accuracy for “very” negative arguments is not needed.

92 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

The handling of infinites and negative zero as arguments to the exponentiation and logarithm
operations, like for all other LIA operations, follow the principles for dealing with these values as
explained in section B.5.2. Note in particular that logbaser (b, x) is specified so as to be consistent
with divp(Inp(x),Inp(b)) except that logbaser (b, x) is required to be more accurate.

The expml r and InIpp operations are required to return the argument when the argument is
in a certain interval around 0. Some floating point parameters from LIA-1 had to be made a bit
stricter for LIA-2 to guarantee that this interval always is wider than the interval of subnormal
numbers (this change is to be integrated with LIA-1 when LIA-1 is revised). This way underflow
can_always be avoided for these operations, and in the interval specified, they can with high
gccuracy return the argument unchanged.

Several of the operations have requirements that push the result towards a finite limiting value,
b that that the limiting value is actually reached (within a reasonable margin) after roundipg,
ven if the limiting value cannot, or otherwise need not, be reached before rouriding. Similar
bquirements appear also in the other subclauses of clause 5.3.

= O »

Note also that even the use of the nearest approximation to e that is representable in F' afs a
Hase argument to the powerr and logbaser operations do not produce asduplication of expr gnd
Ihg.

B.5.3.7 Introduction to operations for trigonometric elementary functions

'he real trigonometric functions sin, cos, tan, cot, sec, and csc are all periodic. The smallest
eriod for sin, cos, sec, and csc is 2 - 7 radians (360 degrees). The smallest period for tan gnd
ot is 7 radians (180 degrees) (and thus also have akperiod of 2 - m radians (360 degrees)). The
hathematical trigonometric functions are perfectlyoperiodic. Their numerical counterparts pre
ot that perfect, for two reasons.

= = O e

Firstly, the radian normalisation cannot ké’exact, even though it can be made very good giyen
ery many digits for the approximation(shof 7 used in the angle normalisation, returning an offset
ffom the nearest axis, and including guard digits. The unit argument normalisation, however, ¢an
He made exact regardless of the (non-zero and, in case denormp = false not too small) unit
and the original angle, returning-only a plain angle in F'. LIA-2 requires unit argument anjgle
rjormalisation to be exact.

<

Secondly, the length of}ene revolution is of course constant, but the density of floating pdint
vlalues gets sparser (inabsolute spacing rather than relative) the larger the magnitude of the valjes
are. This means thdtthe number of floating point values gets sparser per revolution the larger the
hagnitude of thedngle value is. For this reason the notification absolute_precision_underflpw

introduced{together with two parameters, one for radians and one for other angular unjts.
'his notification is given when the magnitude of the angle value is “too big”. Exactly when the
bpresentable angle values get too sparse depends upon the application at hand, but LIA-2 giyes
default value for the parameters that define the cut-off.

jov e S S [il o

Note that the absolute_precision _underflow notification is unrelated to any argument fre-
duction problems. Argument reduction is (implicitly for radians, explicitly for other angular units)
required by LIA-2 to be very accurate. But no matter how accurate the argument reduction is,
floating point values are still sparser in absolute terms the larger the values are. The trigonometric
operations return a result within about an ulp, and that high accuracy is wasted if the angular
argument is not kept at a high accuracy too, both relative and absolute.

B.5.3 Elementary transcendental floating point operations 93

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

LIA-2 includes specifications for high accuracy angle normalisation operations, both for radi-
ans and for other angular units. The angle normalisation operations give a result within minus
half a cycle to plus half a cycle (as does the angle conversion operations), unless the argument
angular value is too big (or there is some other error). These operations should be used to keep
the representation of angles at a high accuracy. LIA-2 also includes angle normalisation opera-
tions that can be used to maintain an even higher degree of accuracy, giving the offset from the
nearest axis (though without any extra guard digits). To use these, one need to keep track of the
currently nearest axis, and make appropriate adjustments in the calculations, which unfortunately
complicates programs that use these nearest-axis normalisations.

Note that rad(x) = arccos(cos(z)) if sin(z) > 0 and rad(x) = — arccos(cos(x)) if sin(z) <.
Thie first part of azis_rad(x) indicates which axis is nearest to the angle x. The second part gf
azfs_rad(z) is an angle offset from the axis that is nearest to the angle x. The second part gf

ar{s_rad(z) is equal to rad(x) if cos(x) = 1/v/2 (i.e. if the first part of azis_rad(x) is £1+0)). Mo
geperally, the second part of azis_rad(x) is equal to rad(4 - x)/4.

[¢)

rad(x) returns the same angle as the angle value z, but the returned angle value is between —jr
angl . The rad function is defined to be used as the basis for the angle normalisation operations.
The azis_rad function is defined to be used as the basis for a numerically*rhore accurate radia
angle normalisation operation. The arc function is defined to be used. as the basis for the arcuy
(arjgle) operations, which are used for conversion from Cartesian to‘pelar co-ordinates.

[=]

B.p.3.8 Operations for radian trigonometric elementary functions

Thie radian trigonometric approximation helper functiouns(including those for normalisation anfd
cofversion from radians) are required to have the same zero points as the approximated mathg
mdtical function only if the absolute value of the argument is less than or equal to big_angle_rg.
Likkewise, the radian trigonometric approximation' helper functions are required to have the sam
sigh as the approximated mathematical function only if the absolute value of the argument is led
thgn or equal to big_angle_rp. Indeed, the'radian trigonometric approximation helper function
ne¢d not be defined at all outside of [~big_angle_rp, big_angle_rp].

»n »n 0@

The big_angle_rrp parameter niay be adjusted by bindings, or even by some compiler flag,
or |mode setting within a program. However, this method should only allow the value of this
patrameter to be set to a valtie'greater than 2 - 7, so that at least arguments within the first twp
(plus and minus) cycles are allowed, and such that ulp p(big_angle_rp) < w/1000, so that at leagt
2000 evenly distributed. points within the ‘last’ cycle (farthest away from 0) are distinguishablg.
Thie latter gives a rather low accuracy at the far ends of the range, especially if pg is comparativelly
large, so values this-large for big_angle_rr are not recommendable unless the application is such
that high accuracy trigonometric operations are not needed. Note that if big_angle_rg is allowefd
to pe increased, then, for conformity with LIA-2, the radian angle reduction may need to be made
mdre precise.

For. reduction of an argument given in radians, implementations use one or several approximatie

1 L) L L L T 1 L) 1.1 o 1s ond la al) R - M 1. - 41
Va/J.L,LU\D} UL/ \UJ. Ul a lllull/lplU Ul /l)7 vallu tu, nay, K] ul%lbb. L 11T UlVISIUILL lllllJLIUu 111 UL1IT aLgulllUl t
reduction cannot be valid to more than n digits, which implies a maximum absolute angle value
for which the reduction yields an accurate reduced angle value.

Regarding argument reduction for radians, there is a particular problem when the result of the
trigonometric operation is very small (or very big), but the angular argument is not very small. In
such cases the argument reduction must be very accurate, using an extra-precise approximation

94 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

to m, relative to what is normally used for arguments of similar magnitude, so that significant
digits in the result are not lost. Such loss would imply non-conformance to LIA-2 by the error in
the final result being greater than that specified by LIA-2. In general, extra care has to be taken
when the second part of azxis_rad(x) is close to 0.

Note that

— tan and sec have poles at odd multiples of 7/2 radians (90 degrees).

— cot and csc have poles at multiples of 7 radians (180 degrees).

he reason is that the poles of tan(z) are at odd multiples of 7/2, which are not representable
ip F. The mathematical cotangent function has poles at even multiples of 7/2, of whichlonly the
grigin is representable in F'. For a system which supports signed zeros and infinities; the contlin-
ation values are 400 and —oo for arguments of 0 and —0 respectively to cotp(#)> Although the
athematical function sec has poles at odd multiples of /2, the secy operationywill not generpte
any infinitary notification because such arguments are not representabledn F'.

The infinitary notification cannot occur for any non-zero argument in\radians because 7 is hot
ppresentable in F, nor is 7w/2. For the angular unit argument trigenometric operations the sjgn
f the infinitary continuation value has been chosen arbitrarily for ar’ infinitary which occurs|for
a non-zero argument. However, sign symmetry, when appropridte, is maintained.

o =

The operations may produce underflow for arguments sufficiently close to the zeros of the
inction. For a subnormal argument x, the sing, tang, @rcsing, and arctang return x for the
bsult, with very high accuracy. Similarly, for a subnermal argument, cosp and secp can retfirn
result of 1.0 with very high accuracy.

O = b

The trigonometric inverses are multiple valued: They are rendered single valued by definin
drincipal value range. This range is closely.félated to a branch cut in the complex plane for the
cprresponding complex function. Among, the floating point numerical functions this branch fut
ig “visible” only for the arcp operation> The arc function has a branch cut along the negatjive
rpal axis. For x < 0 the function<has a discontinuity from —m to +7 as y passes through zpro
f
d

TS
s~

om negative to positive values. \Thus for x < 0, systems supporting signed zeros can handle the
iscontinuity as follows:
arcp(x,—0) = uppf~w)
arcp(z,0) = downg(m)
There is a probléin for zero argument values for this operation. The values given for the
peration arcpf®,%) for the four combinations of signed zeros for x and y are those given in [}2].
'he following table of values is given in [52] for the value of arcp(z,y) with both of the arguments
Cro:

= O

N

Zero arguments

x |y |arcp(z,y)
0 0 0
-0 0 s
-0 | -0 -

0 | -0 -0

B.5.3 Elementary transcendental floating point operations 95

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Note that the mathematical arc function is indeterminate (undefined) for (0,0), but close rep-
resentable approximations the above result are numerically more useful than giving an invalid
notification for such arguments. LIA-2 therefore specifies results as above.

There is also a problem for argument values of +00 or —oo for this operation. The following
table of values is given in [52] for the value of arcp(z,y) with at least one of the arguments infinite:

Infinite arguments
x y | arcp(z,y)
400 | >0 0
+o00 | +00 /4
finite | 400 /2
—00 | +00 3-m/4

-0 | =0 T
—oo | —0 -
—00 | <0 -
—00 | —o0 | —3-m/4
finite | —oo —7/2
400 | —00 —m/4
+oo | <0 -0
+o0o | —0 -0

If pne of x and y is infinite and the other is finite, the resplt’ tabulated is consistent with thet
obfained by a conventional limiting process. However,<the results of n/4, —7w/4, 3 - w/4, an{d
—3- m/4 corresponding to infinite values for both x and)y, are of questionable validity, since only
th¢ quadrant is known, not the angle within the quadtant. However, these results are numericallly
mdre useful than giving an invalid notification\for such arguments. LIA-2 therefore specifids
redults as above.

B.p.3.9 Operations for trigonometrics with given angular unit

At|present only Ada specifies trigonometric operations with angular unit argument. LIA-2 hds
adppted angular unit argumenthoperations in order to encourage uniformity among languaggs
whiich might include such opérations in the future. The angular units in 7" appear to be particularly
important and have therefore been given a tighter error bound requirement. An implementation
calp of course have thesame (tighter) error bound for all angular units. Some programminig
larjguages provide €rigonometric operations with an implicit angular unit argument with value

36(.

The trigongietric approximation helper functions with angular unit argument (including those
for| normalisation and conversion from radians) are required to have the same zero points as the
approxingated mathematical function. Likewise, the trigonometric approximation helper functiorfs
wifl-angular unit argument are required to have the same sign as the approximated mathematical
function. However, the trigonometric approximation helper functions with angular unit argument
need not be defined at all outside of [—big_angle_up - |u|, big_-angle_up - |u|], where u is the value
of the angular unit argument.

The big_angle_urp parameter may be adjusted by bindings, or even by some compiler flag,
or mode setting within a program. However, this method should only allow the value of this
parameter to be set to a value greater than or equal to 1, so that at least arguments within

96 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

the first two (plus and minus) cycles are allowed, and such that ulpp(big-angle_ur) < 1/2000,
so that at least 2000 evenly distributed points within the ‘last’ cycle (farthest away from 0) are
distinguishable. The latter gives a rather low accuracy at the far ends of the range, especially if
pr is comparatively large, so values this large for big_angle_up are not recommendable unless the
application is such that high accuracy trigonometric operations are not needed.

The min_angular_unitp parameter is specified for two reasons. Firstly, if the type F' has
no subnormal values (denormp = false), some angle values in F are not representable after
normalisation if the angular unit has too small magnitude. This gives the firm limit given in
cluase 5.3.9. Secondly, even if F' has subnormal values (denormyp = true), angular units with
very small magnitude do not allow the representable angles to be particularly dense, not even if
the angular value is within the first cycle. This does in itself not give rise to a particutax’lipnit
vialue, but the limit value defined in cluase 5.3.9 is reasonable.

Provided that |u| > min_angular_unitp, an angular unit u can be either positive’or negative| If
it’s negative, growing angular values turns the angle “clockwise” rather than counter-clockwisq as
for radians and other positive angular units. Ada does not permit negative angular units, but since
there is no mathematical nor numerical reason to not allow them, LIA-2 &llows negative angylar
Uynit argument values, avoiding an unjustifiable and arbitrary decision to.disallow them. This oply
very marginally complicates the specifications given in LIA-2 as well‘ag the implementations that
fopllow those specifications.

Note that the angular unit argument need not be integral, even though several common npn-
rpdian angular units are integral, 360, 400, etc. Note &lsp that even the use of the nearnest
approximation to 2 - 7w that is representable in F' as angular unit argument does not producp a
duplication of the radian trigonometric operations. The radian trigonometric operations need| to
yse one or more approximations to 7 (or an integer fraction of 7) that are more accurate than
dan be represented in F', in order to fulfill the adeuracy requirements of LIA-2.

All of the argument angular unit trigonome@fric, and argument angular unit inverse trigonomnjet-
ric, approximation helper functions, including those for normalisation, angular unit conversipn,
and arc, are exempted from the monotonicity requirement for the angular unit argument.

If the angular unit argument, aNs such that u/4 € F| the tanup operation has poles at qdd
thultiples of w/4. This is the case for degrees (u = 360). As for tanup, if the angular unit
argument, u, is such that u/d e F the secup operation has poles (infinitary) at odd multiples
of u/4.

The same comments -hold for the arcup operation as for arcp operation, except that the
iscontinuity in the“mathematical function is from —u/2 to +u/2.

B.5.3.10 Operations for angular-unit conversions

an

Lngulafconversion operations are commonly found on ‘scientific’ calculators and also in Java,
houghl then often only between degrees and radians.

—

Clonversion-of an-aneularvalue s from-aneular unit-oto-aneularunit-b-appearssimple—complit
onversion-of-anangular-value-r-from-ansular-unit-a-to-aneular-unit-b-appears-simple—eomplite

x - b/a. Basing a numerical conversion of angular values directly on the above mathematical
equality (e.g. divp(mulp(z,b),a)) loses much absolute angular accuracy, however, especially for
large angular values. Instead computing arcup (b, cosur(a,z), sinup(a,z)) then gives a more
accurate result. This might still not be within the accuracy required by LIA-2 for the angular
unit conversion operations specified by LIA-2, which here requires a maximum error of 0.5 ulp.

B.5.3 Elementary transcendental floating point operations 97

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

Note that all of the angular conversion operations return an angularly normalised result. This
is in order to maintain high absolute accuracy of the angle being represented.

B.5.3.11 Operations for hyperbolic elementary functions

The hyperbolic sine operation, sinhp(x), will overflow if |z| is in the immediate neighbourhood
of In(2 - fmax), or greater.

The hyperbolic cosine operation, coshp(x), will overflow if |z| is in the immediate neighbour-

hoed of]n(’) .fmnfrr)7 or graa‘rnr

The hyperbolic cotangent operation, cothp(x), has a pole at = 0.

=

The inverse of cosh is double valued, the two possible results having the same magnitiide wit
opposite signs. The value returned by arccoshp is always greater than or equal to 1,

The inverse hyperbolic tangent operation arctanhp(z) has poles at x = +1 andiat z = —1.
The inverse hyperbolic cotangent operation arccothp(z) has poles at z = #1'and at x = —1

Like for the exponentiation and logarithm operations, there are extra deeuracy requirements,
for| certain arguments.

When appropriate, there are also sign symmetry requirements «0the approximation helpe
funjctions. These sign symmetry requirements for “ordinary” arguments are followed through i
th¢ operation specification to cover also signed zeroes and infinites. Similar requirements apped
alsp in the other subclauses of clause 5.3.

SR =

=

For sinhp, tanhp, arcsinhpg, and arctanhp, for a,specified interval around 0, the operatio
retjurns its argument unchanged, and does so with high accuracy. Underflow notifications are alg
avpided for these cases, since there is no denormalisation loss.

[

B.p.4 Operations for conversion between numeric datatypes

Clause 5.2 of LIA-1 covers conversion§:from an integer type to another integer type and to g
floating point type, as well as between'(LIA-1 conforming) floating point types of the same radiy.

LIA-2 extends these conversions to cover conversions to and from non-LIA conforming datatypd
su¢h as conversion to and fromystrings, and also extends the floating point conversion specificatior
to handle conversions where/the radices may be different.

0 wm

[n ordinary string formats for numerals, the string “Hello world!” is an example of a signallin|
NalN.

LIA-2 does ©iotvspecify any string formats, not even for the special values —0, 400, —o0, anfl
qulet NaN, but possibilities for the special values include the strings used in the text of LIA-
2, s well-ag’strings like “4-infinity” or “positiva odndligheten”, etc, and the strings used majy
depend en preference settings, as they may also for non-special values. For instance, one majy
us¢ different notation for the decimal separator character (like period, comma, Arabic commg,
...), use superscript digits for exponents in scientific notation, or use Arabic digits or traditional
Thai digits. String formats for numerical values, and if and how they may depend on preference
settings, is also an issue for bindings or programming language specifications, not for this part of
LIA.

If the value converted is greater than those representable in the target, or less than those
representable in the target, even after rounding, then an overflow will result. E.g., if the target is

a2

98 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

a character string of at most 3 digits, and the target radix is 10, then an integer source value of
1000 will result in an overflow. As for other operations, if the notification handling is by recording
of indicators, a suitable continuation value must be used.

Most language standards contain (partial) format specifications for conversion to and from
strings, usually for a decimal representation.

LIA-2 requires, like C99, all floating point conversion operations to be such that the error is
at most 0.5 ulp. This is in contrast to IEC 60559, which allows conversion operations to have an
error of up to 0.97 ulp.

B.5.5 Numerals as operations in a programming language

B.5.5.1 Numerals for integer datatypes

=2

[egative values (except minint; if minint; = —mazint; — 1) can be obtaified by using the
egation operation (negy).

=

Integer numerals in radix 10 are normally available in programming Janguages. Other radices
hay also be available for integer numerals, and the radix used may, bevpart of determining the
hrget integer datatype. E.g., radix 10 may be for signed integer datatypes, and radix 8 or 16 njay
e for unsigned integer datatypes.

oxill=)

Syntaxes for numerals for different integer datatypes need’not be different, nor need they|be
he same. This part does not further specify the format fer\integer numerals. That is an issue |for
indings.

T

Overflow for integer numerals can be detected at, “compile time”, and warned about. Likewise
hn notifications about invalid, e.g. for infinitary(or NaN numerals that cannot be converted| to
he target type, be detected at “compile time’vand be warned about.

o O

B.5.5.2 Numerals for floating point datatypes

If the numerals used as operatiomsyin a program, and numerals read from other sources use fhe
spme radix, then “internal” numerals and “external” numerals (strings) denoting the same value
ih R and converted to the same target datatype should be converted to the same value. Indeed,
the requirement on such conversions to round to nearest implies this. But even if this requiremepnts
i$ relaxed by a binding(see Annex A), external and internal conversions should not differ.

Negative values\(iricluding negative 0, —0, if avaliable) can be obtained by using the negatjon
peration (negg)y

(@)

Radices other than 10 may also be available for floating point numerals.

Integex iumerals may also be floating point numerals, i.e. their syntaxes need not be differdnt.
Nor neéd syntaxes for numerals for different floating point datatypes be different, nor need they
Helthe same. This part does not specify the syntax for numerals. That is an issue for bindingd or
programming language speciiications.

Overflow or underflow for floating point numerals can be detected at “compile time”, and
warned about. Likewise can notifications about infinitary or invalid, e.g. for infinitary or NaN
numerals that cannot be converted to the target type, be detected at “compile time” and be
warned about.

B.5.5 Numerals as operations in a programming language 99

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

B.6 Notification

An intermediate overflow on computing approximations to, for example, z? or 3> during the
calculation of hypotp(z,y) ~ /22 + y? does not result in an overflow notification, unless the end
result overflows. This is clear from the specification of the hypotr operation in this part. It is
not helpful for the user of an operation to let intermediary overflows or underflows that are not
reflected in the end result be propagated. Implementations of LIA-2 operations are required to
shield the user from such intermediary overflows for all of the LIA-2 operations. More generally,
well-made numerical software should similarly shield users of that software from overflows and
unfferffowsthatare ot Teflected T @ property calcutated ermd Tesutt However; SUc TeqUiTeIeTTs

in general are beyond the scope of LIA-2.

—+

If a single argument operation opg, for the corresponding mathematical function f, is such tha
f(£) very closely approximates x, when |z| < fminNp, then opr(z) returns z for |z| </fminNg
angl does not give a notification if there cannot be any denormalisation loss relative to f(x).
Fot details, see the individual operation specifications for expmI p, Inlpp, singNercsing, tang
ar¢tang, sinhp, arcsinhp, tanhp, and arctanhp.

Operations specified in LIA-2 return invalid(qNaN) when passed a signalling NaN (sNaN
as pn argument. Most operations specified in LIA-2 return gINalN, without any notification whe
pagsed a quiet NaN (qNalN) as an argument.

~—

)

The different kinds of notifications occur under the following éircumstances:

—_—

4) invalid: when an argument is not valid for the operatién) and no value in F™* or any specig
value result makes mathematical sense.

i) infinitary: when the input operand corresponds to a pole of the mathematical functio
approximated by the operation, or, more gederally, when the true result is infinitary, by
none of the arguments is infinitary.

—+ =

) overflow: when the (rounded) result istoutside of the range of the result datatype.

d) underflow: when a sufficiently elosély approximating result of the operation has a magnj
tude that is so small that it might not be sufficiently accurately represented in the result
datatype.

¢) absolute_precision_underflow: when the magnitude of the angle argument to a floatin|
point trigonometric ©Opération exceeds the maximum value of the argument for which th
density of floating point values is deemed sufficient for the operation to make sense. Sd
clause 5.3.7 and the associated discussion in this rationale (section B.5.3.7).

@ 0Q

)

j=n

In order toavoid absolute_precision_underflow notifications, and to maintain a hig
accuracyyimplementors are encouraged to provide, and programmers encouraged to use, th
anglenormalisation operations specified in 5.3.8.1 and 5.3.9.1.

[©)

»n

The difference between the infinitary and overflow notifications for floating point operation
is fHat the first corresponds to a true mathematical singularity, and the second corresponds to
well-defined mathematical result that happens to lie outside the range of F'.

[

B.6.1 Continuation values

For handling of notifications, the method that does recording of indicators (LIA-1, clause 6.1.2)
is preferred.

100 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

An implementation which supports recording of indicators must supply continuation values to
be used when execution is continued following the occurrence of a notification. For systems which
support signed zeros, infinities and NaNs, LIA-2 specifies how these values, as well as ordinary
values, are used as continuation values. Other implementations which use recording of indicators
must supply other suitable continuation values and document the values selected.

B.7 Relationship with language standards

The datatypes involved in implicit conversions need not be accessible to the programmer. For
xample, trigonometric operations may be evaluated in extended double precision, even thoygh
hat datatype is not made available to programmers using a particular programming language.
'hese extra datatypes should be made available, however, and the implicit conversions should|be
xpressible as explicit conversions. At least in order to be able to show exactly whichvexpressjon

going to be evaluated without having to look at the machine code.

D

|7l GO N S e o

[

8.8 Documentation requirements

[0 make good use of an implementation that conforms to LIA-2, prégrammers need to know ot
mly that the implementation conforms, but how it conforms. ,IiIA~2 requires implementatipns
b document the binding between the LIA-2 operations and parameters and the total arithmgtic
nvironment provided by the implementation.

QO < O o

It is expected that an implementation will meet part{of its documentation requirements|by
ihcorporation of the relevant language standard. However, there will be aspects of the implempn-
thtion that the language standard does not specify in the required detail, and the implementatjon
reeds to document those details. For example, ‘the language standard may specify the rangq of
allowed parameter values, but the implementation must document the actual value. The conibi-
ration of the language standard and the implementation documentation together should meet|all
the requirements in clause 8.

B.7 Relationship with language standards 101

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

102 Rationale

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Annex C
(informative)

Example bindings for specific languages

This annex describes how a computing system can simultaneously conform to a language stan-
dard (or publicly available specification) and to LIA-2. It contains suggestions for binding the

[OpeEratio PE cd - O OINCIEle lallgluage % aAX. O d USEd 10 [ese
example bindings in this annex is a short form version, suitable for the purposes of this annex."|An
actual binding is under no obligation to follow this format. An actual binding shouldyhewever,
as in the bindings examples, give the LIA-2 operation name, or parameter name, bound to|an

iflentifier (or expression) by the binding.

Portability of programs can be improved if two conforming LIA-2 systems wsing the same pro-
gramming language agree in the manner with which they adhere to LIA-2. For instance, LIA-2
rpquires that the parameter big_angle_rp be provided (if any conforming-radian trigonomefric
dperations are provided), but if one system provides it by means of the identifier BigAngle gnd
another by the identifier MaxAngle, portability is impaired. Clearlyfitywould be best if such narhes
were defined in the relevant language standards or binding standards, but in the meantime, spig-
gestions are given here to aid portability. Name consistency €anniot, however, be fully maintaimed
Hetween different programming languages, due to already-existing differences in naming conven-
tlons, and LIA does not require wholesale naming changes, nor expression syntax changes.

The following clauses are suggestions rather than réquirements because the areas covered pre
he responsibility of the various programming language standards committees. Until binding sthn-
ards are in place, implementors can promote “de facto” portability by following these suggestipns
dgn their own.

—

The languages covered in this annex. ave

Ada,

BASIC,

C,

CH+,
Fortran,
Haskell,

Java,
Commondiisp,
ISLisp,
Modula-2,
Paseal and Extended Pascal,
PL/I, and
SML.

This list is not exhaustive. Other languages and other computing devices (like ‘scientific’ cal-

culators, ‘web script’ languages, and database ‘query languages’) are suitable for conformity to
LIA-2.

In this annex, the parameters, operations, and exception behaviour of each language are ex-
amined to see how closely they fit the requirements of LIA-2. Where parameters, constants, or

C. Example bindings for specific languages 103

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

operations are not provided by the language, names and syntax are suggested. (Already provided
syntax is marked with a x.)

This annex describes only the language-level support for LIA-2. An implementation that wishes
to conform must ensure that the underlying hardware and software is also configured to conform
to LIA-2 requirements.

A complete binding for LIA-2 will include, or refer to, a binding for LIA-1. In turn, a complete

binding for the LIA-1 may include, or refer to, a binding for IEC 60559. Such a joint LIA-2/LIA-
1/TEC 60559 binding should be developed as a single binding standard. To avoid conflict with

on oina dovelonment aonls tho TTA 9 cnocific nortione of cuiech o bindinag aro ovamnlificd in f]n's
b o T i 7 J I ¢ i i oS i

annex.

Most language standards permit an implementation to provide, by some means, the parameters
angl operations required by LIA-2 that are not already part of the language. The method for ag-
cegsing these additional parameters and operations depends on the implementationand languagg,
andl is not specified in LIA-2 nor examplified in this annex. It could include exgernal subroutine
libtaries; new intrinsic functions supported by the compiler; constants and functions provided gs
gldbal “macros”; and so on. The actual method of access through librariesyanacros, etc. should
of fourse be given in a real binding.

Most language standards do not constrain the accuracy of elementary numerical functions, d
spégcify the subsequent behaviour after an arithmetic notification gecurs.

—

[om

In the event that there is a conflict between the requiremefits of the language standard an
th¢ requirements of LIA-2, the language binding standard €hotld clearly identify the conflict anfd
stafte its resolution of the conflict.

Cfl Ada

The programming language Ada is defined \by ISO/IEC 8652:1995, Information Technology |-
Prpgramming Languages — Ada [11].

An implementation should follow. all*the requirements of LIA-2 unless otherwise specified b
this language binding.

~

The operations or parameters.marked “i” are not part of the language and should be provided
by [an implementation that wishes to conform to LIA-2 for that operation or parameter. For each
of the marked items a suggested identifier is provided.

The Ada datatypelBoolean corresponds to the LIA datatype Boolean.

Every implementation of Ada has at least one integer datatype, and at least one floating poiilt
datatype. The@otations INT and FLT are used to stand for the names of one of these datatypgs
(reppectively),in what follows.

Ada thas an overloading system, so that the same name can be used for different types ¢f

a SIGTACSRATE aa 10 P cte al L SitHAAWa 11

some cases a formal parameter name is needed in the call to make the overloaded name resolve to
the appropriate definition, rather than some other definition.

The Ada packages which contain some of the operations listed below are not detailed in this
abbreviated example binding. For such details, see ISO/TEC 8652:1995, Information Technology —

104 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

Programming Languages — Ada [11]. A full binding would include information regarding packages

also for the operations that are not included in the Ada standard.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

mazr(x,y) INT’ Max(x, y) *
ming(z,y) INT’Min(z, y) *
maz_seqr(xs) Max (xs) T
min_seqr(xs) Min(zs) T
dimmrla—y) Dim () +
power(z,y) T kk gy *
shift2r(x,y) Shift2(z, y) T
shift10;(z,y) Shift10(x, y) T
sqrtr(zx) Sqrt (z) T
dividesy(x,y) x /= 0 and then y mod z = 0 *
eveny(x) x mod 2 =0 *
oddr(z) x mod 2 /=0 *
quot(z,y) Quotient(z, y) T
mody(z,y) x mod y *
ratior(x,y) Ratio(z, y) T
residuer(x,y) Residue(x, ¥) T
groupr(x,y) Group(x, y) T
padi(z,y) Pad(r, y)]
gedr(z,y) Ged(z,)]
lemy(z,y) Lem(z,) T
gcd_seqr(zs) Ged(es) T
lem_seqr(xs) Lem(zs) T
add_wrapr(z,y) Add Wrap(z,) T
add_ovi(x,y) Add_0Over(x, y) T
sub_wrapr(z,y) Sub_Wrap(x, ¥) T
sub_ovy(z,y) Sub_Over(z, y) T
mul _wrapy () Mul Wrap(xz, ¥) T
mul_ovr(z,%) Mul Qver (z, y) T
where z and g/are expressions of type INT and where xs is an expression of type array (Integer
range <>)~of INT.
The EIA-2 basic floating point operations are listed below, along with the syntax used to invpke
ther:
TMOTF{T;Y) FEFMax () *
ming(z,y) FLT’Min(z, 1) *
mmaxp(z,y) MMax(z, y) T
mming(z,y) MMin(z,) T
max_seqp(xs) Max (xs) T
min_seqp(xs) Min(xs) T

C.1 Ada

105

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

mmax_seqp(zs) MMax (zs) T
mmin_seqp(xs) MMin(xs) T
dimp(z,y) Dim(z, y) T
floorp(x) FLT’Floor(x) *
floor_rest () x - FLT’Floor (x) *
roundingp(x) FLT’Unbiased Rounding(z) *
rounding_restp(x) x - FLT’Unbiased Rounding(x) *
ceilingp(x) FLT’Ceiling(x) *
cerling_restp(x) x - L1°Ceiling(x) *
residue p(z,y) FLT’Remainder (z, y) *
sqrip(x) Sqrt (z) *
rec_sqritp(x) Rec_Sqrt (z)]
mulp_p (2, y) Prod(z, y) T
add_lop(x,y) Add Low(z,) T
sub_lop(z,y) Sub_Low(z, v) T
mul_lop(x,y) Mul Low(z,) T
div_restp(x,y) Div Rest(x, y) T
sqrt_restp(x) Sqrt_Rest (x) T

whiere x and y are expressions of type FLT, and where xs is an éxpression of type array (Intege
rapge <>) of FLT.

af

The parameters for LIA-2 operations approximating ¢€al valued transcendental functions cap

belaccessed by the following syntax:

max_error_hypot g Err_Hypotenuse(z) T
Mar_error_erpr Err_Exp (&) T
Max_erTor_power g Err_Power (x) T
big_angle_rp Big Radian Angle(z) 1
max_error_radg Err Rad(z) 1
max_error_sing Err Sin(z) T
max_error_tang Err Tan(z) 1
min_angular _uitp Smallest_Angular _Unit(x) T
big_angle_up Big Angle(x) T
max_errép=sinup (u) Err_Sin Cycle(u) T
max_eryor_tanup(u) Err_Tan Cycle(u) T
max_error_sinhg Err_Sinh(x)

mazx_error_tanhp Err_Tanh(z)

mazx_error_convertp Err Convert (x) T
max_error_convert gs Err_Convert_To_String T
max_error_convert ps Err Convert_To_String f

where x and u are expressions of type FLT, and F’ and D’ are non-special value sets for string
formats. Several of the parameter functions are constant for each type (and library), the argument

106 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

is then used only to differentiate among the floating point types. (This is in Ada normally done
as ‘type attributes’, but new such cannot be defined outside of the Ada standard itself.)

The LIA-2 elementary floating point operations are listed below, along with the syntax used

to invoke them:

hypotp(x,y) Hypotenuse(z, ¥) T
powerg, (b, z) b ** z *
expr(zx) Exp(z) *
exprlr (:5) ExcpMd-(a) +
exp2p(x) Exp2(x) T
expl0p(x) Exp10(x) T
powerp(b,y) b **x y *
powerlpmlp(b,y) Power1PM1 (b,) T
Inp(x) Log(x) *
Inlpp(z) LoglP (x) T
log2p(z) Log2(x) T
log10p(x) Log10(x) T
logbaser (b, x) Log(z, b) (note parameter oOrder) *
logbaselp1p (b, x) Log1P1P(x, b) T
radp(z) Rad (x) T
azis_radp(z) Rad(z, h, v) (note out parameters) T
sing(x) Sin(x) *
cosp(x) Cos(x) *
tanp(x) Tan(x) *
cotp(x) Cot (@) *
secp(x) Sec(x) T
cscp(x) Csc(x) T
cossinp(x) CosSin(x, ¢, s) (note out parameters) T
arcsing(x) ArcSin(x) *
arccosp(x) ArcCos(x) *
arctanp () ArcTan(x) *
arccotp(x) ArcCotS(x) T
arccotcp{x) ArcCot (x) *
arcsebp(r) ArcSec(x) T
arcesérp(x) ArcCsc(x) T
arep(z,y) ArcTan(y, x) or ArcCot(z, %) *(invalid gt origin)
CyCler(u, T) Cycle(Z, uJ (1ote parameter order) T
azis_cyclep(u, x) Cycle(x, u, h, v) T
sinup(u,) Sin(xz, uw) (note parameter order) *
cosup(u,x) Cos(x, wu) *
tanup(u,x) Tan(z, u) *
C.1 Ada 107

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

cotup(u, x)
secup(u, x)
cscup(u, x)
cossinup(u,)

arcsinup(u, x)
arccosup(u, x)
arctanup(u, x)
arccotup (u, x)

Cot(x, u)
Sec(x, u)
Csc(x, u)

CosSin(x, u, c, s)

ArcSin(x, u)
ArcCos(x, u)

ArcTan(z, Cycle=>u)

ArcCotS(x, u)

© ISO/IEC 2001 — All rights reserved

— — —

whiere b, z, y, u, and w are expressions of type FLT, z is an expression of type INT, and ¢, s, h,
angl v are variables of type FDOT.

(in|

arccotcup(u,)
arcsecup(u, x)
arcescup(u,)
arcup(u, x,y)

rad_to_cyclep(x,w)
cycle_to_radp(u,x)
cycle_to_cyclep(u, x,w)

sinhp(x)
coshp(x)
tanhp(x)
cothp(x)
sechp(x)
cschp(x)

arcsinhp(x)
arccoshp(x)
arctanhp ()
arccothp(x)
arcsechp(x)
arceschp(x)

ArcCot (x, Cycle=>u)

ArcSec(x, u)
ArcCsc(z, u)

ArcTan(y, =, uw) or ArcCot(z, y, u)

Rad_to_Cycle(x, w)
Cycle to Rad(u, z)
Cycle_to_Cycle(u, =, w)

SinH(x)
CosH(x)
TanH (x)
CotH(x)
SecH(x)
CscH(x)

ArcSinH(x)
ArcCosH(xp
ArcTanH€¢x)
ArcCotH (x)
ArcSécH(x)
ArcCscH(x)

Ada95 specifies (in other words) that powerp; must be computed by repeated multiplicatio]
an unspecified order). That computation method cannot, whatever the order of multiplicg
tiops, guarantee fulfillment of the LIA-2 accuracy requirements, and cannot fulfill the require
relptionship between powerp; and powerp. Further, Ada95 specifies that angular units must b
positive, and implicitly has a value for min_angular_unitp of fming. LIA-2 allows also negatiyj
angular unibs; but has a larger value for min_angular_unitp. A real Ada binding for LTA-2 mus
state how-these conflicts are resolved (see clause 2).

Arithmetic value conversions in Ada are always explicit and usually use the destination datatyp

— = O = X Xt

*(invalid at|origin)

— —= >t X X X — —= >t > X X — —= —F

]

& @© © & 1

@

name as the name of the conversion function, except when converting to/from string formats.

108

converty_p(x)
convertn_y(s)
convertpn_(f)
converty_pn(x)
converty . (x)

INT2(x)
Get(s, n, w);

Get(f?, n, w?);
Put(s, =, base?);
Put(h?, x, w?, base?);

*

*
*
*
*

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

floorg_ 1 (y) INT(FLT’Floor (y)) *
roundingr—1(y) INT(FLT’Unbiased Rounding(y)) *
ceilingp—1(y) INT(FLT’Ceiling(y)) *
convertr_p(x) FLT(x) *
convertp_ g (y) FLT2(y) *
convertpn_,p(s) Get(s, n, w?); *
convertpr_p([) Get(j7, n, w?); *
convertp_.pn(y) Put(s, y, Aft=>a?, Exp=>e?); *
convertp_.pn(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>e?); x
convertp_,p(z) FLT(2) *
convertpr_.p(s) Get(s, n, w?); *
convertp_p(f) Get(f?, n, w?); *
convertp_.p(y) FXD(y) *
convertp_.pr(y) Put(s, y, Aft=>a?, Exp=>0)¢ *
convertp_.pr(y) Put(h?, y, Fore=>i?, Aft=>a?, Exp=>0); «*

here x is an expression of type INT, y is an expression of §ype FLT, and z is an expressior
ype FXD, where FXD is a fixed point type. INTZ2 is theNinteger datatype that corresponds
(. FLT2 is the floating point datatype that corresponds to F’. A ? above indicates that

oating point or fixed point numeral, the base.is indicated in the numeral (default 10). For §
h Get and Put, see clause A.10.8 Input-Qutput for Integer Types, A.10.9 Input-Output for R

'ypes, and A.11 Wide Text Input-Qutput, of ISO/IEC 8652:1995. base, n, w, i, a, and e

W
t

1

B

dutput file (default is the default output file). siisef type String or Wide _String. For Get d
fl

fo

d

1

expressions for non-negative integer$. e is greater than 0. base is greater than 1.

Ada provides non-negative numerals for all its integer and floating point types. The default b

of
to
the

arameter is optional. f is an opened input file (default is the default input file). A is an opemed

fa
ut

f a floating point or fixed point numeral, ofaly base 10 is required to be supported. For details

eal
hre

hse
als
Ter
h a
oh.
ric

i 10, but all bases from 2 te\16 can be used. There is no differentiation between the nume
for different floating point.types, nor between numerals for different integer types, but inte
rumerals (without a peint) cannot be used for floating point types, and ‘real” numerals (wit
foint) cannot be usedfor integer types. Integer numerals can have an exponent part thou
The details are nétyrepeated in this example binding, see ISO/IEC 8652:1995, clause 2.4 Numg
Literals, clause 8/5.4 Integer Types, and clause 3.5.6 Real Types.
The Ada'standard does not specify any numerals for infinities and NaNs. Suggestion:

+00 FLT’Infinity]

qNaN FLT’NaN T

sNaN FLT°NaNSignalling i

as well as string formats for reading and writing these values as character strings.

Ada has a notion of ‘exception’ that implies a non-returnable, but catchable, change of control
flow. Ada uses its exception mechanism as its default means of notification. underflow does
not cause any notification in Ada, and the continuation value to the underflow is used directly,

C.1 Ada 109

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

since an Ada exception is inappropriate for an underflow notification. On underflow the con-
tinuation value (specified in LIA-2) is used directly without recording the underflow itself. Ada
uses the exception Constraint_Error for infinitary and overflow notifications, and the excep-
tions Numerics.Argument Error, I0_Exceptions.Data Error, and IO_Exceptions.End Error
for invalid notifications. Since Ada exceptions are non-returnable changes of control flow, no
continuation value is provided for these notifications.

An implementation that wishes to follow LIA-2 should provide recording of indicators as an
alternative means of handling numeric notifications. Recording of indicators is the LIA-2 preferred
means of handling numeric notifications.

CJ2 BASIC
The programming language BASIC is defined by ANSI X3.113-1987 (R1998) [40],”eridorsed by
ISQ/IEC 10279:1991, Information technology — Programming languages — Full BASIC [16].

An implementation should follow all the requirements of LIA-2 unless othexwise specified bly
this language binding.

=

[N

The operations or parameters marked “1” are not part of the language\and should be provide|
by|an implementation that wishes to conform to the LIA-2 for that-operation. For each of th
mgrked items a suggested identifier is provided.

@

BASIC has no user accessible datatype corresponding to the/ LTA datatype Boolean.

)

BASIC has one primitive computational datatype, numeric. The model presented by th
BASIC language is that of a real number with decimal radix and a specified (minimum) numbd
of gignificant decimal digits. Numeric data is not declaréd directly, but any special characteristid
arq inferred from how they are used and from any<OPTIONS that are in force.

The BASIC statement OPTION ARITHMETICONATIVE ties the numeric type more closely to th
unflerlying implementation. The precision and type of NATIVE numeric data is implementatio
dependent.

[

=)

—+

For the trigonometric operations,if\0PTION ANGLE DEGREES is in effect, the argument or resu
is given in degrees. If OPTION ANGLE/RADIANS (default) is in effect, the argument or result is give
in padians.

)

Since the BASIC numeric’/ datatype does not match LIA-1 integer datatypes, this binding
example does not include, any of the LIA-2 operations for integer datatypes.

The LIA-2 non-transcendental floating point operations are listed below, along with the synta
us¢d to invoke them:

5

maz g (240 MAX(z, 1) *
ming{2,"y) MIN(z, y) *
mmazrp(x,y) MMAX (z, 1) T
haning (z,y) MMIN(z, y) T
har seqrlrs) MAXS (s) +
min_seqp(xs) MINS (zs) T
mmaz_seqp(xs) MMAXS (z8) T
mmin_seqp(xs) MMINS (xs) T
dimp(x,y) MONUS (z, ¥)

floorp(x) INT (x) *

110 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

floor_rest p () x - INT(z) *
roundingp(z) ROUND () *
rounding_restp(x) x - ROUND(z) *
ceilingp(x) CEIL(x) *
ceiling_restp(x) x - CEIL(x) *
residuer(x,y) RESIDUE(x, %) T
sqrip(z) SQR () *
rec_sqritp(x) REC_SQRT (x) T
add_-top(x,y) ADD_LOW(Cz, y) T
sub_lop(z,y) SUB_LOW(z, y) T
mul_lop(z,y) MUL_LOW(z, %) T
div_restp(z,y) DIV REST(z, ¥) T
sqrt_restp(x) SQRT_REST (x) T
where x and y are expressions of type numeric, and where xs is an expression of type array| of
numeric.
The LIA-2 parameters for operations approximating real valued tramSeendental functions ¢an
He accessed by the following syntax:
max_error_hypotp ERR_HYPOTENUSE]
MAX_erTor_expr ERR_EXP]
Max_error_powerg ERR_POWER]
big_angle_rp BIG_RADIAN_ANGLE T
mazx_error_radp ERR_RAD T
MaT_error_sing ERR_SIN T
max_error_tang ERR_TAN T
min_angular_unitp MIN-ANGLE_UNIT T
big_angle_up BIG_ANGLE]
mazx_error_sinup(u) ERR_SIN_CYCLE(u) T
max_error_tanup(u) ERR_TAN_CYCLE (u) T
max_error_sinhg ERR_SINH]
max_error_tanhp ERR_TANH T
mazr_ergor_convert p ERR_CONVERT T
map=error_convert g ERR_CONVERT_TO_STRING T
maderror_convert p ERR_CONVERT_TO_STRING T
whete, u is an expression of type numeric.

s mh| 1A o1 . . 4 - 1 11 1 1 hVin | 1 4 1 4 :
11T LIA-2 110atlllg POIIU OpPCratlOIls alc IHISLCU DCIOW, 4alOIllg WIUID LIIC SyIltax UsSCUd 10 111V ke
them. BASIC has a degree mode and a radian mode for the trigonometric operations.

hypotp(x,y) HYPOT (z, y) T
expp(x) EXP () *
expml p(x) EXPM1 (x) T

C.2 BASIC 111

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

exp2p () EXP2(x) T
exp10p(x) EXP10(x) T
powerp (b, y) POWER (b,) T
powerlpmlp(b,y) POWER1PM1 (b, %) T
Inp(x) LOG(x) *
Inlpp(x) LOG1P(z) T
log2p(x) LOG2(x) *
log10p(x) L0G10(z) *
logbaser (b, x) LOGBASEC(D, x) T
logbaselp1p (b, x) LOGBASE1P1P (b,) T
radp(zx) NORMANGLE(z) (when in radian mode) T
sinp(x) SIN(x) (when in radian mode) 5
cosp(x) CO0S(z) (when in radian mode) *
tanp(z) TAN(z) (when in radian mode) *
cotp(x) COT(z) (when in radian mode) *
secp(x) SEC(x) (when in radian mode) *
csep(x) CSC(z) (when in radian mode) *
arcsing(x) ASIN(z) (when in radjan mode) *
arccosp(x) ACOS(z) (when in radian mode) *
arctanp(x) ATN(z) (when inradian mode) *
arccotp(x) ACOT(z) (whein radian mode) T
arccotep(x) ACOTC(z) (when in radian mode) T
arcsecp(x) ASEC(z) . fwhen in radian mode) T
arcescp(x) ACSC(x)~\"(when in radian mode) T
arcp(z,y) ANGLE(x, y) (when in radian mode) *(invalid at
cyclep(u,) NORMANGLEU (u, x) T
sinup(u,) SINU(u, x) T
cosup(u,x) Ccosu(u, x) T
tanup(u,) TANU(u, x) T
cotup(u, x) COTU(u, x) T
secup(u, x) SECU(u, x) T
cscup(u, %) CsCU(u, x) T
arcsinur (u, x) ASINU(u, x) T
arécosup(u, x) ACOSU(u, x)]
drctanurp(u, x) ATNU(u, x) i
arccotup(u, x) ACOTU(u, x) T
arccotcur (u, x) ACOTCU(w, x) T
arcsecup(u, x) ASECU(u, x) T
arcescup(u,) ACSCU(u, x) T
arcup(u,x,y) ANGLEU(u, z, y) T

112

origin)

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

*(invalid gt origin)

cycler(360, x) NORMANGLE(z) (when in degree mode) T
sinup(360, x) SIN(xz) (when in degree mode) *
cosur (360,) C0S(z) (when in degree mode) *
tanup(360, z) TAN(z) (when in degree mode) *
cotur (360,) COT(z) (when in degree mode) *
secur (360, x) SEC(z) (when in degree mode) *
cscup(360, x) CSC(z) (when in degree mode) *
arcsinup (360, x) ASIN(x) (when 1n degree mode) *
arccosup (360, x) ACOS(z) (when in degree mode) *
arctanur (360, x) ATN(z) (when in degree mode) *
arccotup (360, x) ACOT(z) (when in degree mode) T
arccotcur (360,) ACOTC(z) (when in degree mode) T
arcsecur (360, x) ASEC(x) (when in degree mode) T
arcescup (360,) ACSC(z) (when in degree mode) T
arcurp(360,z,y) ANGLE(z, y) (when in degree mode)

rad_to_cycler(x,360) DEG () *
cycle_to_radr (360, z) RAD (z) *
rad_to_cyclep(x,w) RAD_TO_CYCLE(z, w) T
cycle_toradp(u,) CYCLE_TO_RAD(u, x) T
cycle_to_cyclep(u, z,w) CYCLE_TO_CYCLE (u,» 2% w) T
sinhp(x) SINH(x) *
coshp(x) COSH(x) *
tanhp(x) TANH () *
cothp(x) COTH () T
sechp(x) SECH() T
cschp(x) GSCH (x) T
arcsinhp(z) ARCSINH(x) T
arccoshp(x) ARCCOSH (x) T
arctanhp(z) ARCTANH () T
arccothp(x) ARCCOTH (x) T
arcsechp(x) ARCSECH (x) T
arceschp{m) ARCCSCH () T

where b, x, ¢, @, and w are expressions of type numeric.

Arithmietic value conversions in BASIC are always tied to reading and writing text.
convertpn_,p(stdin) READ x *
convertp_.pn (y) PRINT y *
convertp_ p(stdin) READ z *

where x is a variable of type numeric, and y is an expression of type numeric.

BASIC provides non-negative numerals for numeric in base 10.

BASIC does not specify any numerals for infinities and NaNs. Suggestion:

C.2 BASIC

113

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

+00 INFINITY t
qNaN NAN 1
sNalN NANSIGNALLING 1

as well as string formats for reading and writing these values as character strings.

BASIC has a notion of ‘exception’ that implies a non-returnable change of control flow. BASIC
uses its exception mechanism as its default means of notification. underflow does not cause any
notification in BASIC, and the continuation value to the underflow is used directly, since an
BASIC exception is inappropriate for an underﬂow notification. BASIC uses the exception

value specified without any BASIC exception.

An implementation that wishes to follow LIA-2 should provide recording of indicators as a
altprnative means of handling numeric notifications. Recording of indicators,isthe LIA-2 preferrefd
mdans of handling numeric notifications.

]

cB C

The programming language C is defined by ISO/IEC 9899:1999, Information technology — Pr
grgmming languages — C [17]. This edition of the C standard is often referred to as C99, which {s
alsp used below.

An implementation should follow all the requireémeénts of LIA-2 unless otherwise specified bjy
this language binding.

[on

The operations or parameters marked “i”.‘are not part of the language and should be provide|
by|an implementation that wishes to conform to the LIA-2 for that operation. For each of thle
mgrked items a suggested identifier is proevided.

The LIA datatype Boolean is implemented by the C datatype int (1 = true and 0 = falsg
or fthe new C99 Bool datatype:

~—

C defines numerous integér) datatypes. They may be aliases of each other in an implementatio
defined way. The description here is not complete. See the C99 standard. Some of the integd
datatypes have a predetermined bit width, and the signed ones use 2’s complement for represei
tatfion of negative values: intn_t and uintn_t, where n is the bit width expressed as a decimg
numeral. Some bit)widths are required. There are also minimum width, fastest minimum width,
angl special purpose integer datatypes (like size_t). Also provided are the more well-known inte
gell datatypes char, short int, int, long int, long long int (new in C99), unsigned chay
ungigned short int, unsigned int, unsigned long int, and unsigned long long int (nej
in [C99): Finally there are the integer datatypes intmax_t and uintmax_t (both new in C99) th4

==l

—_—

Kt = o

arée—thelargest—provided—sisned—and—unsisnedinteser—datatypes—intmax—t—and—uintmar—t—ma
even be unbounded with a negative integer infinity as INTMAX_MIN and a positive integer infinity
as INTMAX _MAX and UINTMAX MAX. INT is used below to designate one of the integer datatypes.

C names three floating point datatypes: float, double, and long double. FLT is used below
to designate one of the floating point datatypes.

114 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

fixed by the C standard, and new ones cannot be defined in program libraries.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

For some of the operations below, the C standard defines ‘type generic macros’. These are

mazr(x,y) imaxt(z, y) T
mazr(x,y) (x<y? y: x *
ming(x,y) imint(z, y) T
ming(z,y) (x <y ? x: ¥y *
maz_seqr(xs) imax_arrt(zs, nr_of_items) T
AR5 6 (xo) imin-arrtles, /’r‘)l"winf'ir;to:r’no\ J'r
dimp(z,y) idimt(x, y) T
powery(z,y) ipowert(x, y) T
shift2;(z,y) shift2t(x, y) T
shift10;(z,y) shift10t(z, y) T
sqrtr(zx) isqrtt(z) T
dividesy(x,y) does_dividet(x, ¥) T
dividesy(x,y) x'=08& y %h x == *
eveny(zx) x h 2 == *
oddr(x) xh21!1=0 *
quot(z,y) quott(z, y) ;
mody(z,y) modt (z, y) T
ratior(z,y) ratiot(x, y) T
residuer(x,y) iremaindert(a; y) T
groupr(x,y) groupt (x,.4) T
pady(z,y) padt (z,\y) T
gedr(z,y) gedt(z, y) T
lemyp(z,y) lemt (x, y) T
gcd_seqr(zs) ged_arrt(xs, nr_of _items) T
lem_seqr(xs) lem_arrt(xs, nr_of _items) T
add_wrapy(z,y) add_wrapt(z,) T
add_ovy(x,y) add_overt(zx, y) T
sub_wrapp(@7y) sub_wrapt(xz, y) T
sub_ovfx2) sub_overt(z, y) T
mul_wpapr(z,y) mul wrapt(z, y) T
mal>ovr(z,y) mul _overt(zw, y) T
where ¢ and y are expressions of the same integer type and where xs is an expression of type
arrdy of an integer type. ¢ is a string (part of the operation name in C), that is the empty string

for int, is 1 for long int, is u for unsigned int, and is ul for unsigned long int.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

nmaxt(x, y) T
nmint (z, y) T

maxp(z,y)

c.3C 115

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

mmazp(x,y) fmaxt(x, y) or fmax(z, y) *(C99)
mming(z,y) fmint(z, y) or fmin(x, y) *(C99)
maz_seqp(xs) nmax _arrt(xs, nr_of _items) T
min_seqp(xs) nmin_arrt(xs, nr_of _items) T
mmaz_seqr(xs) fmax_arrt(zs, nr_of _items) T
mmin_seqp(zs) fmin arrt(zs, nr_of _items) T
dimp(z,y) fdimt(z, y) or fdim(z, y) (dev. for special values) *(C99)
floor p(x) floort(z) or floor(z) *

Jloor_rest p(x) x - floort(x) *
roundingp(z) nearbyintt(z) (when in round to nearest mode) *(C99)
rounding_restp(x) x - nearbyintt(xz) (when in round to nearest mode) - x((99)
ceilingp(x) ceilt(z) or ceil(x) *
ceiling_restp(x) x - ceilt(x) *

residue p(z,y) remaindert(z, y) or remainder(x, y) - %(C99)
sqrtp(x) sqrtt(z) or sqrt(z) *
rec_sqrip(x) rec_sqrtit(x) T

mulp_ g (x,y) dprodt(z, y) T
add_lop(z,y) add_lowt(z, y) T
sub_lop(z,y) sub_lowt(x, ¥) T

mul lop(z,y) mul lowt(x, ¥) T
div_restp(x,y) div_restt(x, y) T
sqrt_restp(zx) sqrt_restt(x) T

whiere x and y are expressions of the same floatingrpeint type, and where xs is an expression
type array of a floating point type. t is a string (part of the operation name), that is the empt
strjng for double, is f for float, and is 1 for@ong double (the same applies to the parameter

angl operations below).

The LIA-2 parameters for operationg-approximating real valued transcendental functions ca|

—

n <

)

belaccessed by the following syntax:
max_error_hypotr err_hypott 1
Max_error_expr err_expt T
maz_error_poweny err_powert 1
big_angle_rp big radian_anglet 1
max_errér=radp err_radt T
max_eryor_sing err_sint t
max=error_tanp err_tant T
min_angular_unit g smallest_angle unitt t
big_angle up big anglet 1
max_error_sinup(u) err_sin_cyclet(u) T
maz_error_tanup(u) err_tan cyclet(u) T
max_error_sinhp err_sinht T
max_error_tanhg err_tanht 1

116

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

where v is an expression of a floating point type. No conversion error parameters are needed, since
C99 requires all floating point datatype conversion (even to and from strings) to always have an
error that is < 0.5 ulp.

C has a pow operation that does not conform to LIA-2, but may be specified in LTA-2 terms:

powr (x,y)

= powerpz(
= powp(z,0
=1
=1

z,y)

)

)

ifye FNZ

if y=-0

if x € {-1,1} and y € {—o00, 400}
if x is a quiet NaN and y = 0

othoruica

tprms:

hhypotp(z,y)

— oo (m Q
7 HF AN

:—'—w
:+w

— hypotr(x,
The LIA-2 elementary floating point operations are listed below, together with the non-LI4

s
rJ7

Y)

C99 has a hypot operation that does not conform to LIA-2, but may be specified in(LI4

if x is a quiet NaN and y € {—o00,+00%}
if z € {—00,400} and y is a quietyNaN

otherwise

\-2

Hdowr and hhypotr, along with the syntax used to invoke them:
hypotp(x,y) hypotenuset(z,) T
hhypot p(z,y) hypott(z, y) or hypot(ax,) * Not LIA{2!
powerg (b, z) powerit(b, z) T
expr(x) expt(x) or exp(z) *
expmlIp(x) expmit(z) or expmi(x) *(C99)
exp2p(x) exp2t(xz) or exp2(x) *(C99)
exp10p(x) exp10t(x) T
powerg(b,y) powert (b, T
powr (b, y) powt(b,\'y) or pow(b, y) * Not LIA-
powerlpml1p(b,y) poweripmit (b, 1) T
Inp(z) logt(z) or log(x) *
Inlpp(x) logipt(x) or loglp(x) *(C99)
log2p(x) log2t(z) or log2(w) *(C99)
log10p(x) logl0t(xz) or loglO(x) *
logbaser (b, x) logbaset(b, x) T
logbase1p1p p(b7r) logbaselpipt(b, x) T
radp(x) radiant(z) T
aris=radp () axis_radt(z, &h, &v) (note out parameters) f
sinp(z) sint(z) or sin(x) *
cosp(x) cost(x) or cos(x) *
tanp(x) tant(x) or tan(x) *
cotp(x) cott(x) T
secp () sect(x) T
cscp(x) csct(x) T
cossinp(x) cossint(x, &c, &s) T

c3C

117

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

arcsing(x) asint(x) or asin(x) *
arccosp(x) acost(z) or acos(z) *
arctang(x) atant(z) or atan(z) *
arccotp(x) acott(x) T
arccotcp(x) acotct(x) T
arcsecp(x) asect (x) T
arcescp(x) acsct(z) T
arcp(z,y) atan2t(y, x) or atan2(y, x) *
cyclep(u,x) cyclet(u, x) T
azis_cyclep(u,) axis_cyclet(u, x, &h, &v) 1
sinup(u,) sinut(u, x) T
cosup(u,x) cosut(u, x) F
tanup(u,x) tanut(u, x) i
cotup(u, x) cotut(u, x) T
secup(u, x) secut(u, x) T
cscup(u, x) cscut(u, x) T
cossinup(u,) cossinut(u, z, &c, &s) T
arcsinup(u, x) asinut(u, z) T
arccosup(u, x) acosut(u,) T
arctanup(u, x) atanut(u, z) T
arccotup(u, x acotut(u, x) T
arcecteup(u, x) acotcut(u, x) T
arcsecup(u, x) asecut(u, x) T
arcescup(u,) acscut (u., () T
arcup(u,x,y atan2utfu; y, T) T
rad_to_cyclep(x,w) radian to_cyclet(x, w) T
cycle_to_radp(u, x) cycle_to_radiant (u, z) T
cycle_to_cyclep(u, x,w) cycle to_cyclet(u, x, w) T
sinhp(x) sinht(z) or sinh(z) *(C99)
coshp(x) cosht(z) or cosh(x) *(C99)
tanhp(x) tanht(x) or tanh(x) *(C99)
cothp(z) cotht (x) T
sechp(x) secht (z) T
cschp(x) cscht (x) T
arésinhp(x) asinht(z) or asinh(x) *(C99)
drccoshp(x) acosht(xz) or acosh(x) *(C99)
arctanhp(zx) atanht(z) or atanh(x) *(C99)
arccothp(x) acotht (x) T
arcsechp(z) asecht(x) T
arceschp(x) acscht (x) T

where b, x, y, u, and w are expressions of type FLT, h, v, ¢, and s are lvalue expressions of type
FLT, and z is an expression of type INT.

118

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

Arithmetic value conversions in C can be explicit or implicit. The explicit arithmetic value
conversions are usually expressed as ‘casts’, except when converting to/from string formats. The
rules for when implicit conversions are applied is not repeated here, but work as if a cast had been
applied.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C99 standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
here may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating the
umber of fractional digits in the string. The C operations below use HYPHEN-MINUS\tather
han MINUS (which would have been typographically better), and only digits that are ir ASCII,
hdependently of so-called locale. For generating or parsing other kinds of digits, say Arabic digits
r Thai digits, another API must be used, that is not standardised in C. For the flgating and fixed
oint formats, +00 may be represented as either inf or infinity, —oo may bé represented| as
ither —inf or —infinity, and a NalN may be represented as NaN; all independently of so-called
cale. For language dependent representations of these values another API must be used, thap is
ot standardised in C.

S = O 3 O = o =B ot

For the integer formats then follows an internal type indicator, of'which some are new to CP9.
Not all C99 integer types have internal type indicators. Howeyerfor ¢ below, hh indicates chax, h
ipdicates short int, the empty string indicates int, 1 (the-letter 1) indicates long int, 11 (fhe
letters 11) indicates long long int, and j indicates intmax_t or uintmax_t. (For system purpdses
there are also special type names like size_t, and z indicates size_t and t indicates ptrdiff_t
as type format letters.) Finally, there is a radix (for the string side) and signedness (both sides)
format letter (r below): d for signed decimal; o, u{ x, X for octal, decimal, hexadecimal with snjall
l¢tters, and hexadecimal with capital letters,.all unsigned. E.g., %jd indicates decimal numgdral
sfring for intmax t, %2hhx indicates hexade¢imal numeral string for unsigned char, with a fwo
character field width, and %1u indicates decimal numeral string for unsigned long int.

For the floating point formats instead follows another internal type indicator. Not all (99
oating point types have standand initernal type indicators for the format strings. However, for u
elow the empty string indicatés double and L indicates long double. Finally, there is a raflix
for the string side) format.letter: e or E for decimal, a or A for hexadecimal. E.g., %15.8LA
ndicates hexadecimal flgating point numeral string for long double, with capital letters for the
ptter components, a field width of 15 characters, and 8 hexadecimal fractional digits.

— o~ b

For the fixed point formats also follows the internal type indicator as for the floating pdint
rmats. But férthe final part of the pattern, there is another radix (for the string side) forrpat
ptter (p below); only two are standardised, both for the decimal radix: £ or F. E.g., %4Lf indicaftes
ecimal fixéd point numeral string for long double, with a small letter for the letter compongdnt.
([There.is also a combined floating/fixed point string format: g.)

— =

eonverty_p(x) (INT2)x *
coTTUeTt T =T1tS) sscant s *Ywtr—&7) >*
convertp _(f) fscanf (f, "%wir", &) *
converty_ () sprintf (s, "Jjwtr", x) *
converty_(x) fprintf(h, "Ywtr", x) *
floory_ 1 (y) (INT)floort(y) *

c.3C 119

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

floorp_,1(y) (INT)nearbyintt(y) (when in round towards —oo mode) «(C99)
roundingpg_1(y) (INT)nearbyintt(y) (when in round to nearest mode) *(C99)
ceilingr_1(y) (INT)nearbyintt(y) (when in round towards +0o0 mode) «(C99)
ceilingp—1(y) (INT)ceilt(y) *

convertr_p(x) (FLDx *

convertp_.p(y) (FLT?2)y *

convertpn_,p(s) sscanf (s, "%w.duv", &r) *

convertpn _g(J) fscanf(y, "sw.duv", &r) *

convertp_pn(y) sprintf (s, "%w.duv", y) *

convertp_, g (y) fprintf(h, "%w.duv", y) *

convertp_p(s) sscanf (s, "%wup", &g) *

convertp _p(f) fscanf (f, "%hwup", &g) P

convertp_.pr(y) sprintf (s, "%w.dup", y) *

convertp_.pr(y) fprintf(h, "hw.dup", y) *

]

whiere s is an expression of type char*, f is an expression of type FIEE*, 7 is an lvalue expressio
of type int, ¢ is an lvalue expression of type double, x is an expression of type INT, y is a
expression of type FLT, INT2 is the integer datatype that cérresponds to I’, and FLT2 is th
flopting point datatype that corresponds to F”.

[CER=]

C99 provides non-negative numerals for all its integercand floating point types. The defau
bage is 10, but base 8 (for integers) and 16 (both integer and float) can be used too. Numera
for| different integer types are distinguished by suffiXes. Numerals for different floating point typ4
arq distinguished by suffix: £ for float, no suffix for double, 1 for long double. Numerals fq
flojiting point types must have a ‘.” or an exponent in them. The details are not repeated i

thig example binding, see ISO/IEC 9899:1999, clause 6.4.4.1 Integer constants, and clause 6.4.4.

NP R »» » o

Flgating constants.
C99 specifies numerals (as macyos) for infinities and NaNs for float:
+o00 INFINITY *
qNaN NAN *
sNaN NANSIGNALLING 1

as well as string formats-for reading and writing these values as character strings.

C99 has two ways of handling arithmetic errors. One, for backwards compatibility, is b
asdigning to er£no? The other is by recording of indicators, the method preferred by LIA-2, whic
cal be used-for-floating point errors. For C99, the absolute_precision_underflow notificatio
is fgnored—Phe behaviour when integer operations initiate a notification is, however, not define
by [C99.

= P <

C4a4 CH+

The programming language C++ is defined by ISO/IEC 14882:1998, Programming languages —
C++ [18].

120 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

The operations or parameters marked “{” are not part of the language and should be provided
by an implementation that wishes to conform to the LIA-2 for that operation. For each of the
marked items a suggested identifier is provided.

This example binding recommends that all identifiers suggested here be defined in the name-
space std: :math.

The LIA datatype Boolean is implemented by the C++ datatype bool.

C.f CH+

Every implementation of C++ has integral datatypes int, long int, unsigned intj 4nd

unsigned long int. INTis used below to designate one of the integer datatypes.

C++ has three floating point datatypes: float, double, and long double. FLT igyuséd below

tp designate one of the floating point datatypes.

The LIA-2 integer operations are listed below, along with the syntax used to-invoke them:
mazxy(x,y) max(z,) *
ming(x,y) min(z, y) *
mazx_seqr(xs) xs.max () *
min_seqr(xs) xs.min() *
dimy(z,y) dim(z, y) T
powery(z,y) power (z, ¥) T
shift2;(x,y) shift2(z, y) T
shift10;(z,y) shift10(z, y) T
sqrtr(z) sqrt () T
dividesy(x,y) does_divgde (z,) T
dividesy(x,y) x 1= 0%& y % x == *
eveny(x) x K2 == *
odd;(z) k2 1'=0 *
quot (. y) quot (z, 1) :
modr(z,y) mod (z, ¥) T
ratior(z,y) ratio(z, y) T
residuer(x,y) remainder(x, y) T
groupy(z,y) group(z, y) f
padr(z,y) pad(z, y) T
gedf(x5y) ged(x, y) T
lemar(x, y) lem(x, y) T
ged_seqr(xs) xs.ged() T
lem _seqr(xs) xs.lcm() i
add_wrapy(z,y) add_wrap(z, y) T
add_ovi(x,y) add_over(z, ¥) T
sub_wrapy(z,y) sub_wrap(z,) T
sub_ovy(z,y) sub_over(z,) T
mul_wrapr(z,y) mul wrap(z, ¥y) T

121

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

mul_ovr(z,y)

mul _over (z, ¥)

© ISO/IEC 2001 — All rights reserved

l

where x and y are expressions of the same integer type and where xs is an expression of type

valarray of an integer type.

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax
used to invoke them:

tytl

mazp(x,y) nmax (x,) T
ming(x,y) nmin(z,) T
mmazp(x,y) max(x, y) *
M E(T, J) minczr, y) %
maz_seqp(xs) xs.nmax () T
min_seqp(xs) xs.nmin() T
mmaz_seqp(xs) xs.max () *
mmin_seqp(zs) xs.min() *
dimp(x,y) dim(z, y) T
floorp(x) floor (z) *
floor_rest p(x) x - floor(z) *
roundingp(z) round (x) T
rounding_restg(x) x - round(z) T
ceilingp(x) ceil(x) *
ceiling restp(x) x - ceil(x) *
residuer(x,y) remainder (z, y) T
sqrtp(x) sqrt () *
rec_sqrip(x) rec_sqrt(x) T
mulp_ g (x,y) dprod(x, #) T
add_lop(z,y) add low(x; y) T
sub_lop(z,y) sub_low(z, 1) T
mul_lop(x,y) mut Tow(x, y) T
div_restp(x,y) div rest(x, ¥y) T
sqrt_restp(zx) sqrt_rest (x) T
whiere x and y are expressions of the same floating point type, and where xs is an expression ¢f
e valarray of a floating_point type. The C++ standard does not make clear how to handle
NalN arguments, in particular for max and min.
The parametersfor operations approximating real valued transcendental functions can be ag-
cegsed by the follewing syntax:
mazx_error_hypotp numeric 1imits<FLT>::err hypotenuse() T
MAL_error_expr numeric_limits<FLT>::err_exp() T
Max_error_power g numeric 1limits<FLT>::err_power () T

122

big_angle_rp

max_error_radp
Max_error_sing
max_error_tang

numeric_ limits<FLT>::big radian_angle() T
numeric_limits<FLT>::err_rad() T
numeric_limits<FLT>::err_sin() T
numeric_limits<FLT>::err_tan() 1

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

min_angular_unit g
big_angle up
maz_error_sinup(u)
maz_error_tanup(u)

max_error_sinhg
max_error_tanhpg

maa:,error,convertp

numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:
numeric_limits<FLT>:

numeric_limits<FLT>:
numeric_limits<FLT>:

numeric_limits<FLT>:

ISO/IEC 10967-2:2001(E)

:smallest_angle unit() 7
:big_angle() T
rerr_sin_cycle(u)
rerr_tan_cycle(u)

rerr_sinh()]
:err_tanh() T
:err_convert () T

max_error_convertpz
ma$,€7'7’0?",COTLU€7'tD/

numeric_limits<FLT>:
numeric_limits<FLT>:

:err_convert_to_string() 7
rerr_convert_to_string() _§

here u is an expression of a floating point type.

The LIA-2 elementary floating point operations are listed below, along with the‘syntax uged
tp invoke them:

hypotp(z,y) hypotenuse(x, ¥) T
powerg (b, z) power (b, z) T
expr(zx) exp(x) *
expm1p(x) expmi (x) T
exp2p(x) exp2(x) T
exp10p(x) exp10(x) T
powerp(b,y) power (b, y) T
powr (b, y) pow(b, y) * Not LIA{2! (See C.)
powerlpmlp(b,y) poweripmil (b, @) T
Inp(z) log(x) *
Inlpp(z) loglp () T
log2p(z) log2((i) T
log10p(x) log10(x) *
logbasep(b,) Togbase(b, x) T
logbaselp1p (b, x) logbaselplp(b, x) T
radp(z) rad(z) T
azis_radp(z) axis_rad(z, &h, &v) (note out parameters) f
sing(x) sin(x) *
cosp () cos(x) *
tang(x) tan(x) *
cotp() cot(x) T
secp(x) sec(x) T
csep(x) csc(x)]
cossing(x) cossin(z, &c, &s) T
arcsing(x) asin(z) *
arccosp(x) acos(x) *
arctanp () atan(z) *
arccotp(x) acot (z) T

C.f CH+

123

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

arccotcp(x) acotc(x) T
arcsecp(x) asec(x)]
arcescp(x) acsc(x) T
arcp(z,y) atan2(y, x) *
cyclep(u,) cycle(u, x) T
azis_cyclep(u, x) axis_cycle(u, x, &h, &v) 1
sinup(u,) sinu(u, x) T
COSUR (U, x) cosu(u, x) T
tanup(u, x) tanu(u, x) t
cotup(u, x) cotulu, x) i
secup(u, x) secu(u, x) T
cscup(u, x) csculu, x) F
cossinup(x) cossinu(u, x, &c, &s) i
arcsinup(u, x) asinu(u, x) T
arccosup(u, x) acosu(u, x) T
arctanup(u, x) atanu(u, x) T
arccotup (u, x acotu(u,) T
arccotcup (u,) acotcu(u, x) T
arcsecup(u, x) asecu(u, x) 1
arcescup(u,) acscu(u, x) T
arcup(u,x,y atan2u(u, y, x) T
rad_to_cyclep(z,w) radian to_cycte(x, w) T
cycle_to_radp(u, x) cycle_to_radian(u, z) T
cycle_to_cyclep(u, x,w) cycle_toicycle(u, =, w) T
sinhp(x) sinh(x) *
coshp(z) cosh(x) *
tanhp(x) tanh (x) *
cothp(x) coth(x) T
sechp(x) sech(x) T
cschp(x) csch(x) T
arcsinhp () asinh(z) T
arccosh) acosh(z) T
arctaghp () atanh (z) T
arceothp(x) acoth(z) T
arésechp(x) asech(x) T
arceschr(x) acsch(x) i

where b, x, y, u, and w are expressions of type FLT, h, v, ¢, and s are lvalue expressions of type
FLT, and z is an expression of type INT.

Arithmetic value conversions in C++ can be explicit or implicit. The rules for when implicit
conversions are applied are not repeated here. C++ also deals with stream input/output in other
ways, see clause 22.2.2 of ISO/IEC 14882:1998, ‘Locale and facets’. The explicit arithmetic value

124

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

conversions are usually expressed as ‘casts’, except when converting to/from string formats.

When converting to/from string formats, format strings are used. The format string is used as
a pattern for the string format generated or parsed. The description of format strings here is not
complete. Please see the C++ standard for a full description. In the format strings % is used to
indicate the start of a format pattern. After the %, optionally a string field width (w below) may
be given as a positive decimal integer numeral. For the floating and fixed point format patterns,
there may then optionally be a ‘.’ followed by a positive integer numeral (d below) indicating
the number of fractional digits in the string. The C++ operations below use HYPHEN-MINUS
rather than MINUS (which would have been typographically better), and only digits that are
ih ASCII, independently of so-called locale. For generating or parsing other kinds of digits, say
Arabic digits or Thai digits, another API must be used, that is not standardised in C4? For
the floating and fixed point formats, +00 may be represented as either inf or infinity, oo
11
i
A

hay be represented as either -inf or -infinity, and a NalN may be represented '‘as NaN;|all
hdependently of so-called locale. For language dependent representations of these values another
L PI must be used, that is not standardised in C.

For the integer formats then follows an internal type indicator. For t Below, the empty string
ndicates int, 1 (the letter 1) indicates long int. Finally, there is aradix (for the string sifle)
and signedness (both sides) format letter (r below): d for signed decimal; o, u, x, X for ocfal,
decimal, hexadecimal with small letters, and hexadecimal with capital letters, all unsigned. E}g.,
d indicates decimal numeral string for int and %1u indicates de¢imal numeral string for unsigned
lJong int.

e

°

For the floating point formats instead follows another internal type indicator. For u below the
mpty string indicates double and L indicates long.double. Finally, there is a radix (for the
bring side) format letter: e or E for decimal. E.g.,(%15.8LE indicates hexadecimal floating pdint
umeral string for long double, with a capital®etter for the letter component, a field width of
5 characters, and 8 hexadecimal fractional digits.

= = n O

For the fixed point formats also follows*the internal type indicator as for the floating pdint

C.f CH+

formats. But for the final part of the pattern, there is another radix (for the string side) forrhat
letter (p below), only two are standatdised, both for the decimal radix: f or F. E.g., 4Lf indicates
decimal fixed point numeral string for long double, with a small letter for the letter compongdnt.
(IThere is also a combined floating/fixed point string format: g.)
converty_p(x) static_cast<INT2>(x) *
convertyn_1(s) sscanf (s, "Ywtr", &i) *
convertp_1(f) fscanf (f, "hwtr", &i) *
converty_, jikg) sprintf (s, "jwtr", x) *
convertysy (x) fprintf (h, "%wtr", x) *
floorg!_ ;1 (y) static_cast<INT>(floor(y)) *
roundingr—.1(y) static_cast<INT>(round(y)) T
eeilingr—1(y) static_cast<INT>(ceil(y)) *
convertr_p(x) static_cast<FLT>(x) *
convertp g (y) (FLT2)y *
convertpn_, p(s) sscanf (s, "%w.duv", &r) *
convertpn _p(f) fscanf (f, "Yw.duv", &r) *

125

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

convertp_, g (y) sprintf (s, "%w.duv", y) *
convertp_pn(y) fprintf (h, "%w.duv", y) *
convertp_p(s) sscanf (s, "%wup", &g) *
convertp _p(f) fscanf (f, "%wup", &g) *
convertp_.pr(y) sprintf (s, "%hw.dup", y) *
convertp_.pr(y) fprintf(h, "%w.dup", y) *

where s is an expression of type charx, f is an expression of type FILE*, ¢ is an lvalue expression

of
ex]

flo

Nu

po
Nu

reyl
2.9

as

ing

Th

IS
o

thi

ma

ba:

b Fortran

Programming languages — Fertran — Part 1: Base language [22]. It is complemented with

type int, g is an lvalue expression of type double, x is an expression of type INT, y isnap
ression of type FLT, INT2 is the integer datatype that corresponds to I’, and FLT2-is-the
Wting point datatype that corresponds to F”.

C++ provides non-negative numerals for all its integer and floating point types\in base 1().
merals for different integer types are distinguished by suffixes. Numerals for different floatinlg
nt types are distinguished by suffix: f for float, no suffix for double, 1nfor long doublg
merals for floating point types must have a ‘.” or an exponent in them(The details are ng

eated in this example binding, see ISO/IEC 14882:1998, clause 2.9.1 Intéger literals, and claus

D .

.4 Floating literals.

C++ specifies numerals for infinities and NaNs:
+00 numeric limits<FLT>::iqfinity() *
qNaN numeric_ limits<FLT>s quiet NaN() *
sNaN numeric_1limits<FLI>::signaling NaN() *

well as string formats for reading and writing these values as character strings.

C-++ has completely undefined behaviour on arithimetic notification. An implementation wish
to conform to LIA-2 should provide a meansifor recording of indicators, similar to C99.

e programming language Fortrdnis defined by ISO/IEC 1539-1:1997, Information technology

D/TEC TR 15580:1998, Information technology — Programming languages — Fortran — Floating
nt exception handling [23).

An implementation should follow all the requirements of LIA-2 unless otherwise specified bjy
5 language binding:

The operatignsvor parameters marked “i” are not part of the language and should be provided
an implementation that wishes to conform to the LIA-2 for that operation. For each of th
rked items a suggested identifier is provided. The operations marked “(%)” are not part of th
e standard, but included in the Floating-point exception handling Technical Report [23].

o O

The Fortran datatype LOGICAL corresponds to the LIA datatype Boolean.

Every implementation of Fortran has one integer datatype, denoted as INTEGER, and two float-

ing point datatype denoted as REAL (single precision) and DOUBLE PRECISION.

An implementation is permitted to offer additional INTEGER types with a different range and

additional REAL types with different precision or range, each parameterised with a kind parameter.

The LIA-2 integer operations are listed below, along with the syntax used to invoke them:

126 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

mazr(x,y) MAX(z, y) *
ming(x,y) MIN(z, ¥y) *
maz_seqr(xs) MAX(x1, T2, ..., Zp) *
mazx_seqr(xs) MAXVAL (xs) *
min_seqr(xs) MIN(z1, Z2, ..., Zp) *
min_seqr(xs) MINVAL (xs) *
dimp(z,y) DIM(z, y) *
powerr(x,y) T Rk Yy *
shift2;(x, y) SHIFT2(x, y) T
shift10;(x,y) SHIFT10(x, y) T
sqrtr(zx) ISQRT (x) T
dividesy(z,y) DIVIDES(z, y) T
eveny(x) MODULO(x,2) == 0 *
oddr(x) MODULO(x,2) /= 0O *
quot(z,y) QUOTIENT (z, y) T
mody(x,y) MODULO(z, y) *
ratior(x,y) RATIO(x, y) T
residuer(x,y) RESIDUE(z, y) T
groups(z,y) GROUP(z, ¥) t
pady(z,y) PAD(z, y) T
gedr(w,y) GCD(z, ¥) +
lemp(x,y) LCM(z, y) T
ged_seqr(zs) GCDVAL (#5) T
lem_seqr(xs) LCMVAL{2's) T
add_wrapy(z,y) ADD_WRAP (x, 7) T
add_ovi(z,y) ADD_OVER(z, ¥) T
subwrapy(z,y) SUB_WRAP(x, %) T
sub_ovr(z,y) SUB_OVER(z, %) T
mul_wrapr(z,y) MUL_WRAP(x, %) T
mul_ovy(z,y) MUL OVER(z,) T

<

f INTEGER (kind).

(@)

ysed to_inveke them:

here « and y are-expressions of type INTEGER (k<nd) and where xs is an expression of type arfay

The LIAS2-nhon-transcendental floating point operations are listed below, along with the syntax

maxp(z,y) MAX(z, y) *
ming(x,y) MIN(z, y) *
mmazp(z,y) MMAX (z, ¥) T
mming(z,y) MMIN(z, y) T
maz_seqp(xs) MAX(x1, %2, ..., Tp) *
maz_seqr(xs) MAXVAL (xs) *
min_seqp(xs) MINCz1, 22, ..., Tp) *
min_seqp(xs) MINVAL(xs) *

C.5 Fortran

127

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

mmaz_seqp(xs) MMAX(z1, T2, ..., Tn) T
mmaz_seqp(xs) MMAXVAL (x8) T
mmin_seqp(zs) MMIN(z1, T2, ..., Tn) 1
mmin_seqp(xs) MMINVAL (xs) T
dimp(z,y) DIM(z, y) *
floorp(x) IEEE RINT(z) (if in round towards —oo mode) (x)
floor_rest p(x) x - IEEERINT(z) (if in round towards —oo mode) (x)
roundingr(z) IEEE RINT(z) (if in round to nearest mode) (%)
rounding_restp(x) x - IEEE_RINT(z) (it in round to nearest mode) (x)
ceilingr(x) IEEE RINT(z) (if in round towards +o0o mode) (x)
ceiling_restp(x) x - IEEERINT(z) (if in round towards 400 mode) ((¥)
residue p(z,y) IEEE REM(z, y) (%)
sqrtp(x) SQRT () *
rec_sqrtp(x) REC_SQRT (x) i
mulp_ g (x,y) DPROD(x, ¥) *
add_lop(x,y) ADD_LOW(z,) T
sub_lop(z,y) SUB_LOW(z,) T
mul_lop(z,y) MUL_LOW(z, y) T
div_restp(x,y) DIV_REST(x, ¥) T
sqrt_restp(zx) SQRT_REST (z) T

whiere x and y are expressions of type REAL (kind), andswhere xs is an expression of type arraj
of REAL (kind).

<

The LIA-2 parameters for operations approximéting real valued transcendental functions cap

belaccessed by the following syntax:

max_error_hypotp ERR_HYPQIENUSE (x) t
MaT_error_erpr ERRIEXP (z) t
Max_error_power g ERR_POWER (x)

big_angle_rp BIG_RADIAN ANGLE(xz) T
maz_error_radp ERR_RAD (z) 1
max_error_sing ERR_SIN(xz) T
max_error _tang ERR_TAN(z) T
min_angdler_unitp MIN_ANGLE_UNIT(x) 1
big_angle_up BIG_ANGLE(x) 1
max=error_sinug(u) ERR_SIN_CYCLE(u) T
max_error_tanup(u) ERR_TAN_CYCLE (u) T
max_error_sinhg ERR_SINH(x)

max_error_tanhp ERR_TANH (x) T
mazx_error_convertp ERR_CONVERT () T
max_error_convert g ERR_CONVERT_TO_STRING T
max_error_convertps ERR_CONVERT_TO_STRING 1

128 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved ISO/IEC 10967—2!2001(E)

where x and u are expressions of type REAL (kind). Several of the parameter functions are constant
for each type (and library), the argument is then used only to differentiate among the floating
point types.

The LIA-2 elementary floating point operations are listed below, along with the syntax used
to invoke them:

hypotp(x,y) HYPOT (z, y) T
powerg (b, z) b *x z *
CHPF (:’J) EXP () <
expmIp(x) EXPM1 (z) T
exp2p () EXP2(x) T
expl0p(x) EXP10(z) T
powerp(b,y) b *x y %
powerlpmlp(b,y) POWER1PM1 (b, y) T
Inp(x) LOG(x) *
Inlpp(z) LOG1P (x) T
log2 p(z) L0G2 () T
log10 g () LOG10(x) *
logbaser (b, x) LOGBASE(b, z) T
logbaselplp (b, x) LOGBASE1P1P(b, x) T
radp(x) RAD (z) T
sing(x) SIN(x) *
cosp(z) Cos(x) *
tanp(x) TAN (x) *
cotp () COT(a) T
secp(x) SEC(x) T
cscp(x) €SC(x) T
arcsing(x) ASIN(x) *
arccosp(x) ACOS (x) *
arctang(x) ATAN (x) *
arccot g () ACOT (x) T
arccotcp(x) ACOTC(z) T
arcsecpfg) ASEC(x) T
arccséi(r) ACSC(x) T
arep(e,y) ATAN2(y, x) *
cyclep(u, x) CYCLE(u, x) T
sinup(u,) SINU(u, z) T
cosup(u,x) CosU(u, x) T
tanup(u,x) TANU(u, x) T
cotup(u, x) COTU(u, =) T
secup(u, x) SECU(u,) T

C.5 Fortran 129

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

cscup(u, x) CsCU(u, x) T
arcsinup(u, x) ASINU(u, x) T
arccosup(u, x) ACOSU(u, x) T
arctanup(u, x) ATANU(u, x) T
arccotup(u, x ACOTU(u, x) T
arccotcup (u, x) ACOTCU(u, x) T
arcsecup(u, x) ASECU(u, x) T
arcescup(u,) ACSCU(u, x) T
arcup(u,z,vy) ATAN2U(u, vy, x) T
cycler (360, x) DEGREES () T
sinup (360, x) SIND(x) T
cosur (360, x) COsD (x) F
tanup (360, x) TAND () i
coturp (360, x) COTD (x) T
secup (360, x) SECD(x) T
cscup (360, x) CSCD(x) T
arcsinup (360, x) ASIND(z) T
arccosup (360, x) ACOSD(x) T
arctanup (360,) ATAND (z) T
arccotur (360, x) ACOTD (z) T
arccotcur (360,) ACOTCD () T
arcsecur (360, x) ASECD (z) T
arcescur (360, x) ACSCD(z) T
arcup(360,x,y) ATAN2D (y.,) T
rad_to_cyclep(z,w) RAD_T@:-CYCLE(x, w) T
cycle_toradp(u, x) CYCLE_TO_RAD(u, x) T
cycle_to_cyclep(u, z,w) CYCLE_TO_CYCLE(u, =, w) t
sinhp(x) SINH(x) *
coshp(x) COSH(z) *
tanhp(x) TANH(z) *
cothp(x) COTH(x) T
sechp(x) SECH(x) T
cschp(x) CSCH(x) T
arcsinhp(x) ASINH(z) T
arécoshp () ACOSH(z) T
arctanhp(x) ATANH (x) i
arccothp(x) ACOTH(z) T
arcsechp(x) ASECH(x) T
arceschp(x) ACSCH(z) T

where b, z, y, u, and w are expressions of type REAL(kind), and z is an expression of type
INTEGER (kind7).

130

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

Arithmetic value conversions in Fortran are always explicit, and the conversion function is
named like the target type, except when converting to/from string formats.

converty_p(x) INT (x, kindi2) *
Ibl.a FORMAT (Bn) *(binary)
convertp _(f) READ (UNIT=#f,FMT=lbl_a) r *
converty_ () WRITE (UNIT=#h, FMT=[bl_a) x *
[bl.b FORMAT (On) *(octal)
convertrr_1(f) READ (UNIT=#f,FMT=0bl.b) r *
convertr_(x) WRITE (UNIT=#h, FMT=lbl_b) x *
Ibl_c FORMAT (In) *(decimal)
convertp_y(f) READ (UNIT=#f,FMT=lbl_c) r *
converty_(x) WRITE (UNIT=#h, FMT=lbl_c) x *
Ibl.d FORMAT (Zn) *(hexadecinal)
convertpn_(f) READ (UNIT=#f,FMT=Ibl_d) r *
converty_n(x) WRITE (UNIT=#h, FMT=lbl_d) x *
floorg_ 1 (y) FLOOR(y, kindi?) *
roundingr—.1(y) ROUND(y, kindi?) T
ceilingr—1(y) CEILING(y, kindi?) *
convertr_p(x) REAL(x, kind) or semietimes DBLE(x) *
convertp g (y) REAL(y, kind2) *0r sometimes DBLE(y) *
Ibl_e FORMAT (Fuwi.d) *
Ibl_f FORMAT:(Dw.d) *
Ibl_g FORMAT (Ew.d) *
Ibl_h FORMAT (Ew.dEe) *
Ibl_i FORMAT (ENw.d) *
Ibl_j \JFORMAT (ENw.dEe) *
[bb.k* FORMAT (ESw.d) *
16l_l FORMAT (ESw.dEe) *
convertpn _p(f) READ (UNIT=#f, FMT=lbl_z) t *
convertp_.pr (%) WRITE (UNIT=#h, FMT=lbl_x) y *
convertphJr (f) READ (UNIT=#f, FMT=Ibl_z) t *
where = is_&n-expression of type INTEGER(k%indi), y is an expression of type REAL(kind), f is
an inputilé with unit number #f, and h is an output file with unit number #h. w, d, and e pre
lfteral‘digit (0-9) sequences, giving total, decimals, and exponent widths. [bl_x is one of [bl_¢ to
Ipldl; all of the [bl_s are labels for formats.

Fortran provides base 10 non-negative numerals for all of its integer and floating point types.

Numerals for floating point types must have a ‘.’ in them. The details are not repeated in this

example binding, see ISO/TEC 1539-1:1997, clause 4.3.1.1 Integer type, and clause 4.3.1.2 Real
type.
Fortran does not specify numerals for infinities and NaNs. Suggestion:

C.5 Fortran 131

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

+00 INFINITY t
qNaN NAN 1
sNalN NANSIGNALLING 1

as well as string formats for reading and writing these values as character strings.

Fortran implementations can provide recording of indicators for floating point arithmetic no-
tifications, the LIA-2 preferred method. See ISO/IEC TR 15580:1998, Information technology —
Programming languages — Fortran — Floating-point exception handling [23]. absolute_precision_
underflow notifications are however ignored.

CJ6 Haskell

The programming language Haskell is defined by Report on the programming language ‘Haskell 98
[69, together with Standard libraries for the Haskell 98 programming language [66}:

An implementation should follow all the requirements of LIA-2 unless otherwise specified by
this language binding.

on

The operations or parameters marked “{” are not part of the language.and should be provide]
by|an implementation that wishes to conform to the LIA-2 for that ¢pgration. For each of thle
marked items a suggested identifier is provided.

The Haskell datatype Bool corresponds to the LIA datatype Boolean.

Every implementation of Haskell has at least two integér datatypes, Integer, which is ur
bofinded, and Int, and at least two floating point datatypes, Float, and Double. The notatio
INIT is used to stand for the name of one of the integérdatatypes, and FLT is used to stand fg
th¢ name of one of the floating point datatypes in what follows.

==

Haskell has a type class system that allows fex overloading, and allowing static type checkin
of Hynamic overloading. But in contrast to aliject oriented programming languages, type classg
ard not types. E.g. + has the type (Num a) => a -> a -> a, where Num is a type class and a
a tiype variable.

wn o 0]

The LIA-2 integer operations are‘listed below, along with the syntax used to invoke them:

mazy(z,y) max £ y or I ‘max‘ y *
ming(z,y) min x y or x ‘min‘ y *
mazx_seqr(xs) maximum s *
min_seqr(xs) minimum zs *
dimy(z,y) dimz y or =z ‘dim‘ y T
powery (254 x "~y or () zxy *
shift2r(ay) shift2 x y or =z ‘shift2‘ y T
shiftd0; (z,y) shift10 =z y or x ‘shiftl10‘ y T
Sqritr(z) isqrt =z T
dividesr(z,y) divides y or 2z ‘divides‘ y

eveny(z) even x

oddy(x) odd x *
quot;(x,y) divzx y or z ‘div‘ y *
mody(x,y) mod x y or x ‘mod‘ y *

132 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

ratior(z,y) ratio z y or =z ‘ratiof T
residuer(x,y) residue x y or 1z ‘residue‘ y T
groupr(,y) grp z y or 1z ‘grp‘ y T
padr(x,y) pad z y or x ‘pad‘ y T
gedr(z,y) gcd ¢y or x ‘ged‘ vy *
lemyp(z,y) lem z y or =z ‘lem‘ y *
gcd_seqr(zs) gcd_seq s T
lem_seqr(xs) lcm_seq xs T
add_wrapy(z,y) T +:y T
add_ovi(x,y) T ity T
sub_wrapr(z,y) x -y T
sub_ovr(z,y) T -ty T
mul_wrapy(z,y) T ¥k oy T
mul_ovr(z,y) T kit oy T

ysed to invoke them:

where = and y are expressions of type INT and where xs is an expression of type [INT].

The LIA-2 non-transcendental floating point operations are listed below, along with the syntax

mazp(z,y) max x y or 1 ‘max‘ y *
ming(z,y) min z y or z ‘min{y *
mmazp(x,y) mmax r y or x ‘mmax‘ y T
mming(z,y) mmin z y or x Smmin‘¢ y T
maz_seqp(xs) maximum s *
min_seqp(xs) minimum zs *
mmax_seqr(zs) mmaximums¥s T
mmin_seqp(xs) mminimim xs T
dimp(z,y) dimrz y or x ‘dim‘ y T
floorp(x) fromInteger (floor z) *
floor _rest p(x) x - fromInteger (floor x) *
roundingp(x) fromInteger (round x) *
rounding_restp(x) x - fromInteger (round) *
ceilingp(x) fromInteger (ceiling) *
ceiling_rest () x - fromInteger (ceiling x) *
residue p(244) residue x y or x ‘residue‘ y T
sqrtp(x) sqrt z *
recsqrlp(x) rec_sqrt x T
mulp_ g (z,y) prod z y T
add lop(z,y) T 1=y T
sub_lop(x,y) x -i-y T
mul_lop(z,y) T ki oy T
div_restp(z,y) x /i*xy T
sqrt_restp(x) sqrt_rest x T

where x and y are expressions of type FLT, and where xs is an expression of type [FLT].

C.6 Haskell

133

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E) © ISO/IEC 2001 — All rights reserved

The binding for the floor, round, and ceiling operations here take advantage of the unbounded
Integer type in Haskell, and that Integer is the default integer type.

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

maz_error_hypotp err_hypotenuse x 1
Max_error_expr err_exp r T
Max_error_power g err_power

big_angle_rp big radian angle x t
max_error_radp err_rad x T
max_error_sing err_sin T
maz_error_tang err_tan x i}
min_angular_unitp min_angle unit z T
big_angle_up big angle x 1
maz_error_sinup(u) err_sin cycle u T
max_error_tanup(u) err_tan cycle u T
max_error_sinhg err_sinh z

max_error_tanhp err_tanh x 1
max_error_convertp err_convert x T
max_error_convert g err_convert "" T
max_error_convert pr err_convert " T

[

whiere x and u are expressions of type FLT. Several of the parameter functions are constant fd
ea¢h type (and library), the argument is themn used only to differentiate among the floating poir
types.

—+

The LIA-2 elementary floating poifit* operations are listed below, along with the syntax used
to invoke them:

hypotp(z,y) hypotenuse z y T
powerg (b, z) b~z or ("7) bz *
expr(x) exp *
expml p(z) expMl x T
exp2p () exp2 x T
exp10p (@) expl0 T
powetr(b, y) b *x y or (x*x) by *
powerlpmlip(b,y) poweriPM1 b y or b ‘poweriPM1¢ y T
tTE(T) Tog %
Inlpp(x) loglP z T
log2p(x) log2 x T
log105(x) logl0 x T
logbaser (b,) logBase b « or b ‘logBase‘ *
logbaselp1p (b, x) logBaselP1P b x T

134 Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

radp(x) radians x T
azis_radp(z) axis_radians z T
sinp(z) sin x *
cosp(x) cos x *
tanp(x) tan z *
cotp(x) cot =z T
secp(x) sec x T
cscp(x) csc T T
cossinp(x) cosSin z T
arcsing(x) asin x *
arccosp(x) acos *
arctanp () atan *
arccotp(x) acot x T
arccotcp(x) acotc = T
arcsecp(x) asec x T
arcescp(x) acsc T
arcr(x,y) atan2 y x *
cyclep(u, x) cycle u x T
azis_cyclep(u, x) axis_cycle u x T
sinup(u,) sinU u x T
cosup(u,x) cosU u x T
tanup(u,x) tanU u. 2 T
cotup(u, x) cotU u-z T
secup(u, x) seclu x T
cscup(u,) eselU u « T
cossinup(u,) cosSinU u x T
arcsinup (u, x) asinU u x T
arccosup(u, x) acosU u = T
arctanup(u, x) atanU u = T
arccotup (u, o acotU u x T
arccoteu g(usx) acotcU u x T
arcsecthg(i,) asecU u z T
arceseur (u,) acscU u x T
arcer(u, z,y) atan2U u y x T
rad_to_cycler(x,w) rad_to_cycle w x 1
cycle_to_radp(u,x) cycle_ torad u x T
cycle_to_cyclep(u,x,w) cycle to cycle u = w T
sinhp(x) sinh x *
coshp(x) cosh z *
tanhp(x) tanh x *
C.6 Haskell

135

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

whi

fr

wh
for

10
bef
po
im
(th

1t.

cothp(z) coth x T
sechp(x) sech x T
cschp(x) csch x i
arcsinhp(x) asinh *
arccoshp(x) acosh z *
arctanhp(x) atanh x *
arccothp(z) acoth = T
arcsechp(x) asech z T
arccschp(x) acsch x T

ere b, x, y, u, and w are expressions of type FLT, and z is an expression of type INT.

Arithmetic value conversions in Haskell are always explicit. They are done with the oyverloade

pmIntegral and fromFractional operations.
convert;_.p(x) fromIntegral x *
convertr_1(x) read s *
converty_p(x) show x *
floorp_ ;1 (y) floor y *
roundingr—1(y) round y *
ceilingp—1(y) ceiling vy *
converty_p(x) fromIntegral x *
convertp g (y) fromFractional (y *
convertpn_,p(s) read s *
convertp_.pr(y) show y *
convertpr_p(s) read % *
convertp_.pr(y) show y *

ere = is an expression of type INT, y is an expression of type FLT. show does not allow fd
mat control.

Haskell provides non-negative numerals for all its integer and floating point types in bas

There is no differentiation between the numerals for different floating point datatypes, ng
ween numerals for*different integer datatypes, and integer numerals can be used for floatin|
nt values. Integer numerals stand for a value in Integer (the unbounded integer type) and a|
blicit fromInteger operation is applied to it. Fractional numerals stand for a value in Rational
e unbounded type of rational numbers) and an implicit fromRational operation is applied |

—

O TH B0’ = 0

Hagkell does not specify any numerals for infinities and NaNs. Suggestion:

+o00 infinity T
qNaN quietNaN T
sNaN sigallingNaN T

as well as string formats for reading and writing these values as character strings.

136

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

Haskell has the notion of error, which results in a change of ‘control flow’, which cannot
returned from, nor caught. An error results in the termination of the program. (There

ISO/IEC 10967-2:2001(E)

be

are

suggestions to improve this.) infinitary for integer types and invalid (in general) are considered

to be error. No notification results for underflow, and the continuation value (specified
LIA-2) is used directly, since recording of indicators is not available and error is inappropri
for underflow. The handling of integer overflow is implementation dependent. The handl
of floating point overflow and infinitary should be to return a suitable infinity (specified
LIA-2), if possible, without any notification, since recording of indicators is not available.

by
ate
ing

by

C.7 Java
The programming language Java is defined by The Java Language Specification [64], plus anumber
df class libraries (exactly which vary depending on the Java ‘edition’ and version),

An implementation should follow all the requirements of LIA-2 unless otherwise specified|by
this language binding.

The operations or parameters marked “i” are not part of the language and should be provided
Hy an implementation that wishes to conform to the LIA-2 for that_opefation. For each of the
marked items a suggested identifier is provided. The LIA-2 operations’ that are provided in Java
2 (marked “x” below) are in the final class java.lang.Math.

The Java datatype boolean corresponds to the LIA datatype Boolean.

Every implementation of Java has the integer datatyp€s ¥nt and long. The notation INT will
He used to refer to either one of them.

Java has two floating point datatypes, float and, double, which must conform to IEC 6050(9.

The notation FLT will be used to refer to either<one of them.

The LIA-2 integer operations are listed belpw, along with the syntax used to invoke them:

ming(x,y) min (g, y) *
mazr(x,y) max (T, y) *
min_seqr(xs) min_arr(xs) T
max_seqr(xs) max_arr (zs) T
dimp(z,y) dim(x, y) T
powery(z,y) power (z, ¥) T
shift2;(z,y) shift2(z, y) T
shift10;(z, y) shift10(z, y) T
sqrtr(z) sqrt () T
dividesy(x,y) divides(x, y) T
dividesy(x,y) x 1=0&& y % x == *
eveny () x h 2 == *
oddr{+) +—h2—="0 \
quot(x,y) quot (z,) T
mody(x,y) mod(x, y) T
ratior(z,y) ratio(z, y) T
residuer(x,y) residue(x, y) T

C.7 Java

137

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

whi

usq

groupr(z,y) group(z, y) f
pad;(z,y) pad(z, y) T
gedr(z,y) ged(z,) T
lemy(z,y) lem(z, y) T
gcd_seqr(xs) gcd_arr (xs) T
lem_seqr(xs) lcm arr(zs) T
add_wrapr(z,y) add wrap(z, ¥) T
add_ovr(z,y) add_over(z, y) T
sub_wrapr(z,y) sub_wrap(z, y) T
sub_ovi(x,y) sub_over(zx, y) T
mul_wrapr(z,y) mul _wrap(z, ¥) T
mul_ov(z,y) mul_over(z, y) F

ere x and y are expressions of type INT and where xs is an expression of type)INT[].

The LIA-2 non-transcendental floating point operations are listed below, along with the synta

d to invoke them:

ming(x,y)
mazp(x,y)
mmaxp(x,y)
mming(z,y)
min_seqp(xs)
maz_seqp(xs)
mmaz_seqp(xs)
mmin_seqp(zs)

dimp(x,y)

floory (2)
floor_rest p-(x)
roundingp(z)
rounding_restp(x)
ceilingp(x)

ceiling restp(x)

min(z, y)
max(x, ¥)
mmax (x, y)
mnin(x, y)
min_arr(xs)
max_arr (zs)
mmax (xs)
mmin(xs)

dim(z, 4)
floorm(a)

z, rifloor(x)
Tint ()

r - rint(x)
ceil(x)

r - ceil(x)

5

— — — — — — ¥ ¥

—

*(only for dduble)
*(only for dduble)
*(only for dduble)
(only for dduble)
()
()

X X

only for dguble

*(only for dquble

residuer(z,y) IEEEremainder(x, y) * (only for dpuble)
sqrtp(x) sqrt (z) *
rec_sqrtp () rec_sqrt(x) T
mulpogi (2, y) dprod(zx, y) T
addtor(z,y) add_low(z, 1) T
sublop(z,y) sub_low(z, y) T
mul_lop(z,y) mul_low(x, y) T
div_restp(x,y) div_rest(x, y) T
sqrt_restp(x) sqrt_rest (x) T

where = and y are expressions of type FLT, and where xs is an expression of type FLT[].

The LIA-2 parameters for operations approximating real valued transcendental functions can
be accessed by the following syntax:

138

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

© ISO/IEC 2001 — All rights reserved

ISO/IEC 10967-2:2001(E)

o O <

max_error_hypotp err_hypotenuse (x)]
Max_error_erpr err_exp(z) T
mazx_error_powerp(b,) err_power (1) T
big_angle_rp big_radian_angle(x) T
max_error_radp err_rad(z) T
Max_error_sing err_sin(x) T
max_error_tang err_tan(x) T
min_angular_unit g smallest_angular unit(z)]
big_angle_up big_angle(x) T
max_error_sinup(u) err_sin cycle(u) T
maz_error_tanup(u) err_tan_cycle(u) T
max_error_sinhpg err_sinh(x) T
max_error_tanhp err_tanh (x)]
mazx_error_convertp err_convert (z) T
max_error_convert g err_convert_to_string T
max_error_convert p err_convert to_string T

ypes.

here © and u are expressions of type FLT. Several of the\parameter functions are constant |for
ach type (and library), the argument is then used onlyto differentiate among the floating pdint

The LIA-2 elementary floating point operations are listed below, along with the syntax uged
b invoke them. These are defined only for double not for float.

hypotp(x,y) hypotenuse(z, y) T
powerr 1 (b, z) poweri(b, z) T
expr(zx) exp (z) *
expmlip(x) expml (z) T
exp2p(x) exp2(x) T
expl0p(x) expl10(x) T
powerp(b,y) power (b, y) T
powp (b, y) pow (b, y) * Not LIA{2!
power1pmAp(b, y) powerlpml (b, y) T
Inp(x) log(x) *
Indpy () loglip(x) T
16925 (x) log2(x) T
log10y(z) log10(x) T
logbaser (b, x) log(b, x) T
logbaselp1p (b, x) loglplp(b, x) T
radp(x) radian(x) T
azris_radp(r) axis_rad(x) T

C.7 Java

139

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

ISO/IEC 10967-2:2001(E)

© ISO/IEC 2001 — All rights reserved

140

sing(x) sin(x) *
cosp(x) cos(x) *
tanp(x) tan(x) *
cotp(x) cot(x) T
secp(x) sec(z) T
cscp(x) csc(x) T
arcsing(x) asin(x) *
arccosp(x) acos (x) *
arctang(x) atan(x) *
arccotp(x) acot (z) T
arccotcp(x) acotc(x) T
arcsecp(x) asec(x) T
arcescp(x) acsc(x) F
arcp(z,y) atan2(y, x) *
cyclep(u,) cycle(u, x) T
azis_cyclep(u, x) axis_cycle(u, x) T
sinup(u,) sinu(u, z) T
cosup(u,x) cosu(u, x) T
tanup(u,) tanu(u, x) t
cotup(u, x) cotulu, x) i
secup(u, x) secu(u, x) T
cscup(u, x) csculu, =) T
arcsinup(u, x) asinu(u, @) T
arccosup(u, x) acosu(usdx) T
arctanup(u, x) atanu(v, x) T
arccotup(u, x acotu(u,) T
arccotcur (u, x) acotcu(u, x) T
arcsecup(u, x) asecu(u, x) T
arcescup(u,) acscu(u, x) t
arcup(u, x,y atan2u(u, y, =) t
rad_to_cycler(x,360) toDegrees (x) *
cycle_to_radm(360, x) toRadians (x) *
rad_to_cyeler(z,w) radian_to_cycle(z, w) T
cycle o radp(u, x) cycle_to_radian(u, x) T
cycle=to_cyclep(u, x,w) cycle to cycle(u, x, w) T
sinhp(x) sinh(x) i
coshp(x) cosh(x) T
tanhp(x) tanh(z) T
cothp(z) coth(x) T
sechp(x) sech(x) T
cschp(x) csch(x) T

Ezxample bindings for specific languages

https://standardsiso.com/api/?name=1693c4a4d926c7dadc916d292da02420

