

Reference number
ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002

INTERNATIONAL
STANDARD

ISO/IEC
14496-2

Second edition
2001-12-01

AMENDMENT 1
2002-02-01

Information technology — Coding of
audio-visual objects —
Part 2:
Visual

AMENDMENT 1: Studio profile

Technologies de l'information — Codage des objets audiovisuels —

Partie 2: Codage visuel

AMENDEMENT 1: Profil du studio

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2002 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

The main task of the joint technical committee is to prepare International Standards. Draft International Standards
adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this Amendment may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to International Standard ISO/IEC 14496-2:2001 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and
hypermedia information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 1

Information technology — Coding of audio-visual objects —
Part 2: Visual

AMENDMENT 1: Studio profile

1) Add the following text at the end of ‘Overview of the object based non scalable syntax’ of ‘Introduction’:

"

In order to preserve the lossless quality, or to restrict the maximum bit count of block data, the block based DPCM
coding can be used for ISO/IEC 14496-2:2001 Amendment 1 (Studio Profile Amendment).

"

2) Replace text in ‘Coding of Shapes’ of ‘Introduction’,

"

In natural video scenes, VOPs are generated by segmentation of the scene according to some semantic meaning.
For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to as
alpha plane. The binary alpha plane is coded on a macroblock basis by a coder which uses the context information,
motion compensation and arithmetic coding.

"

with

"

In natural video scenes, VOPs are generated by segmentation of the scene according to some semantic meaning.
For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to as
alpha plane. The binary alpha plane is coded on a macroblock basis by a coder which uses the context information,
motion compensation and arithmetic coding. For high quality applications, the uncompressed binary alpha block
coding is used.

"

3) Add the following text in ‘Introduction’ following ‘Coding of Shapes’:

"
Coding interlaced video

Each frame of interlaced video consists of two fields which are separated by one field-period. This part of ISO/IEC
14496 allows either the frame to be encoded as a VOP or the two fields to be encoded as two VOPs. Frame
encoding or field encoding can be adaptively selected on a frame-by-frame basis. Frame encoding is typically
preferred when the video scene contains significant detail with limited motion. Field encoding, in which the second
field can be predicted from the first, works better when there is fast movement.

"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

2 © ISO/IEC 2002 – All rights reserved

4) Replace text in ‘Motion representation - macroblocks' of ‘Introduction’,

"

The choice of 16×16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-
off between the coding gain provided by using motion information and the overhead needed to represent it. Each
macroblock can further be subdivided to 8×8 blocks for motion estimation and compensation depending on the
overhead that can be afforded. In order to encode the highly active scene with higher vop rate, a Reduced
Resolution VOP tool is provided. When this tool is used , the size of the macroblock used for motion compensation
decoding is 32 x 32 pixels and the size of block is 16 x 16 pixels.

"

with

"

The choice of 16×16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-
off between the coding gain provided by using motion information and the overhead needed to represent it. Each
macroblock can further be subdivided to 8×8 blocks for motion estimation and compensation depending on the
overhead that can be afforded. In order to encode the highly active scene with higher vop rate, a Reduced
Resolution VOP tool is provided. When this tool is used , the size of the macroblock used for motion compensation
decoding is 32 x 32 pixels and the size of block is 16 x 16 pixels.

In frame encoding, the prediction from the previous reference frame can itself be either frame-based or field-based.

"

5) Replace text in ‘Chrominance formats’ of ‘Introduction’,

"

This part of ISO/IEC 14496 currently supports the 4:2:0 chrominance format.

"

with

"

This part of ISO/IEC 14496 currently supports the 4:2:0 chrominance format.

ISO/IEC 14496-2:2001 Amendment 1 also supports the 4:2:2 and 4:4:4 chorominance formats in addition.

"

6) Add the following text in ‘Introduction’ following ‘Chrominance formats’:

"

RGB color components

ISO/IEC 14496-2:2001 Amendment 1 supports coding of RGB color components. The resolution of each
component shall be identical when input data is treated as RGB color components.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 3

7) Add the following text at the end of ‘Pixel depth’ of ‘Introduction’:

"

ISO/IEC 14496-2:2001 Amendment 1 supports 8, 10 and 12 bits in luminance and chrominance or RGB planes.

"

8) Replace subclauses 3.38, 3.82, 3.107, and 3.131 with the following:

"

3.38 component: A matrix, block or single sample from one of the three matrices (luminance and two
chrominance or green, blue and red color primaries) that make up a picture.

3.82 frame: A frame contains lines of spatial information of a video signal. For progressive video, these lines
contain samples starting from one time instant and continuing through successive lines to the bottom of
the frame. For interlaced video a frame consists of two fields, a top field and a bottom field. One of these
fields will commence one field period later than the other.

3.107 macroblock: The four 8×8 blocks of luminance data and the two (for 4:2:0 chrominance format), four (for
4:2:2 chrominance format) or eight (for 4:4:4 chrominance format) corresponding 8×8 blocks of
chrominance data coming from a 16×16 section of the luminance component of the picture. Macroblock is
sometimes used to refer to the sample data and sometimes to the coded representation of the sample
values and other data elements defined in the macroblock header of the syntax defined in this part of
ISO/IEC 14496. The usage is clear from the context.

3.131 picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of three
rectangular matrices of N-bit numbers representing the luminance and two chrominance signals or rgb
colour signals. A “coded VOP” was defined earlier. For progressive video, a picture is identical to a frame,
while for interlaced video, a picture can refer to a frame, or the top field or the bottom field of the frame
depending on the context.

"

9) Add the following subclauses in clause 3 and renumber the subsequent items.

"
3.6 B-field VOP: A field structure B-VOP.

3.7 B-frame VOP: A frame structure B-VOP.

3.20 bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially located
immediately below the corresponding line of the top field.

3.33 coded B-frame: A B-frame VOP or a pair of B-field VOPs that is coded.

3.34 coded frame: A coded frame is a coded I-frame, a coded P-frame or a coded B-frame.

3.35 coded I-frame: An I-frame VOP or a pair of field VOPs that is coded where the first field VOP is an I-
VOP and the second field VOP is an I-VOP or a P-VOP..

3.36 coded P-frame: A P-frame VOP or a pair of field VOPs that is coded.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

4 © ISO/IEC 2002 – All rights reserved

3.42 coded order: The order in which the VOPs are transmitted and decoded. This order is not
necessarily the same as the display order.

3.64 display aspect ratio: The ratio height/width (in spatial measurement units such as centimeters) of the
intended display.

3.66 display process: The (non-normative) process by which reconstructed frames are displayed.

3.85 fast forward playback: The process of displaying a sequence, or parts of a sequence, of VOPs in

display-order, faster than real-time.

3.86 fast reverse playback: The process of displaying a sequence, or parts of a sequence, of VOPs in the
reverse of display order, faster than real-time.

3.88 field: For an interlaced video signal, a “field” is the assembly of alternate lines of a frame. Therefore
an interlaced frame is composed of two fields, a top field and a bottom field.

3.89 field-based prediction: A prediction mode using only one field of the reference frame. The predicted
block size is 16x16 luminance samples. Field-based prediction is not used in progressive frames.

3.90 field period: The reciprocal of twice the frame rate.

3.91 field VOP; field structure VOP: A field structure VOP is a coded VOP with vop_structure is equal to
“Top field” or “Bottom field”.

3.99 frame-based prediction: A prediction mode using both fields of the reference frame.

3.102 frame VOP; frame structure VOP: A frame structure VOP is a coded VOP with vop_structure is
equal to “Frame”.

3.103 future reference frame (field): A future reference frame (field) is a reference frame (field) that occurs
at a later time than the current VOP in display order.

3.113 I-field VOP: A field structure I-VOP.

3.114 I-frame VOP: A frame structure I-VOP.

3.147 RGB component: A matrix, block or single sample representing one of the three primary colours. The
symbols used for the rgb signals are Green, Blue and Red.

3.148 P-field VOP: A field structure P-VOP.

3.149 P-frame VOP: A frame structure P-VOP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 5

3.171 sample aspect ratio: (abbreviated to SAR). This specifies the relative distance between samples. It is
defined (for the purposes of this specification) as the vertical displacement of the lines of luminance
samples in a frame divided by the horizontal displacement of the luminance samples. Thus its units
are (metres per line) ÷ (metres per sample)

3.182 skipped macroblock: A macroblock for which no data is encoded.

3.192 top field: One of two fields that comprise a frame. Each line of a top field is spatially located
immediately above the corresponding line of the bottom field.

"

10) Add the following subclause 5.2.9 after subclause 5.2.8:

"

5.2.9 Definition of next_start_code_studio() function

The next_start_code_studio() function removes any zero bit and zero byte stuffing and locates the next start code.

next_start_code_studio() { No. of bits Mnemonic
 while (!bytealigned())
 zero_bit 1 ‘0’
 while (nextbits() != ‘0000 0000 0000 0000 0000 0001’)
 zero_byte 8 ‘0000 0000’
}

This function checks whether the current position is byte aligned. If it is not, zero stuffing bits are present. After that
any number of zero stuffing bytes may be present before the start code. Therefore start codes are always byte
aligned and may be preceded by any number of zero stuffing bits.

"

11) Replace subclause 6.1.1 with the following:

"

6.1.1 Visual object sequence

Visual object sequence is the highest syntactic structure of the coded visual bitstream.

A visual object sequence commences with a visual_object_sequence_start_code which is followed by
profile_and_level_indication, and one or more visual objects coded concurrently. The visual object sequence is
terminated by a visual_object_sequence_end_code.

At various points in the visual object sequence, a repeat visual_object_sequence_start_code can be inserted for
coded video data. In that case, the repeat visual_object_sequence_start_code shall follow a particular VOP.

When profile_and_level_indication indicates a Studio Profile, StudioVisualObject() shall follow it.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6 © ISO/IEC 2002 – All rights reserved

"

12) Replace subclause 6.1.2 with the following:

"

6.1.2 Visual object

A visual object commences with a visual_object_start_code and a visual object id, which are followed by a video
object, a still texture object, a mesh object, or an FBA object.

For Studio Profiles, only video object type is supported.

"

13) Replace subclause 6.1.3 with the following:

"

6.1.3 Video object

A video object commences with a video_object_start_code, and is followed by one or more video object layers.

A video object layer commences with video_object_layer_start_code which may optionally be followed by
Group_of_StudioVideoObjectPlane() and then by one or more coded VOPs. The order of the coded frames in the
coded bitstream is the order in which the decoder processes them, which is not necessarily the display order.

"

14) Replace subclause 6.1.3.1 with the following:

"

6.1.3.1 Progressive and interlaced sequences

This part of ISO/IEC 14496 deals with coding of both progressive and interlaced sequences.

The sequence, at the output of the decoding process, consists of a series of reconstructed VOPs separated in time
and are readied for display via the compositor.

For Studio Profiles paticularly, the output of the decoding process for interlaced sequences consists of a series of
reconstructed fields that are separated in time by a field period. The two fields of a frame may be coded separately
(field-VOPs). Alternatively the two fields may be coded together as a frame (frame-VOPs). Both frame VOPs and
field VOPs may be used in a single video sequence.

In progressive sequences each VOP in the sequence shall be a frame VOP. The sequence, at the output of the
decoding process, consists of a series of reconstructed frames that are separated in time by a frame period.

"

15) Replace subclause 6.1.3.2 with the following :

"

6.1.3.2 Frame

A frame consists of three rectangular matrices of integers; a luminance matrix (Y), and two chrominance matrices
(Cb and Cr).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 7

The relationship between these Y, Cb and Cr components and the primary (analogue) Red, Green and Blue
Signals (E’R, E’G and E’B), the chromaticity of these primaries and the transfer characteristics of the source frame

may be specified in the bitstream (or specified by some other means). This information does not affect the
decoding process.

For Studio Profiles particularly, the three rectangular matrices can be the primary RGB colour matrices.

"

16) Add the following subclause in subclause 6.1.3 and renumber the subsequent items

"

6.1.3.3 Field

A field consists of every other line of samples in the three rectangular matrices of integers representing a frame.

A frame is the union of a top field and a bottom field. The top field is the field that contains the top-most line of each
of the three matrices. The bottom field is the other one.

"

17) Replace subclause 6.1.3.3 with the following:

"

6.1.3.3 VOP

A reconstructed VOP is obtained by decoding a coded VOP. A coded VOP may have been derived from a
progressive or interlaced frame or an interlaced field. A reconstructed VOP is either a reconstructed frame (when
decoding a frame VOP), or one field of a reconstructed frame (when decoding a field VOP).

An I-frame VOP or a pair of field VOPs, where the first field VOP is an I-picture and the second field VOP is an I-
VOP or a P-VOP, is called a coded I-frame.

A P-frame VOP or a pair of P-field VOPs is called a coded P-frame.

A B-frame VOP or a pair of B-field VOPs is called a coded B-frame.

A coded I-frame, a coded P-frame or a coded B-frame is called a coded frame.

6.1.1.4.1 Field VOPs

If field VOPs are used, then they shall occur in pairs (one top field followed by one bottom field, or one bottom field
followed by one top field) and together constitute a coded frame. The two field VOPs that comprise a coded frame
shall be encoded in the bitstream in the order in which they shall occur at the output of the decoding process.

When the first VOP of the coded frame is a P-field VOP, then the second VOP of the coded frame shall also be a
P-field VOP. Similarly when the first VOP of the coded frame is a B-field VOP the second VOP of the coded frame
shall also be a B-field VOP.

When the first VOP of the coded frame is a I-field VOP, then the second VOP of the frame shall be either an I-field
VOP or a P-field VOP. If the second VOP is a P-field VOP, then certain restrictions apply (see 7.16.7.4.5).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

8 © ISO/IEC 2002 – All rights reserved

6.1.1.4.2 Frame VOPs

When coding interlaced sequences using frame VOPs, the two fields of the frame shall be interleaved with one
another and then the entire frame is coded as a single frame-VOP.

"

18) Replace the following text in subclause 6.1.3.5,

"

1) the modulo part (i.e. the full second units) of the time base for the next VOP after the GOV header in
display order

"

with

"

1) the modulo part (i.e. the full second units) of the time base for the next VOP after the GOV header in
display order. For Studio Profiles particularly, SMPTE 12M time code information that is not used by the
decoding process.

"

19) Replace the following text in subclause 6.1.3.6,

"

6.1.3.6 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertical
dimensions. The Y-matrix shall have an even number of lines and samples.

The luminance and chrominance samples are positioned as shown in Figure 6-1.The two variations in the vertical
and temporal positioning of the samples for interlaced VOPs are shown in Figure 6-2 and Figure 6-3.

Figure 6-4 shows the vertical and temporal positioning of the samples in a progressive frame.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 9

 Represent luminance samples

 Represent chrominance samples

Figure 6-1 — The position of luminance and chrominance samples in 4:2:0 data

Top
Field

Bottom
Field

time

Figure 6-2 — Vertical and temporal positions of samples in an interlaced frame with top_field_first=1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

10 © ISO/IEC 2002 – All rights reserved

time

Top
Field

Bottom
Field

Figure 6-3 — Vertical and temporal position of samples in an interlaced frame with top_field_first=0

time

Frame

Figure 6-4 — Vertical and temporal positions of samples in a progressive frame

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 11

The binary alpha plane for each VOP is represented by means of a bounding rectangle as described in clause F.2,
and it has always the same number of lines and pixels per line as the luminance plane of the VOP bounding
rectangle. The positions between the luminance and chrominance pixels of the bounding rectangle are defined in
this clause according to the 4:2:0 format. For the progressive case, each 2x2 block of luminance pixels in the
bounding rectangle associates to one chrominance pixel. For the interlaced case, each 2x2 block of luminance
pixels of the same field in the bounding rectangle associates to one chrominance pixel of that field.

In order to perform the padding process on the two chrominance planes, it is necessary to generate a binary alpha
plane which has the same number of lines and pixels per line as the chrominance planes. Therefore, when non-
scalable shape coding is used, this binary alpha plane associated with the chrominance planes is created from the
binary alpha plane associated with the luminance plane by the subsampling process defined below:

For each 2x2 block of the binary alpha plane associated with the luminance plane of the bounding rectangle (of the
same frame for the progressive and of the same field for the interlaced case), the associated pixel value of the
binary alpha plane associated with the chrominance planes is set to 255 if any pixel of said 2x2 block of the binary
alpha plane associated with the luminance plane equals 255.

"

with

"
6.1.3.6 Format

6.1.3.6.1 4:2:0 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertical
dimensions. The Y-matrix shall have an even number of lines and samples.

If the matrices represent RGB colour primary matrices, this 4:2:0 format shall not be applied.

NOTE — When interlaced frames are coded as rectangular field VOPs , the VOP reconstructed from each of these field VOPs
shall have a Y-matrix with half the number of lines of the corresponding frame. Thus the total number of lines in the Y-matrix of
an entire frame shall be divisible by four.

The luminance and chrominance samples are positioned as shown in Figure 6-1.The two variations in the vertical
and temporal positioning of the samples for interlaced VOPs are shown in Figure 6-2 and Figure 6-3.

Figure 6-4 shows the vertical and temporal positioning of the samples in a progressive frame.

In each field of an interlaced frame, the chrominance samples do not lie (vertically) mid way between the luminance
samples of the field. This is so that the spatial location of the chrominance samples in the frame is the same
whether the frame is represented as a single frame-VOP or two field-VOPs.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

12 © ISO/IEC 2002 – All rights reserved

 Represent luminance samples

 Represent chrominance samples

Figure 6-1 — The position of luminance and chrominance samples in 4:2:0 data

Top
Field

Bottom
Field

time

Figure 6-2 — Vertical and temporal positions of samples in an interlaced frame with top_field_first=1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 13

time

Top
Field

Bottom
Field

Figure 6-3 — Vertical and temporal position of samples in an interlaced frame with top_field_first=0

time

Frame

Figure 6-4 — Vertical and temporal positions of samples in a progressive frame

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

14 © ISO/IEC 2002 – All rights reserved

The binary alpha plane for each VOP is represented by means of a bounding rectangle as described in clause F.2,
and it always has the same number of lines and pixels per line as the luminance plane of the VOP bounding
rectangle. The positions between the luminance and chrominance pixels of the bounding rectangle are defined in
this clause according to the 4:2:0 format. For the progressive case, each 2x2 block of luminance pixels in the
bounding rectangle associates to one chrominance pixel. For the interlaced case, each 2x2 block of luminance
pixels of the same field in the bounding rectangle associates to one chrominance pixel of that field.

In order to perform the padding process on the two chrominance planes, it is necessary to generate a binary alpha
plane which has the same number of lines and pixels per line as the chrominance planes. Therefore, when non-
scalable shape coding is used, this binary alpha plane associated with the chrominance planes is created from the
binary alpha plane associated with the luminance plane by the subsampling process defined below:

For each 2x2 block of the binary alpha plane associated with the luminance plane of the bounding rectangle (of the
same frame for the progressive and of the same field for the interlaced case), the associated pixel value of the
binary alpha plane associated with the chrominance planes is set to 255 if any pixel of said 2x2 block of the binary
alpha plane associated with the luminance plane equals 255.

6.1.3.6.2 4:2:2 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in the horizontal dimension and the
same size as the Y-matrix in the vertical dimension. The Y-matrix shall have an even number of samples.

If the matrices represent RGB colour primar matrices, this 4:2:2 format shall not be applied.

NOTE — When interlaced frames are coded as rectangular field VOPs, the VOP reconstructed from each of these field VOPs
shall have a Y-matrix with half the number of lines of the corresponding frame. Thus the total number of lines in the Y-matrix of
an entire frame shall be divisible by two.

The luminance and chrominance samples are positioned as shown in Figure AMD1-1.

In order to clarify the organisation, Figure AMD1-2 shows the (vertical) positioning of the samples when the frame
is separated into two fields.

 Represent luminance samples

 Represent chrominance samples

Figure AMD1-1 — The position of luminance and chrominance samples. 4:2:2 data.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 15

Frame
Top
Field

Bottom
Field

Figure AMD1-2 — Vertical positions of samples with 4:2:2 and 4:4:4 data

6.1.3.6.3 4:4:4 Format

In this format the Cb and Cr matrices shall be the same size as the Y-matrix in the horizontal and the vertical
dimensions.

If the matrices are treated as RGB colour primary matrices, the matrices shall follow this format.

NOTE — When interlaced frames are coded as field rectangular VOPs, the VOP reconstructed from each of these field VOPs
shall have a Y-matrix with half the number of lines of the corresponding frame. Thus the total number of lines in the Y-matrix of
an entire frame shall be divisible by two.

The luminance and chrominance samples are positioned as shown in Figures AMD1-2 and AMD1-3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

16 © ISO/IEC 2002 – All rights reserved

 Represent luminance samples

 Represent chrominance samples

Figure AMD1-3 — The position of luminance and chrominance samples. 4:4:4 data.
"

20) Replace the following text in subclause 6.1.3.8,

"

A macroblock contains a section of the luminance component and the spatially corresponding chrominance
components. The term macroblock can either refer to source and decoded data or to the corresponding coded
data elements. A skipped macroblock is one for which no information is transmitted. Presently there is only one
chrominance format for a macroblock, namely, 4:2:0 format. The orders of blocks in a macroblock is illustrated
below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is
depicted in Figure 6-5.

1

2
4

3
5

0

Y CrCb

Figure 6-5 — 4:2:0 Macroblock structure
The organisation of VOPs into macroblocks is as follows.

For the case of a progressive VOP, the interlaced flag (in the VOP header) is set to “0” and the organisation of
lines of luminance VOP into macroblocks is called frame organization and is illustrated in Figure 6-6. In this case,
frame DCT coding is employed.

For the case of interlaced VOP, the interlaced flag is set to “1” and the organisation of lines of luminance VOP into
macroblocks can be either frame organization or field organization and thus both frame and field DCT coding may
be used in the VOP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 17

• In the case of frame DCT coding, each luminance block shall be composed of lines from two fields alternately.
This is illustrated in Figure 6-6.

• In the case of field DCT coding, each luminance block shall be composed of lines from only one of the two
fields. This is illustrated in Figure 6-7.

Only frame DCT coding is applied to the chrominance blocks. It should be noted that field based predictions may
be applied for these chrominance blocks which will require predictions of 8x4 regions (after half-sample filtering).

Figure 6-6 — Luminance macroblock structure in frame DCT coding

Figure 6-7 — Luminance macroblock structure in field DCT coding
"

with
"

A macroblock contains a section of the luminance component and the spatially corresponding chrominance
components. The term macroblock can either refer to source and decoded data or to the corresponding coded
data elements. A skipped macroblock is one for which no information is transmitted. There are three chrominance
formats for a macroblock, namely, 4:2:0, 4:2:2 and 4:4:4 formats. The order of blocks in a macroblock shall be
different for each different chrominance format and are illustrated below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is
depicted in Figure 6-5.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

18 © ISO/IEC 2002 – All rights reserved

1

2
4

3
5

0

Y CrCb

Figure 6-5 — 4:2:0 Macroblock structure

A 4:2:2 Macroblock consists of 8 blocks. This structure holds 4 Y, 2 Cb and 2 Cr Blocks and the block order is
depicted in Figure AMD1-4.

1

2 3 7

54

6

0

Y CrCb

Figure AMD1-4 — 4:2:2 Macroblock structure

A 4:4:4 Macroblock consists of 12 blocks. This structure holds 4 Y, 4 Cb and 4 Cr (or 4 G, 4 B and 4 R) Blocks and
the block order is depicted in Figure AMD1-5.

1

2

4

3 7

5

6

8 9

10 11

0

Y/G Cr/RCb/B

Figure AMD1-5 — 4:4:4 Macroblock structure

In frame VOPs, where both frame and field DCT coding may be used, the internal organisation within the
macroblock is different in each case.

• In the case of frame DCT coding, each block shall be composed of lines from two fields alternately. This is
illustrated in Figure 6-6.

• In the case of field DCT coding, each block shall be composed of lines from only one of the two fields. This is
illustrated in Figure 6-7.

In the case of chrominance blocks the structure depends upon the chrominance format that is being used. In the
case of 4:2:2 and 4:4:4 formats (where there are two blocks in the vertical dimension of the macroblock) the
chrominance blocks are treated in exactly the same manner as the luminance blocks. However, in the 4:2:0 format
the chrominance blocks shall always be organised in frame structure for the purposes of DCT coding. It should
however be noted that field based predictions may be made for these blocks which will, in the general case, require
that predictions for 8x4 regions (after half-sample filtering) must be made.

In field pictures, each picture only contains lines from one of the fields. In this case each block consists of lines
taken from successive lines in the picture as illustrated by Figure 6-6.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 19

Figure 6-6 — Luminance macroblock structure in frame DCT coding

Figure 6-7 — Luminance macroblock structure in field DCT coding
"

21) Add the following subclause 6.1.3.10 after subclause 6.1.3.9:

"
6.1.3.10 Field

A field consists of every other line of samples in the three rectangular matrices of integers representing a frame.

A frame is the union of a top field and a bottom field. The top field is the field that contains the top-most line of
each of the three matrices. The bottom field is the other one.

Only when profile_and_level_indication indicates the studio profile, a coded VOP may be a frame VOP or a field
VOP. A reconstructed VOP is either a reconstructed frame (when decoding a frame VOP), or one field of a
reconstructed frame (when decoding a field VOP).

6.1.3.10.1 Field VOPs

If field VOPs are used then they shall occur in pairs (one top field followed by one bottom field, or one bottom field
followed by one top field) and together constitute a coded frame. The two field VOPs that comprise a coded frame
shall be encoded in the bitstream in the order in which they shall occur at the output of the decoding process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

20 © ISO/IEC 2002 – All rights reserved

When the first VOP of the coded frame is a P-field VOP, then the second VOP of the coded frame shall also be a
P- field VOP. Similarly when the first VOP of the coded frame is a B-field VOP the second VOP of the coded frame
shall also be a B-field VOP.

When the first VOP of the coded frame is a I-field VOP, then the second VOP of the frame shall be either an I-field
VOP or a P-field VOP. If the second VOP is a P-field VOP then certain restrictions apply,.

6.1.3.10.2 Frame VOPs

When coding interlaced sequences using frame VOPs, the two fields of the frame shall be interleaved with one
another and then the entire frame is coded as a single frame-VOP.

"

22) Add the following subclauses 6.1.3.11 after subclause 6.1.3.10:

"

6.1.3.11 Slice

A slice is a series of an arbitrary number of consecutive macroblocks. The first and last macroblocks of a slice
shall not be skipped macroblocks. Every slice shall contain at least one macroblock. Slices shall not overlap. The
position of slices may change from picture to picture.

The first and last macroblock of a slice shall be in the same horizontal row of macroblocks.

Slices shall occur in the bitstream in the order in which they are encountered, starting at the upper-left of the picture
and proceeding by raster-scan order from left to right and top to bottom (illustrated in the Figures of this clause as
alphabetical order).

6.1.3.11.1 The general slice structure

In the most general case it is not necessary for the slices to cover the entire picture. Figure AMD1-6 shows this
case. Those areas that are not enclosed in a slice are not encoded and no information is encoded for such areas
(in the specific picture).

If the slices do not cover the entire picture then it is a requirement that if the picture is subsequently used to form
predictions then predictions shall only be made from those regions of the picture that were enclosed in slices. It is
the responsibility of the encoder to ensure this.

This specification does not define what action a decoder shall take in the regions between the slices.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 21

A

B

C

D

F

HG

E

I

Figure AMD1-6 — The most general slice structure.

6.1.3.11.2 Restricted slice structure

In certain defined levels of defined profiles a restricted slice structure illustrated in Figure AMD1-7 shall be used. In
this case every macroblock in the picture shall be enclosed in a slice.

A

B

C D

E F

H

I

J

K L

G

M

N

O P

Q

Figure AMD1-7 — Restricted slice structure.

Where a defined level of a defined profile requires that the slice structure obeys the restrictions detailed in this
clause, the term “restricted slice structure” may be used.

"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

22 © ISO/IEC 2002 – All rights reserved

23) Add the following text in subclause 6.2.1 before paragraph 5 (after Table 6-2):

"

Only when profile_and_level_indication indicates a studio profile, byte alignment shall be achieved by inserting bits
with the value zero before the start code prefix such that the first bit of the start code prefix is the first (most
significant) bit of a byte.

"

24) Replace Table 6-3 in subclause 6.2.1 with the following:

"

Table 6-3 — Start code values

name start code value
(hexadecimal)

video_object_start_code 00 through 1F
video_object_layer_start_code 20 through 2F
reserved 30 through AF
visual_object_sequence__start_code B0
visual_object_sequence_end_code B1
user_data_start_code B2
group_of_vop_start_code B3
video_session_error_code B4
visual_object_start_code B5
vop_start_code B6
slice_start_code B7
extension_start_code B8
reserved B9
fba_object_start_code BA
fba_object_plane_start_code BB
mesh_object_start_code BC
mesh_object_plane_start_code BD
still_texture_object_start_code BE
texture_spatial_layer_start_code BF
texture_snr_layer_start_code C0
texture_tile_start_code C1
texture_shape_layer_start_code C2
reserved C3-C5
System start codes (see Note) C6 through FF
NOTE — System start codes are defined in ISO/IEC 14496-1:1999.

"
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 23

25) Replace VisualObjectSequence() in subclause 6.2.2 with the following:

"
VisualObjectSequence() { No. of bits Mnemonic
 do {
 visual_object_sequence_start_code 32 bslbf
 profile_and_level_indication 8 uimsbf
 if (profile_and_level_indication ==
 11100001-11101000) {

 next_start_code_studio()
 extension_and_user_data(0)
 StudioVisualObject()
 } else {
 while (next_bits() == user_data_start_code) {
 user_data()
 }
 VisualObject()
 }
 } while (nextbits() !=
 visual_object_sequence_end_code)

 visual_object_sequence_end_code 32 bslbf
}

"

26) Add the following subclause 6.2.13 after subclause 6.2.12:

"
6.2.13 Studio Video Object

6.2.13.1 Studio Visual Object

StudioVisualObject() { No. of bits Mnemonic
 visual_object_start_code 32 bslbf
 visual_object_verid 4 uimsbf
 visual_object_type 4 uimsbf
 next_start_code_studio()
 extension_and_user_data(1)
 if (visual_object_type == “video ID“) {
 video_object_start_code 32 bslbf
 StudioVideoObjectLayer()
 } else {
 /* Other visual object types are not supported in
 StudioVisualObject() */

 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

24 © ISO/IEC 2002 – All rights reserved

6.2.13.2 Extension and user data

extension_and_user_data(i) { No. of bits Mnemonic
 while ((next_bits() == extension_start_code) ||
 (next_bits() == user_data_start_code)) {
 if ((i==2 || i==4) &&
(next_bits() == extension_start_code))

 extension_data(i)
 if (next_bits() == user_data_start_code)
 user_data_studio()
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 25

6.2.13.2.1 Extension data

extension_data(i) { No. of bits Mnemonic
 while (next_bits()== extension_start_code) {
 extension_start_code 32 bslbf
 /* NOTE - i never takes the value 0
 because extension_data() is never called in
 a VisualObjectSequence() */

 /* NOTE - i never takes the value 1
 because extension_data() is never called in
 a StudioVisualObject() */

 if (i == 2) { /* Called in StudioVideoObjectLayer() */
 if (next_bits()== “Sequence Display Extension ID”)
 sequence_display_extension()
 else if (next_bits() == “Quant Matrix Extension ID”)
 quant_matrix_extension()
 else if (nextbits() == “VLC Code Extension ID”)
 vlc_code_extension()
 }
 /* NOTE - i never takes the value 3
 because extension_data() is never called
 in a Group_of_StudioVideoObjectPlane() */

 if (i == 4) { /* Called in VideoObjectPlane() */
 if (nextbits() == “Quant Matrix Extension ID”)
 quant_matrix_extension()
 else if (nextbits() == “Copyright Extension ID”)
 copyright_extension()
 else if (nextbits() == “Picture Display Extension ID”)
 picture_display_extension()
 else if(nextbits() == “Camera Prameters Extension
ID”)

 camera_parameters_extension()
 else if (nextbits() == “ITU-T Extension ID”)
 ITU-T_extension()
 else if (nextbits() == “VLC Code Extension ID”)
 vlc_code_extension()
 }
}

6.2.13.2.2 User data Studio

user_data_studio() { No. of bits Mnemonic
 user_data_start_code 32 bslbf
 while(next_bits() != ‘0000 0000 0000 0000 0000 0001’) {
 user_data 8 uimsbf
 }
 next_start_code_studio()
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

26 © ISO/IEC 2002 – All rights reserved

6.2.13.2.3 Sequence display extension

sequence_display_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 video_format 3 uimsbf
 video_range 1 bslbf
 colour_description 1 uimsbf
 if (colour_description) {
 colour_primaries 8 uimsbf
 transfer_characteristics 8 uimsbf
 matrix_coefficients 8 uimsbf
 }
 display_horizontal_size 14 uimsbf
 marker_bit 1 bslbf
 display_vertical_size 14 uimsbf
 next_start_code_studio()
}

6.2.13.2.4 Quant matrix extension

quant_matrix_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 load_intra_quantiser_matrix 1 uimsbf
 if (load_intra_quantiser_matrix)
 intra_quantiser_matrix[64] 8 * 64 uimsbf
 load_non_intra_quantiser_matrix 1 uimsbf
 if (load_non_intra_quantiser_matrix)
 non_intra_quantiser_matrix[64] 8 * 64 uimsbf
 load_chroma_intra_quantiser_matrix 1 uimsbf
 if (load_chroma_intra_quantiser_matrix)
 chroma_intra_quantiser_matrix[64] 8 * 64 uimsbf
 load_chroma_non_intra_quantiser_matrix 1 uimsbf
 if (load_chroma_non_intra_quantiser_matrix)
 chroma_non_intra_quantiser_matrix[64] 8 * 64 uimsbf
 if (video_object_layer_shape == ‘grayscale’) {
 for(i=0; i<aux_comp_count; i++) {
 load_intra_quantiser_matrix_grayscale[i] 1 uimsbf
 if (load_intra_quantiser_matrix_grayscale[i])
 intra_quantiser_matrix_grayscale [i][64] 8 * 64 uimsbf
 load_non_intra_quantiser_matrix_grayscale[i] 1 uimsbf
 if (load_non_intra_quantiser_matrix_grayscale[i])
 non_intra_quantiser_matrix_grayscale [i][64] 8 * 64 uimsbf
 }
 }
 next_start_code_studio()
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 27

6.2.13.2.5 Picture display extension

picture_display_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 for (i=0; i<number_of_frame_centre_offsets; i++) {
 frame_centre_horizontal_offset 16 simsbf
 marker_bit 1 bslbf
 frame_centre_vertical_offset 16 simsbf
 marker_bit 1 bslbf
 }
 next_start_code_studio()
}

6.2.13.2.6 Copyright extension

copyright_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 copyright_flag 1 uimsbf
 copyright_identifier 8 uimsbf
 original_or_copy 1 uimsbf
 reserved 7 bslbf
 marker_bit 1 bslbf
 copyright_number_1 20 uimsbf
 marker_bit 1 bslbf
 copyright_number_2 22 uimsbf
 marker_bit 1 bslbf
 copyright_number_3 22 uimsbf
 next_start_code_studio()
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

28 © ISO/IEC 2002 – All rights reserved

6.2.13.2.7 Camera Parameters extension

camera_parameters_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 reserved 1 uimsbf
 camera_id 7 simsbf
 marker_bit 1 bslbf
 height_of_image_device 22 uimsbf
 marker_bit 1 bslbf
 focal_length 22 uimsbf
 marker_bit 1 bslbf
 f_number 22 uimsbf
 marker_bit 1 bslbf
 vertical_angle_of_view 22 uimsbf
 marker_bit 1 bslbf
 camera_position_x_upper 16 simsbf
 marker_bit 1 bslbf
 camera_position_x_lower 16
 marker_bit 1 bslbf
 camera_position_y_upper 16 simsbf
 marker_bit 1 bslbf
 camera_position_y_lower 16
 marker_bit 1 bslbf
 camera_position_z_upper 16 simsbf
 marker_bit 1 bslbf
 camera_position_z_lower 16
 marker_bit 1 bslbf
 camera_direction_x 22 simsbf
 marker_bit 1 bslbf
 camera_direction_y 22 simsbf
 marker_bit 1 bslbf
 camera_direction_z 22 simsbf
 marker_bit 1 bslbf
 image_plane_vertical_x 22 simsbf
 marker_bit 1 bslbf
 image_plane_vertical_y 22 simsbf
 marker_bit 1 bslbf
 image_plane_vertical_z 22 simsbf
 marker_bit 1 bslbf
 reserved 32 bslbf
 next_start_code_studio()
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 29

6.2.13.2.8 ITU-T extension

ITU-T extension () { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 while (nextbits() != '0000 0000 0000 0000 0000 0001') {
 ITU-T_data 1 bslbf
 }
 next_start_code_studio()
}
NOTE – The construct with the while-statement prevents start code emulation.

6.2.13.2.9 VLC code extension

vlc_code_extension() { No. of bits Mnemonic
 extension_start_code_identifier 4 uimsbf
 load_vlc_code 4 uimsbf
 if (load_intra_vlc_code == 1) {
 for (j=0; j< 12; j++) {
 for (i=0; i< 22; i++) {
 Intra_vlc_length[j][i] 4 uimsbf
 Intra_vlc_code[j][i] 16 uimsbf
 }
 }
 }
 if (load_inter_vlc_code == 1) {
 for (j=0; j< 12; j++) {
 for (i=0; i< 22; i++) {
 inter_vlc_length[j][i] 4 uimsbf
 inter_vlc_code[j][i] 16 uimsbf
 }
 }
 }
 next_start_code_studio()
}

6.2.13.3 Studio Video Object Layer

StudioVideoObjectLayer() { No. of bits Mnemonic
 video_object_layer_start_code 32 bslbf
 random_accessible_vol 1 bslbf
 video_object_type_indication 8 uimsbf
 video_object_layer_verid 4 uimsbf
 video_object_layer_shape 2 uimsbf
 video_object_layer_shape_extension 4 uimsbf
 progressive_sequence 1 bslbf
 if (video_object_layer_shape != “binary only”) {
 rgb_components 1 uimsbf
 chroma_format 2 uimsbf

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

30 © ISO/IEC 2002 – All rights reserved

 bits_per_pixel 4 uimsbf
 }
 if (video_object_layer_shape == “rectangular”) {
 marker_bit 1 bslbf
 video_object_layer_width 14 uimsbf
 marker_bit 1 bslbf
 video_object_layer_height 14 uimsbf
 marker_bit 1 bslbf
 }
 aspect_ratio_info 4 uimsbf
 if (aspect_ratio_info == “extended_PAR”) {
 par_width 8 uimsbf
 par_height 8 uimsbf
 }
 frame_rate_code 4 uimsbf
 first_half_bit_rate 15 uimsbf
 marker_bit 1 bslbf
 latter_half_bit_rate 15 uimsbf
 marker_bit 1 bslbf
 first_half_vbv_buffer_size 15 uimsbf
 marker_bit 1 bslbf
 latter_half_vbv_buffer_size 3 uimsbf
 first_half_vbv_occupancy 11 uimsbf
 marker_bit 1 blsbf
 latter_half_vbv_occupancy 15 uimsbf
 marker_bit 1 blsbf
 low_delay 1 uimsbf
 mpeg2_stream 1 uimsbf
 if (video_object_layer_shape == ”grayscale”) {
 for(i=0; i<aux_comp_count; i++) {
 alpha_bits_per_pixel[i] 4 uimsbf
 minimum_alpha_level[i] 12 uimsbf
 maximum_alpha_level[i] 12 uimsbf
 }
 composition_method 1 bslbf
 linear_composition 1 bslbf
 }
 if (video_object_layer_shape != “binary only”) {
 sprite_enable 1 bslbf
 if (sprite_enable) {
 sprite_width 20 uimsbf
 marker_bit 1 bslbf
 sprite_height 20 uimsbf
 marker_bit 1 bslbf
 sprite_left_coordinate 20 uimsbf
 marker_bit 1 bslbf
 sprite_top_coordinate 20 uimsbf
 marker_bit 1 bslbf
 no_of_sprite_warping_points 6 uimsbf

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 31

 sprite_warping_accuracy 2 uimsbf
 sprite_brightness_change 1 bslbf
 sprite_defocusing 1 bslbf
 sprite_lens_distortion 1 bslbf
 }
 }
 next_start_code_studio()
 extension_and_user_data(2)
 if (sprite_enable)
 StudioVideoObjectPlane()
 do {
 if (next_bits() == group_of_vop_start_code)
 Group_of_StudioVideoObjectPlane()
 StudioVideoObjectPlane()
 } while ((next_bits()== group_of_vop_start_code)
 || (next_bits() == vop_start_code))

}

6.2.13.4 Group of Studio Video Object Plane

Group_of_StudioVideoObjectPlane() { No. of bits Mnemonic
 group_vop_start_codes 32 bslbf
 time_code_smpte12m 64
 closed_gov 1 bslbf
 broken_link 1 bslbf
 next_start_code_studio()
 extension_and_user_data(3)
}

6.2.13.5 Studio Video Object Plane

StudioVideoObjectPlane() { No. of bits Mnemonic
 vop_start_code 32 bslbf
 time_code_smpte12m 64
 temporal_reference 10 bslbf
 vop_structure 2 uimsbf
 vop_coding_type 2 uimsbf
 vop_coded 1 bslbf
 if (vop_coded == ’0’) {
 next_start_code_studio()
 extension_and_user_data(4)
 return()
 }
 if (video_object_layer_shape != “rectangular”) {
 if (!(sprite_enable && vop_coding_type == “I“)) {
 vop_width 14 uimsbf
 marker_bit 1 bslbf
 vop_height 14 uimsbf

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

32 © ISO/IEC 2002 – All rights reserved

 marker_bit 1 bslbf
 vop_horizontal_mc_spatial_ref 14 simsbf
 marker_bit 1 bslbf
 vop_vertical_mc_spatial_ref 14 simsbf
 }
 }
 top_field_first 1 bslbf
 repeat_first_field 1 bslbf
 progressive_frame 1 bslbf
 if (vop_coding_type == "I")
 intra_predictors_reset 1 bslbf
 }
 if (video_object_layer_shape != “binary only”) {
 alternate_scan 1 bslbf
 frame_pred_frame_dct 1 bslbf
 dct_precision 2 uimsbf
 intra_dc_precision 2 uimsbf
 q_scale_type 1 bslbf
 if ((vop_coding_type != "I")
 && !(sprite_enable && vop_coding_type == "S")) {
 vop_fcode[0][0] 4 uimsbf
 vop_fcode[0][1] 4 uimsbf
 vop_fcode[1][0] 4 uimsbf
 vop_fcode[1][1] 4 uimsbf
 dead_zone_disable 1 bslbf
 }
 }
 if (video_object_layer_shape == “grayscale”) {
 for(i=0; i<aux_comp_count; i++) {
 alpha_dct_precision[i] 2 uimsbf
 alpha_intra_dc_precision[i] 2 uimsbf
 alpha_q_scale_type[i] 1 bslbf
 }
 }
 if (sprite_enable && vop_coding_type == “S”) {
 if (no_sprite_points > 0)
 sprite_trajectory()
 if (sprite_brightness_change)
 vop_sprite_brightness_change 1 bslbf
 if (vop_sprite_brightness_change)
 brightness_change_factor()
 if (sprite_defocusing)
 defocusing_control()
 if (sprite_lens_distortion)
 lens_distortion_parameter()
 next_start_code_studio()
 return()
 }
 composite_display_flag 1 bslbf

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 33

 if (composite_display_flag) {
 v_axis 1 bslbf
 field_sequence 3 uimsbf
 sub_carrier 1 bslbf
 burst_amplitude 7 uimsbf
 sub_carrier_phase 8 uimsbf
 }
 while (nextbits() == ‘1’) {
 extra_bit_picture /* with the value ‘1’ */ 1 uimsbf
 extra_information_picture 8 uimsbf
 }
 extra_bit_picture /* with the value ‘0’ */ 1 uimsbf
 next_start_code_studio()
 extension_and_user_data(4)
 do {
 StudioSlice()
 } while (nextbits() == slice_start_code)
}

6.2.13.6 Studio sprite coding

sprite_trajectory() { No. of bits Mnemonic
 for (i=0; i < no_of_sprite_warping_points; i++) {
 warping_mv_code(du[i])
 warping_mv_code(dv[i])
 }
}

warping_mv_code(d) { No. of bits Mnemonic
 dmv_length 2-19 uimsbf
 if (dmv_length != ‘00’)
 dmv_code 1-21 uimsbf
 marker_bit 1 bslbf
}

brightness_change_factor() { No. of bits Mnemonic
 brightness_change_factor_size 1-4 uimsbf
 brightness_change_factor_code 5-10 uimsbf
}

defocusing_control() { No. of bits Mnemonic
 defocusing_control_parameter 9-12 uimsbf
 marker_bit 1 bslbf
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

34 © ISO/IEC 2002 – All rights reserved

lens_distortion_parameter() { No. of bits Mnemonic
 lens_distortion_parameter_1 16 bslbf
 marker_bit 1 bslbf
 lens_distortion_parameter_2 16 bslbf
 marker_bit 1 bslbf
 lens_center_horizontal 14 bslbf
 marker_bit 1 bslbf
 lens_center_vertical 14 bslbf
 marker_bit 1 bslbf
}

6.2.13.7 Studio Slice

StudioSlice() { No. of bits Mnemonic
 slice_start_code 32 uimsbf
 macroblock_number 1-14 vlclbf
 if (video_object_layer_shape != “binary only”)
 quantiser_scale_code 5 uimsbf

 if(video_object_layer_shape==”grayscale”)
 for(i=0; i<aux_comp_count; i++)
 alpha_quantiser_scale_code[i] 5 uimsbf
 if (nextbits() == 1) {
 slice_extension_flag 1 bslbf
 intra_slice 1 uimsbf
 slice_VOP_id_enable 1 uimsbf
 slice_VOP_id 6 uimsbf
 while (nextbits() == 1) {
 extra_bit_slice 1 uimsbf
 extra_information_slice 8 uimsbf
 }
 }
 extra_bit_slice 1 uimsbf
 do {
 StudioMacroblock()
 } while (next_bits() != ‘000 0000 0000 0000 0000 0000’)
 next_start_code_studio()
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 35

6.2.13.8 Studio Macroblock

StudioMacroblock() { No. of bits Mnemonic
 if (vop_coding_type != “B”) {
 if (video_object_layer_shape != “rectangular”)
 Studio_mb_binary_shape_coding ()
 if (video_object_layer_shape != “binary only”) {
 if (!transparent_mb()) {
 if (vop_coding_type != “I”)
 not_coded 1 bslbf
 if (vop_coding_type == “I” || !not_coded) {
 compression_mode 1 bslbf
 if (compression_mode == "DCT") { /* DCT
*/

 StudioMacroblock_modes()
 if (macroblock_quant)
 quantiser_scale_code 5 uimsbf
 if (macroblock_motion_forward)
 motion_vectors(0)
 if (macroblock_pattern)
 coded_block_pattern()
 for (i = 0; i < block_count; i++)
 if(!transparent_block(i))
 StudioBlock(i)
 } /* -end- DCT */
 else { /* DPCM */
 dpcm_scan_order 1 bslbf
 StudioDPCMBlock() // Y or G
 StudioDPCMBlock() // U or B
 StudioDPCMBlock() // V or R
 } /* -end- DPCM */
 }
 }
 }
 }
 if(video_object_layer_shape==“grayscale”
 && !transparent_mb()) {

 for (j=0 ; j<aux_comp_count ; j++) {
 if(macroblock_intra ||
 compression_mode == "DPCM") {

 coda_i[j] 1 bslbf
 if(coda_i[j]==”coded”) {
 alpha_compression_mode[j] 1 bslbf
 if(alpha_compression_mode[j]== "DCT") {
 alpha_macroblock_quant[j] 1 bslbf
 if (alpha_macroblock_quant[j])
 alpha_quantiser_scale_code[j] 5 uimsbf
 for(i=0;i<alpha_block_count;i++)
 if(!transparent_block(i))
 StudioAlphaBlock(j,i)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

36 © ISO/IEC 2002 – All rights reserved

 } /* -end- DCT */
 else { /* DPCM */
 alpha_dpcm_scan_order[j] 1 bslbf
 StudioDPCMBlock() // alpha block
 } /* -end- DPCM */
 }
 } else { /* inter macroblock */
 coda_pb[j] 1-2 vlclbf
 if(coda_pb[j]==”coded”){
 alpha_compression_mode[j] 1 bslbf
 if(alpha_compression_mode[j]== "DCT")
 {

 cbpa[j] 1-6 vlclbf
 if (cbpa[j] != ‘no DCT coeff’) {
 alpha_macroblock_quant[j] 1 bslbf
 if (alpha_macroblock_quant[j])
 alpha_quantiser_scale_code[j] 5 uimsbf
 }
 for(i=0 ;i<alpha_block_count ;i++)
 if(!transparent_block(i))
 StudioAlphaBlock(j,i)
 } else {
 alpha_dpcm_scan_order[j] 1 bslbf
 StudioDPCMBlock(j) // Alpha
 }
 }
 } /* -end- inter */
 } /* -roop- aux_comp_count */
 } /* -end- grayscale */
}
NOTE The value of block_count is 6 in the 4:2:0 format. The value of alpha_block_count is 4.

6.2.13.8.1 Studio MB Binary Shape Coding

Studio_mb_binary_shape_coding () { No. of bits Mnemonic
 bab_type 1-6 vlclbf
 if (vop_coding_type == 'P'){
 if (bab_type == 1){
 mvs_x 1-18 vlclbf
 mvs_y 1-18 vlclbf
 }
 }
 if (bab_type == 4) {
 inferior_symbol_macroblock 1 bslbf
 cbbp 3-7 vlclbf
 for (i=0: i<4; i++){
 if (coded_binary_block_pattern[i]==’1’){

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 37

 inferior_symbol_block 1 bslbf
 scan_direction 1 bslbf
 backward_load_flag 1 bslbf
 clp 3-24 vlclbf
 for (j=0; j<8; j++){
 if (coded_line_pattern[j]==’1’)
 lbp 1-23 vlclbf
 }
 }
 }
 }
}

6.2.13.8.2 Studio Macroblock modes

StudioMacroblock_modes() { No. of bits Mnemonic
 macroblock_type 1-9 vlclbf
 if (macroblock_motion_forward) {
 if (vop_structure == ‘frame’) {
 if (frame_pred_frame_dct == 0)
 frame_motion_type 2 uimsbf
 } else {
 field_motion_type 2 uimsbf
 }
 }
 if ((vop_structure == “Frame picture”) &&
 (frame_pred_frame_dct == 0) &&
 (macroblock_intra || macoblock_pattern)){
 dct_type 1 uimsbf
 }
}

6.2.13.8.3 Motion vectors

motion_vectors (s) { No. of bits Mnemonic
 if (motion_vector_count == 1) {
 if (mv_format == field)
 motion_vertical_field_select[0][s] 1 uimsbf
 motion_vector(0, s)
 } else {
 motion_vertical_field_select[0][s] 1 uimsbf
 motion_vector(0, s)
 motion_vertical_field_select[1][s] 1 uimsbf
 motion_vector(1, s)
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

38 © ISO/IEC 2002 – All rights reserved

6.2.13.8.4 Motion vector

motion_vector (r, s) { No. of bits Mnemonic
 motion_code[r][s][0] 1-11 vlclbf
 if ((vop_fcode[s][0] != 1) && (motion_code[r][s][0] != 0))
 motion_residual[r][s][0] 1-8 uimsbf
 motion_code[r][s][1] 1-11 vlclbf
 if ((vop_fcode[s][1] != 1) && (motion_code[r][s][1] != 0))
 motion_residual[r][s][1] 1-8 uimsbf
}

6.2.13.8.5 Coded block pattern

coded_block_pattern () { No. of bits Mnemonic
 coded_block_pattern_420 3-9 vlclbf
 if (chroma_format == 4:2:2)
 coded_block_pattern_1 2 uimsbf
 if (chroma_format == 4:4:4)
 coded_block_pattern_2 6 uimsbf
}

6.2.13.9 Studio Block

The detailed syntax for the term “DCT coefficient” is fully described in clause 7.

StudioBlock(i) { No. of bits Mnemonic
 if (pattern_code[i]) {
 if (macroblock_intra) {
 if (i<4) {
 dct_dc_size_luminance 2-14 vlclbf
 if(dct_dc_size_luminance != 0)
 dct_dc_differential 1-15 vlclbf
 if (dct_dc_size_luminance > 8)
 marker_bit 1 bslbf
 } else {
 dct_dc_size_chrominance 2-15 vlclbf
 if(dct_dc_size_chrominance !=0)
 dct_dc_differential 1-15 vlclbf
 if (dct_dc_size_chrominance > 8)
 marker_bit 1 bslbf
 }
 } else {
 First DCT coefficient 2-24 vlcfbf
 }
 while (next_bits() != End of block)
 Subsequent DCT coefficients 3-24 vlclbf
 End of block 3-15 vlcfbf
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 39

6.2.13.9.1 Studio Alpha Block

The syntax for DCT coefficient decoding is the same as for block(i) in 6.2.13.9.

StudioAlphaBlock(j, i) { No. of bits Mnemonic
 last = 0
 if (alpha_pattern_code[j][i]) {
 if (macroblock_intra ||
 compression_mode == "DPCM") {

 dct_dc_size_alpha 2-14 vlclbf
 if(dct_dc_size_alpha != 0)
 dct_dc_differential 1-15 vlclbf
 if (dct_dc_size_alpha > 8)
 marker_bit 1 bslbf
 } else {
 First DCT coefficient 2-24 vlcfbf
 }
 while (next_bits() != End of block)
 Subsequent DCT coefficients 3-24 vlclbf
 End of block 3-15 vlcfbf
 }
}

6.2.13.10 Studio DPCM Block

StudioDPCMBlock() { No. of bits Mnemonic
 block_mean 8-12 uimsbf
 rice_parameter 4 uimsbf
 for(i=0 ;i<8 or 16 ; i++) {
 for(j=0 ;j<8 or 16;j++) {
 rice_prefix_code 1-12 vlclbf
 if (rice_prefix_code == ‘0000 0000 0001’)
 dpcm_residual 4-12 uimsbf
 else
 rice_suffix_code 0-12 uimsbf
 }
 }
}

"

27) Add the following text at the end of subclause 6.3.1:

"

Only when profile_and_level_indication indicates a studio profile, extension layers can be inserted in the bitstream.
At each point where extensions are allowed in the bitstream any number of the extensions from the defined
allowable set may be included. However each type of extension shall not occur more than once.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

40 © ISO/IEC 2002 – All rights reserved

In the case that a decoder encounters an extension with an extension identification that is described as “reserved”
in this specification the decoder shall discard all subsequent data until the next start code. This requirement allows
future definition of compatible extensions to this specification.

Table AMD1-1 — extension_start_code_identifier codes.

extension_start_code_identifier Name

0000 reserved
0001 reserved
0010 Sequence Display Extension ID
0011 Quant Matrix Extension ID
0100 Copyright Extension ID
0101 VLC code Extension ID
0110 reserved
0111 Picture Display Extension ID

1000 - 1010 reserved
1011 Camera Parameters Extension ID
1100 ITU-T extension ID
1101 reserved

… …
1111 reserved

"

28) Add the following subclause 6.3.13 after subclause 6.3.12:

"
6.3.13 Studio Video Object

6.3.13.1 Studio Visual Object

visual_object_start_code: The visual_object_start_code is the bit string ‘000001B5’ in hexadecimal. It identifies
the beginning of a visual object header.

visual_object_verid: This is a 4-bit code which identifies the version number of the visual object. Its meaning is
defined in Table AMD1-2.

Table AMD1-2 -- Meaning of visual_object_verid

visual_object_verid Meaning

0000 reserved
0001 object type listed in Table 9-1
0010 object type listed in Table V2-39
0011 reserved
0100 object type listed in Table AMD1-48
0101 – 1111 reserved

visual_object_type: The visual_object_type is a 4-bit code given in Table AMD1-3 which identifies the type of the
visual object.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 41

Table AMD1-3 -- Meaning of visual object type

code visual object type

0000 reserved
0001 video ID
0010 still texture ID
0011 mesh ID
0100 face ID
0101 reserved
: :
: :
1111 reserved

video_object_start_code: The video_object_start_code is a string of 32 bits. The first 27 bits are ‘0000 0000
0000 0000 0000 0001 000‘ in binary and the last 5-bits represent one of the values in the range of ‘00000’ to
‘11111’ in binary. The video_object_start_code identifies the beginning of a video object header.

6.3.13.2 Extension and user data Studio

6.3.13.2.1 Extension data

extension_start_code: The extension_start_code is the bit string ‘000001B8’ in hexadecimal. It identifies the
beginning of extensions.

6.3.13.2.2 User data Studio

user_data_start_code: The user_data_start_code is the bit string ‘000001B2’ in hexadecimal. It identifies the
beginning of user data. The user data continues until receipt of another start code.

user_data: This is an 8 bit integer, an arbitrary number of which may follow one another. User data is defined by
users for their specific applications. In the series of consecutive user_data bytes there shall not be a string of 23 or
more consecutive zero bits.

6.3.13.2.3 Sequence display extension

This specification does not define the display process. The information in this extension does not affect the
decoding process and may be ignored by decoders that conform to this specification.

extension_start_code_identifier: This is a 4-bit integer which identifies the extension. See Table AMD1-1.

video_format: This is a three bit integer indicating the representation of the pictures before being coded in
accordance with this specification. Its meaning is defined in Table AMD1-4. If the sequence_display_extension() is
not present in the bitstream then the video format may be assumed to be “Unspecified video format”.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

42 © ISO/IEC 2002 – All rights reserved

Table AMD1-4 -- Meaning of video_format

video_format Meaning
000 component
001 PAL
010 NTSC
011 SECAM
100 MAC
101 Unspecified video format
110 reserved
111 reserved

video_range: This one-bit flag indicates the black level and range of the luminance and chrominance signals. In
the case that sequence_display_extension() is not present in the bitstream, video_range is assumed to have the
value 0 (a range of Y from 16 to 235 for 8-bit video).

colour_description: A flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics
and matrix_coefficients in the bitstream.

colour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined
in Table AMD1-5.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 43

Table AMD1-5 -- Colour Primaries

Value Primaries
0 (forbidden)
1 Recommendation ITU-R BT.709

primary x y
green 0,300 0,600
blue 0,150 0,060
red 0,640 0,330
white D65 0,3127 0,3290

2 Unspecified Video
Image characteristics are unknown.

3 reserved
4 Recommendation ITU-R BT.470-2 System M

primary x y
green 0,21 0,71
blue 0,14 0,08
red 0,67 0,33
white C 0,310 0,316

5 Recommendation ITU-R BT.470-2 System B, G
primary x y
green 0,29 0,60
blue 0,15 0,06
red 0,64 0,33
white D65 0,313 0,329

6 SMPTE 170M
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290

7 SMPTE 240M (1987)
primary x y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3291

8 Generic film (colour filters using Illuminant C)
primary x y
green 0,243 0,692 (Wratten 58)
blue 0,145 0,049 (Wratten 47)
red 0,681 0,319 (Wratten 25)

9-255 reserved

In the case that sequence_display_extension() is not present in the bitstream or colour_description is zero the
chromaticity is assumed to be that corresponding to colour_primaries having the value 1.
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

44 © ISO/IEC 2002 – All rights reserved

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source
picture, and is defined in Table AMD1-6.

Table AMD1-6 -- Transfer Characteristics

Value Transfer Characteristic
0 (forbidden)
1 Recommendation ITU-R BT.709

V = 1,099 Lc0,45 − 0,099

 for 1≥ Lc ≥ 0,018
V = 4,500 Lc

 for 0,018> Lc ≥ 0

2 Unspecified Video
 Image characteristics are unknown.

3 reserved
4 Recommendation ITU-R BT.470-2 System M

 Assumed display gamma 2,2
5 Recommendation ITU-R BT.470-2 System B, G

 Assumed display gamma 2,8
6 SMPTE 170M

V = 1,099 Lc0,45 − 0,099

 for 1≥ Lc ≥ 0,018
V = 4,500 Lc

 for 0,018> Lc ≥ 0

7 SMPTE 240M (1987)
V = 1,1115 Lc0,45 − 0,1115

 for Lc ≥ 0,0228
V = 4,0 Lc

 for 0,0228> Lc

8 Linear transfer characteristics
i.e. V = Lc

9 Logarithmic transfer characteristic (100:1
range)
V = 1.0-Log10(Lc)/2
 for 1= Lc = 0.01
V= 0.0
 for 0.01> Lc

10 Logarithmic transfer characteristic (316.22777:1
range)
V = 1.0-Log10(Lc)/2.5
 for 1= Lc = 0.0031622777
V= 0.0
 for 0.0031622777> Lc

11-255 reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 45

In the case that sequence_display_extension() is not present in the bitstream or colour_description is zero the
transfer characteristics are assumed to be those corresponding to transfer_characteristics having the value 1.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and
chrominance signals from the green, blue, and red primaries, and is defined in Table AMD1-7.

In this table:

E’Y is analogue with values between 0 and 1
E’PB and E’PR are analogue between the values -0,5 and 0,5
E’R, E’G and E’B are analogue with values between 0 and 1
White is defined as E’y=1, E’PB=0, E’PR=0; E’R =E’G =E’B=1.
Y, Cb and Cr are related to E’Y, E’PB and E’PR by the following formulae:

if video_range=0:

 Y = (219 * 2n-8 * E’Y) + 2n-4.
 Cb = (224 * 2n-8 * E’PB) + 2n-1
 Cr = (224 * 2n-8 * E’PR) + 2n-1

if video_range=1:

 Y = ((2n -1) * E’Y)
 Cb = ((2n -1) * E’PB) + 2n-1
 Cr = ((2n -1) * E’PR) + 2n-1

for n bit video.

For example, for 8 bit video,

video_range=0 gives a range of Y from 16 to 235, Cb and Cr from 16 to 240;

video_range=1 gives a range of Y from 0 to 255, Cb and Cr from 0 to 255.

NOTE - The decoding process given by this specification limits output sample values for Y, Cr and Cb to the
range [0:255]. Thus sample values outside the range implied by the above equations may occasionally occur at
the output of the decoding process. In particular the sample values 0 and 255 may occur.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

46 © ISO/IEC 2002 – All rights reserved

Table AMD1-7 -- Matrix Coefficients

Value Matrix
0 (forbidden)
1 Recommendation ITU-R BT.709

E′Y = 0,7154 E′G + 0,0721 E′B + 0,2125 E′R

E′PB = -0,386 E′G + 0,500 E′B -0,115 E′R

E′PR = -0,454 E′G - 0,046 E′B + 0,500 E′R

2 Unspecified Video
 Image characteristics are unknown.

3 reserved
4 FCC

E′Y = 0,59 E′G + 0,11 E′B + 0,30 E′R
E′PB = -0,331 E′G + 0,500 E′B -0,169 E′R

E′PR = -0,421 E′G - 0,079 E′B + 0,500 E′R

5 Recommendation ITU-R BT.470-2 System B,
G
E′Y = 0,587 E′G + 0,114 E′B + 0,299 E′R

E′PB = -0,331 E′G + 0,500 E′B -0,169 E′R

E′PR = -0,419 E′G - 0,081 E′B + 0,500 E′R

6 SMPTE 170M
E′Y = 0,587 E′G + 0,114 E′B + 0,299 E′R
E′PB = -0,331 E′G + 0,500 E′B -0,169 E′R

E′PR = -0,419 E′G - 0,081 E′B + 0,500 E′R

7 SMPTE 240M (1987)
E′Y = 0,701 E′G + 0,087 E′B + 0,212 E′R

E′PB = −0,384 E′G + 0,500 E′B −0,116 E′R

E′PR = −0,445 E′G − 0,055 E′B + 0,500 E′R

8-255 reserved

In the case that sequence_display_extension() is not present in the bitstream or colour_description is zero the
matrix coefficients are assumed to be those corresponding to matrix_coefficients having the value 1.

display_horizontal_size: See display_vertical_size.

display_vertical_size: display_horizontal_size and display_vertical_size together define a rectangle which may be
considered as the “intended display’s” active region. If this rectangle is smaller than the encoded frame size then
the display process may be expected to display only a portion of the encoded frame. Conversely if the display
rectangle is larger than the encoded frame size then the display process may be expected to display the
reconstructed frames on a portion of the display device rather than on the whole display device.

display_horizontal_size shall be in the same units as horizontal_size (samples of the encoded frames).

display_vertical_size shall be in the same units as vertical_size (lines of the encoded frames).

display_horizontal_size and display_vertical_size do not affect the decoding process but may be used by the
display process that is not standardised in this specification.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 47

6.3.13.2.4 Quant matrix extension

Each quantisation matrix has a default set of values. When a video_object_start_code is decoded all matrices shall
be reset to their default values. User defined matrices may be downloaded and this can occur in a
quant_matrix_extension().

With 4:2:0 data only two matrices are used, one for intra blocks the other for non-intra blocks.

With 4:2:2 or 4:4:4 data four matrices are used. Both an intra and a non-intra matrix are provided for both
luminance blocks and for chrominance blocks. Note however that it is possible to download the same user defined
matrix into both the luminance and chrominance matrix at the same time.

The default matrix for intra blocks (both luminance and chrominance) is:

8 17 18 19 21 23 25 27
17 18 19 21 23 25 27 28
20 21 22 23 24 26 28 30
21 22 23 24 26 28 30 32
22 23 24 26 28 30 32 35
23 24 26 28 30 32 35 38
25 26 28 30 32 35 38 41
27 28 30 32 35 38 41 45

The default matrix for non-intra blocks (both luminance and chrominance) is:

16 17 18 19 20 21 22 23
17 18 19 20 21 22 23 24
18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27
20 21 22 23 25 26 27 28
21 22 23 24 26 27 28 30
22 23 24 26 27 28 30 31
23 24 25 27 28 30 31 33

load_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if intra_quantiser_matrix follows. If it is set to
‘0’ then there is no change in the values that shall be used.

intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded in the default
zigzag scanning order as described in 7.16.4.2.1, replace the previous values. The first value shall always be 8
(values 1 to 7 and 9 to 255 are reserved). For all of the 8-bit unsigned integers, the value zero is forbidden. With
4:2:2 and 4:4:4 data the new values shall be used for both the luminance intra matrix and the chrominance intra
matrix. However the chrominance intra matrix may subsequently be loaded with a different matrix except when
rgb_component is set to '1'.

load_non_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if non_intra_quantiser_matrix follows. If
it is set to ‘0’ then there is no change in the values that shall be used.

non_intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded in the
default zigzag scanning order as described in 7.16.3.2.1, replace the previous values. For all the 8-bit unsigned
integers, the value zero is forbidden. With 4:2:2 and 4:4:4 data the new values shall be used for both the
luminance non-intra matrix and the chrominance non-intra matrix. However the chrominance non-intra matrix may
subsequently be loaded with a different matrix.

load_chroma_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if chroma_intra_quantiser_matrix
follows. If it is set to ‘0’ then there is no change in the values that shall be used. If chroma_format is “4:2:0” or
rgb_components is set to '1', this flag shall take the value ‘0’.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

48 © ISO/IEC 2002 – All rights reserved

chroma_intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded in
the default zigzag scanning order as described in 7.16.4.2.1, replace the previous values. The first value shall
always be 8 (values 1 to 7 and 9 to 255 are reserved). For all of the 8-bit unsigned integers, the value zero is
forbidden.

load_chroma_non_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if
chroma_non_intra_quantiser_matrix follows. If it is set to ‘0’ then there is no change in the values that shall be
used. If chroma_format is “4:2:0” or rgb_components is set to '1' this flag shall take the value ‘0’.

chroma_non_intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded
in the default zigzag scanning order as described in 7.16.4.2.1, replace the previous values. For all the 8-bit
unsigned integers, the value zero is forbidden.

load_intra_quantiser_matrix_grayscale[i]: This is a one-bit flag which is set to ‘1’ if
intra_quantiser_matrix_grayscale[i] follows. If it is set to ‘0’ then there is no change in the values that shall be used.

intra_quantiser_matrix_grayscale[i]: This is a list of sixty-four 8-bit unsigned integers defining the grayscale intra
alpha quantisation matrix to be used. The semantics and the default quantisation matrix are identical to those of
intra_quantiser_matrix.

load_non_intra_quantiser_matrix_grayscale[i]: This is a one-bit flag which is set to ‘1’ if
non_intra_quantiser_matrix_grayscale[i] follows. If it is set to ‘0’ then there is no change in the values that shall be
used.

non_intra_quantiser_matrix_grayscale[i]: This is a list of sixty-four 8-bit unsigned integers defining the
grayscale nonintra alpha quantisation matrix to be used. The semantics and the default quantisation matrix are
identical to those of nonintra_quantiser_matrix.

6.3.13.2.5 Picture display extension

This specification does not define the display process. The information in this extension does not affect the
decoding process and may be ignored by decoders that conform to this specification.

The picture display extension allows the position of the display rectangle whose size is specified in
sequence_display_extension() to be moved on a picture-by-picture basis. One application for this is the
implementation of pan-scan.

frame_centre_horizontal_offset: This is a 16-bit signed integer giving the horizontal offset in units of 1/16th
sample. A positive value shall indicate that the centre of the reconstructed frame lies to the right of the centre of
the display rectangle.

frame_centre_vertical_offset: This is a 16-bit signed integer giving the vertical offset in units of 1/16th sample. A
positive value shall indicate that the centre of the reconstructed frame lies below the centre of the display rectangle.

The dimensions of the display rectangular region are defined in the sequence_display_extension(). The
coordinates of the region within the coded picture are defined in the picture_display_extension().

The centre of the reconstructed frame is the centre of the rectangle defined by video_object_layer_width and
video_object_layer_height.

Since (in the case of an interlaced sequence) a coded VOP may relate to one, two or three decoded fields the
picture_display_extension() may contain up to three offsets. STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 49

The number of frame centre offsets in the picture_display_extension() shall be defined as follows:

if (progressive_sequence == 1) {

 if (repeat_first_field == ‘1’) {

 if (top_field_first == ‘1’)

 number_of_frame_centre_offsets = 3

 else

 number_of_frame_centre_offsets = 2

 } else {

 number_of_frame_centre_offsets = 1

 }

} else {

 if (vop_structure == “field”) {

 number_of_frame_centre_offsets = 1

 } else {

 if (repeat_first_field == ‘1’)

 number_of_frame_centre_offsets = 3

 else

 number_of_frame_centre_offsets = 2

 }

}

A picture_display_extension() shall not occur unless a sequence_display_extension() followed the
StudioVideoObject().

In the case that a given picture does not have a picture_display_extension() then the most recently decoded frame
centre offset shall be used. Note that each of the missing frame centre offsets have the same value (even if two or
three frame centre offsets would have been contained in the picture_display_extension() had been present).
Following a StudioVisualObject() the value zero shall be used for all frame centre offsets until a
picture_display_extension() defines non-zero values.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

50 © ISO/IEC 2002 – All rights reserved

Figure AMD1-8 illustrates the picture display parameters. As shown the frame centre offsets contained in the
picture_display_extension() shall specify the position of the centre of the reconstructed frame from the centre of the
display rectangle.

NOTES -

1 The display rectangle may also be larger than the reconstructed frame.

2 Even in a field VOP the frame_centre_vertical_offset still represents the offset of the centre of the frame in
1/16ths of a frame line (not a line in the field).

3 In the example of Figure AMD1-8 both frame_centre_horizontal_offset and frame_centre_vertical_offset have
negative values.

display_-
vertical_size

display_horizontal_size

frame_centre_-
horizontal_offset

frame_centre_-
vertical_offset

Display
RectangleReconstructed Frame

Figure AMD1-8 -- Frame centre offset parameters

Pan-scan

The frame centre offsets may be used to implement pan-scan in which a rectangular region is defined which may
be panned around the entire reconstructed frame.

By way of example only; this facility may be used to identify a 3/4 aspect ratio window in a 9/16 coded VOP format.
This would allow a decoder to produce usable VOPs for a conventional definition television set from an encoded
format intended for enhanced definition. The 3/4 aspect ratio region is intended to contain the “most interesting”
region of the VOP.

The 3/4 region is defined by display_horizontal_size and display_vertical_size. The 9/16 frame size is defined by
video_object_later_width and video_object_layer_height.

6.3.13.2.6 Copyright extension

copyright_flag: This is a one bit flag. When copyright_flag is set to ‘1’, it indicates that the source video material
encoded in all the coded pictures following the copyright extension, in coding order, up to the next copyright
extension or end of sequence code, is copyrighted. The copyright_identifier and copyright_number identify the
copyrighted work. When copyright_flag is set to ‘0’, it does not indicate whether the source video material encoded
in all the coded pictures following the copyright extension, in coding order, is copyrighted or not.

copyright_identifier: This is a 8-bit integer given by a Registration Authority as designated by ISO/IEC
JTC1/SC29. Value zero indicates that this information is not available. The value of copyright_number shall be
zero when copyright_identifier is equal to zero.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 51

When copyright_flag is set to ‘0’, copyright_identifier has no meaning and shall have the value 0.

original_or_copy: This is a one bit flag. It is set to ‘1’ to indicate that the material is an original, and set to ‘0’ to
indicate that it is a copy.

reserved: This is a 7-bit integer, reserved for future extension. It shall have the value zero.

copyright_number_1: This is a 20-bit integer, representing bits 44 to 63 of copyright_number.

copyright_number_2: This is a 22-bit integer, representing bits 22 to 43 of copyright_number.

copyright_number_3: This is a 22-bit integer. representing bits 0 to 21 of copyright_number.

copyright_number: This is a 64-bit integer, derived from copyright_number_1, copyright_number_2, and
copyright_number_3 as follows:

copyright_number = (copyright_number_1 << 44) + (copyright_number_2 << 22) + copyright_number_3.

The meaning of copyright_number is defined only when copyright_flag is set to ‘1’. In this case, the value of
copyright_number identifies uniquely the copyrighted work marked by the copyrighted extension. The value 0 for
copyright_number indicates that the identification number of the copyrighted work is not available.

When copyright_flag is set to ‘0’, copyright_number has no meaning and shall have the value 0.

6.3.13.2.7 Camera parameters extension

camera_id – The number in camera_id identifies a camera.

height_of_image_device – This is a 22-bit unsigned integer which specifies the height of image device. Its value
shall be measured to a resolution of 0,001 millimeter and having a range of zero to 4 194,303 mm.

focal_length – This is a 22-bit unsigned integer which specifies the focal length. Its value shall be measured to a
resolution of 0,001 millimeter and having a range of zero to 4 194,303 mm.

f_number – This is a 22-bit unsigned integer which specifies the F-number. F-number is defined by
(focal_length)/(effective aperture of lens). Its value shall be measured to a resolution of 0,001and having a range of
zero to 4 194,303.

vertical_angle_of_view – This is a 22-bit unsigned integer which specifies the vertical angle of the field of view as
determined between the top and bottom edges of the image device. Its value shall be measured to a resolution of
0,0001 degree and having a range of zero to 180 degrees.

camera_position_x_upper, camera_position_y_upper, camera_position_z_upper – These words constitute
the 16 most significant bits of camera_position_x, camera_position_y and camera_position_z respectively.

camera_position_x_lower, camera_position_y_lower, camera_position_z_lower – These words constitute the
16 least significant bits of camera_position_x, camera_position_y and camera_position_z respectively.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

52 © ISO/IEC 2002 – All rights reserved

camera_position_x, camera_position_y, camera_position_z – A set of these values specifies the position of the
optical principal point of the camera in a user-specified world coordinate system. Each of these values shall be
measured to a resolution of 0,001 millimeter and having a range of +2 147 483,647 mm to –2 147 483,648 mm.
The camera_position_x is a 32-bit signed (two’s complement) integer, the 16 least significant bits are defined in
camera_position_x_lower, the 16 most significant bits are defined in camera_position_x_upper. The
camera_position_y is a 32-bit signed (two’s complement) integer, the 16 least significant bits are defined in
camera_position_y_lower, the 16 most significant bits are defined in camera_position_y_upper. The
camera_position_z is a 32-bit signed (two’s complement) integer, the 16 least significant bits are defined in
camera_position_z_lower, the 16 most significant bits are defined in camera_position_z_upper.

camera_direction_x, camera_direction_y, camera_direction_z – A set of these values specifies the direction of
the camera. The direction of the camera is defined by using the vector from optical principal point to a point which
is in front of the camera and is on the optical axis of the camera. Each of these values is a 22-bit signed (two’s
complement) integer and having a range of +2 097 151 to –2 097 152.

image_plane_vertical_x, image_plane_vertical_y, image_plane_vertical_z – A set of these values specifies the
upper direction of the camera. The upper direction of the camera is defined by using the vector which is parallel to
the side edge of the image device and is from bottom edge to top edge. Each of these values is a 22-bit signed
(two’s complement) integer and is having a range of +2 097 151 to –2 097 152.

Figure AMD1-9 explains these terms pictorially.

T1605290-98/d01

x

y

z

image plane vertical

 image plane
(image device)

height of
image device

optical principal point
(= camera position)

optical axis

effective aperture of lens

camera direction

lens

image plane vertical

camera direction camera position

vertical angle of view

Figure AMD1-9 -- Camera parameters

6.3.13.2.8 ITU-T extension

The use of this extension is defined in Annex A of ITU-T Recommendation H.320.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 53

6.3.13.2.9 VLC code extension

load_vlc_code: This is a four bit integer indicating the presence of downloadable VLC codes for quantised AC
coefficients. The value of load_intra_vlc_code and load_inter_vlc_code is derived from this code. Semantics are
defined in the Table AMD1-8.

Table AMD1-8 -- Meaning of load_vlc_code

load_vlc_code Meaning
0000 forbidden
0001 load_intra_vlc_code = 1

load_inter_vlc_code = 0
0010 load_intra_vlc_code = 0

load_inter_vlc_code = 1
0011 load_intra_vlc_code = 1

load_inter_vlc_code = 1
0100 – 1111 reserved

If load_intra_vlc_code is set to ‘1’, the VLC codes defined in Table AMD1-55 to Table AMD1-66 shall be replaced
with the codes indicated by intra_vlc_length[j][i] and intra_vlc_code[j][i]. If it is set to ‘0’, there is no change in Table
AMD1-55 to Table AMD1-66.

If load_inter_vlc_code is set to ‘1’, the VLC codes defined in Table AMD1-67 to Table AMD1-78 shall be replaced
with the codes indicated by inter_vlc_length[j][i] and inter_vlc_code[j][i]. If it is set to ‘0’, there is no change in Table
AMD1-67 to Table AMD1-78.

intra_vlc_length[j][i]: This is a four bit unsigned integer indicating the length of the VLC code of the entry No. i in
the Table No. j, which is defined in Table AMD1-55 to Table AMD1-66. The actual length is intra_vlc_length[j][i]+1.
The length of each VLC code in each table shall be limited to less than 17. The length of the VLC code of entry
No.21 in each table shall also be limited less than 14.

intra_vlc_code[j][i]: This is a 16 bit unsigned integer indicating the VLC code of the entry No. i in the Table No. j,
which is defined in Table AMD1-55 to Table AMD1-66. The most significant bits of the length indicated by
intra_vlc_length[j][i] is the actual VLC code, and the remaining bits shall be filled with ‘1’.

inter_vlc_length[j][i]: This is a four bit unsigned integer indicating the length of the VLC code of the entry No. i in
the Table No. j, which is defined in Table AMD1-67 to Table AMD1-78. The actual length is inter_vlc_length[j][i]+1.
The length of each VLC code in each table shall be limited to less than 17. The length of the VLC code of entry
No.21 in each table shall also be limited less than 14.

inter_vlc_code[j][i]: This is a 16 bit unsigned integer indicating the VLC code of the entry No. i in the Table No. j,
which is defined in Table AMD1-67 to Table AMD1-78. The most significant bits of the length indicated by
intra_vlc_length[j][i] is the actual VLC code, and the remaining bits shall be filled with ‘1’.

6.3.13.3 Studio Video Object Layer

video_object_layer_start_code: The video_object_layer_start_code is a string of 32 bits. The first 28 bits are
‘0000 0000 0000 0000 0000 0001 0010‘ in binary and the last 4-bits represent one of the values in the range of
‘0000’ to ‘1111’ in binary. The video_object_layer_start_code identifies the beginning of a video object layer header.

random_accessible_vol: This flag may be set to “1” to indicate that every VOP in this VOL is individually
decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more conditions are satisfied then
random_accessible_vol may be set to “1”. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0” if any of the
VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

54 © ISO/IEC 2002 – All rights reserved

video_object_type_indication: Constrains the following bitstream to use tools from the indicated object type only,
e.g. Simple Object or Core Object, as shown inTable AMD1-9.

Table AMD1-9 -- FLC table for video_object_type indication

Video Object Type Code
Reserved 00000000
Simple Object Type 00000001
Simple Scalable Object Type 00000010
Core Object Type 00000011
Main Object Type 00000100
N-bit Object Type 00000101
Basic Anim. 2D Texture 00000110
Anim. 2D Mesh 00000111
Simple Face 00001000
Still Scalable Texture 00001001
Advanced Real Time Simple 00001010
Core Scalable 00001011
Advanced Coding Efficiency 00001100
Advanced Scalable Texture 00001101
Simple Studio Object Type 00001110
Core Studio Object Type 00001111
Reserved 00010000 - 11111111

video_object_layer_verid: This is a 4-bit code which identifies the version number of the video object layer. Its
meaning is defined in Table AMD1-10. If both visual_object_verid and video_object_layer_verid exist, the
semantics of video_object_layer_verid supersedes the other.

Table AMD1-10 -- Meaning of video_object_layer_verid

video_object_layer_verid Meaning

0000 reserved
0001 object type listed in Table 9-1
0010 object type listed in Table V2-39
0011 reserved
0100 object type listed in Table AMD1-48
0101 – 1111 reserved

video_object_layer_shape: This is a 2-bit integer defined in Table AMD1-11. It identifies the shape type of a
video object layer.

Table AMD1-11 -- Video Object Layer shape type

Shape format Meaning
00 rectangular
01 binary
10 binary only
11 grayscale

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 55

video_object_layer_shape_extension: This is a 4-bit integer defined in Table AMD1-12. It identifies the number
(up to 3) and type of auxiliary components that can be used, including the grayscale shape (ALPHA) component.
Only a limited number of types and combinations are defined in Table AMD1-11. More applications are possible by
selection of the USER DEFINED type. If the video_object_layer_shape does not indicate grayscale shape, this
code shall be set to ‘1111’.

Table AMD1-12 -- Semantic meaning of video_object_layer_shape_extension

video_object_layer_
shape_extension

aux_comp_type[0] aux_comp_type[1] aux_comp_type[2] aux_comp_
count

0000 ALPHA NO NO 1
0001 DISPARITY NO NO 1
0010 ALPHA DISPARITY NO 2
0011 DISPARITY DISPARITY NO 2
0100 ALPHA DISPARITY DISPARITY 3
0101 DEPTH NO NO 1
0110 ALPHA DEPTH NO 2
0111 TEXTURE NO NO 1
1000 USER DEFINED NO NO 1
1001 USER DEFINED USER DEFINED NO 2
1010 USER DEFINED USER DEFINED USER DEFINED 3
1011 ALPHA USER DEFINED NO 2
1100 ALPHA USER DEFINED USER DEFINED 3

1101-1110 t.b.d. t.b.d. t.b.d. t.b.d.
1111 NO NO NO

progressive_sequence: When set to ‘1’ the coded video sequence contains only progressive frame-VOPs. When
progressive_sequence is set to ‘0’ the coded video sequence may contain both frame-VOPs and field-VOPs, and
frame-VOP may be progressive or interlaced frames.

rgb_components: this is a one bit flag indicating if the components of the sequence are the RGB format or not. If it
is set to '1', the components are RGB and the component representing green color is coded in the same way as the
luminance component and the blue and red components are coded in the same way as the chrominance
components. That is, the green component shall be treated as the Y component, the blue component shall be as
the Cb component, and the red component shall be as the Cr component. This flag does not affect the decoding
process except the restriction on the value of chroma_format and parameters related to the quantiser matrices.

chroma_format: This is a two bit integer indicating the chrominance format as defined in the Table AMD1-13. If
rgb_components is set to '1', this shall be set to '11'.

Table AMD1-13 -- Meaning of chroma_format

chroma_format Meaning
00 reserved
01 4:2:0
10 4:2:2
11 4:4:4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

56 © ISO/IEC 2002 – All rights reserved

bits_per_pixel: This field specifies the video data precision in bits per pixel. It may take different values for
different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel.
This field may take values between 4 and 12. The same number of bits per pixel is used in the luminance and two
chrominance planes.

video_object_layer_width: The video_object_layer_width is a 14-bit unsigned integer representing the width of
the displayable part of the luminance component of VOPs in pixel units. The width of the encoded luminance
component of VOPs in macroblocks is (video_object_layer_width+15)/16. The displayable part is left-aligned in the
encoded VOPs.

video_object_layer_height: The video_object_layer_height is a 14-bit unsigned integer representing the height of
the displayable part of the luminance component of the frame in lines.

In the case that progressive_sequence is ‘1’ the height of the encoded luminance component of frames in
macroblocks, mb_height, is (video_object_layer_height+15)/16.

In the case that progressive_sequence is ‘0’ the height of the encoded luminance component of frame VOPs in
macroblocks, mb_height, is 2*((video_object_layer_height + 31)/32). The height of the encoded luminance
component of field VOPs in macroblocks, mb_height, is ((video_object_layer_height + 31)/32).

The displayable part is top-aligned in the encoded VOPs.

aspect_ratio_info: This is a four-bit integer which defines the value of pixel aspect ratio. Table AMD1-14 shows
the meaning of the code. If aspect_ratio_info indicates extended PAR, pixel_aspect_ratio is represented by
par_width and par_height. The par_width and par_height shall be relatively prime.

Table AMD1-14 -- Meaning of pixel aspect ratio

aspect_ratio_info pixel aspect ratios
0000 Forbidden
0001 1:1 (Square)
0010 12:11 (625-type for 4:3 picture)
0011 10:11 (525-type for 4:3 picture)
0100 16:11 (625-type stretched for 16:9 picture)
0101 40:33 (525-type stretched for 16:9 picture)

0110-1110 Reserved
1111 extended PAR

par_width: This is an 8-bit unsigned integer which indicates the horizontal size of pixel aspect ratio. A zero value
is forbidden.

par_height: This is an 8-bit unsigned integer which indicates the vertical size of pixel aspect ratio. A zero value is
forbidden.

frame_rate_code: This is a four-bit integer used to define frame_rate as shown in Table AMD1-15.

If progressive_sequence is ‘1’ the period between two successive frames at the output of the decoding process is
the reciprocal of the frame_rate. If progressive_sequence is ‘0’ the period between two successive fields at the
output of the decoding process is half of the reciprocal of the frame_rate. STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 57

Table AMD1-15 -- frame_rate

frame_rate_code frame_rate
0000 forbidden
0001 24 000÷1001 (23,976…)
0010 24
0011 25
0100 30 000÷1001 (29,97…)
0101 30
0110 50
0111 60 000÷1001 (59,94…)
1000 60
. . . reserved
1111 reserved

The VBV constraint is defined in annex D.

first_half_bit_rate, latter_half_bit_rate: The bit rate is a 30-bit unsigned integer which specifies the bitrate of the
bitstream measured in units of 400 bits/second, rounded upwards. The value zero is forbidden. This value is
divided to two parts. The most significant bits are in first_half_bit_rate (15 bits) and the least significant bits are in
latter_half_bit_rate (15 bits). The marker_bit is inserted between the first_half_bit_rate and the latter_half_bit_rate
in order to avoid the start code emulation. The instantaneous video object layer channel bit rate seen by the
encoder is denoted by Rvol(t) in bits per second. If the bit_rate (i.e. first_half_bit_rate and latter_half_bit_rate) field
in the VOL header is present, it defines a peak rate (in units of 400 bits per second; a value of 0 is forbidden) such
that Rvol(t) <= 400 × bit_rate Note that Rvol(t) counts only visual syntax for the current elementary stream (also see
annex D).

first_half_vbv_buffer_size, latter_half_vbv_buffer_size: vbv_buffer_size is an 18-bit unsigned integer. This
value is divided into two parts. The most significant bits are in first_half_vbv_buffer_size (15 bits) and the least
significant bits are in latter_half_vbv_buffer_size (3 bits), The VBV buffer size is specified in units of 16384 bits. The
value 0 for vbv_buffer_size is forbidden. Define B = 16384 × vbv_buffer_size to be the VBV buffer size in bits.

first_half_vbv_occupancy, latter_half_vbv_occupancy: The vbv_occupancy is a 26-bit unsigned integer. This
value is divided to two parts. The most significant bits are in first_half_vbv_occupancy (11 bits) and the least
significant bits are in latter_half_vbv_occupancy (15 bits). The marker_bit is inserted between the
first_vbv_buffer_size and the latter_half_vbv_buffer_size in order to avoid the start code emulation. The value of
this integer is the VBV occupancy in 64-bit units just before the removal of the first VOP following the VOL header.
The purpose for the quantity is to provide the initial condition for VBV buffer fullness.

low_delay: This is a one-bit flag which when set to ‘1’ indicates the VOL contains no B-VOPs.

mpeg2_stream: This is a one bit flag indicating if the decoded bitstream is transcoded from one which conforms to
ISO/IEC 13818-2: 1996 according to information specified in ANNEX Q. This flag affects the inverse quantisation
process as defined in 7.16.4.3 in order to decode the bitstream accurately.

alpha_bits_per_pixel[i]: This field specifies the video data precision of alpha planes for grayscale alpha or
auxiliary component i=0,1,2 in bits per pixel. It may take different values for different video object layers within a
single video object. A value of 12 in this field would indicate 12 bits per pixel. This field may take values between 4
and 12.

minimum_alpha_level[i]: This is a 12-bit unsigned integer which specifies the level for complete transparency of
alpha signals for grayscale alpha or auxiliary component i=0,1,2.

maximum_alpha_level[i]: This is a 12-bit unsigned integer which specifies the level for complete opacity of alpha
signals for grayscale alpha or auxiliary component i=0,1,2. maximum_alpha_level shall be grater than
minimum_alpha_level.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

58 © ISO/IEC 2002 – All rights reserved

composition_method: This is a one bit flag which indicates which blending method is to be applied to the video
object in the compositor. When set to ‘0’, cross-fading shall be used. When set to ‘1’, additive mixing shall be used.
See subclause 7.16.6.3.5.

linear_composition: This is a one bit flag which indicates the type of signal used by the compositing process.
When set to ‘0’, the video signal in the format from which it was produced by the video decoder is used. When set
to ‘1’, linear signals are used. See subclause 7.16.6.3.5.

sprite_enable: This is a one-bit flag which when set to ‘1’ indicates the presence of sprites.

sprite_width: This is a 20-bit unsigned integer which identifies the horizontal dimension of the sprite.

sprite_height: This is a 20-bit unsigned integer which identifies the vertical dimension of the sprite.

sprite_left_coordinate – This is a 20-bit signed integer which defines the left-edge of the sprite. The value of
sprite_left_coordinate shall be divisible by two.

sprite_top_coordinate: This is a 20-bit signed integer which defines the top edge of the sprite. The value of
sprite_left_coordinate shall be divisible by two.

no_of_sprite_warping_points: This is a 6-bit unsigned integer which represents the number of points used in
sprite warping. When its value is 0 and when sprite_enable is set to ‘1’, warping is identity (stationary sprite) and no
coordinates need to be coded. When its value is 4, a perspective transform is used. When its value is 1,2 or 3, an
affine transform is used. Further, the case of value 1 is separated as a special case from that of values 2 or 3.
Table AMD1-16 shows the various choices.

Table AMD1-16 -- Number of point and implied warping function

Number of points warping function
0 Stationary
1 Translation
2,3 Affine
4 Perspective

sprite_warping_accuracy – This is a 2-bit code which indicates the quantisation accuracy of motion vectors used
in the warping process for sprites. Table AMD1-17 shows the meaning of various codewords

Table AMD1-17 -- Meaning of sprite warping accuracy codewords

code sprite_warping_accuracy
00 ½ pixel
01 ¼ pixel
10 1/8 pixel
11 1/16 pixel

sprite_brightness_change: This is a one-bit flag which when set to ‘1’ indicates a change in brightness during
sprite warping ; alternatively, a value of ‘0’ means no change in brightness.

sprite_defocusing: This is a one-bit flag which when set to `1` indicates a change in defocusing during sprite
warping; alternatively, a value of `0` means no change in defocusing.

sprite_lens_distortion: This is a one-bit flag which when set to `1` indicates that the lens distortion exists during
sprite warping; alternatively, a value of `0` means there is no lens distortion.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 59

6.3.13.4 Group of Studio Video Object Plane

group_vop_start_code: The group_vop_start_code is the bit string ‘000001B3’ in hexadecimal. It identifies the
beginning of a Group of Studio VOP header.

time_code_smpte12m: See annex P.

closed_gov: This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-
VOPs (if any) immediately following the first coded I-VOP after the group of studio VOP header .The closed_gov is
set to ‘1’ to indicate that these B-VOPs have been encoded using only backward prediction or intra coding. This bit
is provided for use during any editing which occurs after encoding. If the previous VOPs have been removed by
editing, broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following the first I-
VOP following the group of studio VOP header. However if the closed_gov bit is set to ‘1’, then the editor may
choose not to set the broken_link bit as these B-VOPs can be correctly decoded.

broken_link: This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to indicate that the first
consecutive B-VOPs (if any) immediately following the first coded I-frame following the group of studio VOP header
may not be correctly decoded because the reference frame which is used for prediction is not available (because of
the action of editing). A decoder may use this flag to avoid displaying frames that cannot be correctly decoded.

6.3.13.5 Studio Video Object Plane

vop_start_code: This is the bit string ‘000001B6’ in hexadecimal. It marks the start of a video object plane.

temporal_reference: The temporal_reference is a 10-bit unsigned integer associated with each coded VOP.

The following simple specification applies only when low_delay is equal to zero.

When a coded frame is in the form of two field VOPs, the temporal_reference associated with each VOP shall be
the same (it is called the temporal_reference of the coded frame). The temporal_reference of each coded frame
shall increment by one modulo 1024 when examined in display order at the output of the decoding process, except
when a group of studio VOP header occurs. Among the frames coded after a group of studio VOP header, the
temporal_reference of the coded frame that is displayed first shall be set to zero.

The following more general specification applies when low_delay is equal to zero or one.

If VOP A is not a big VOP, i.e., the VBV buffer is only examined once before the coded VOP A is removed from the
VBV buffer, and if N is the temporal_reference of VOP A, then the temporal_reference of VOP B immediately
following VOP A in display order is equal to :

• 0 if there is a group of studio VOP header present between VOP A and VOP B (in coded order).

• (N+1) % 1024 if VOP B is a frame VOP or is the first of a pair of field VOPs.

• N if VOP B is the second field of a pair of field VOPs.

When low_delay is equal to one, there may be situations where the VBV buffer shall be re-examined several times
before removing a coded VOP (referred to as a big VOP) from the VBV buffer.

If VOP A is a big VOP and if K is the number of times that the VBV buffer is re-examined as defined in Annex D
(K>0), if N is the temporal_reference of VOP A, then the temporal_reference of VOP B immediately following VOP
A in display order is equal to :

• K % 1024 if there is a group of studio VOP header present between VOP A and VOP B (in coded order).

• (N+K+1) % 1024 if VOP B is a frame VOP or is the first field of a pair of field VOPs.

• (N+K) % 1024 if VOP B is the second field of a pair of field VOPs.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

60 © ISO/IEC 2002 – All rights reserved

NOTE - If the big VOP is the first field of a frame coded with field VOPs, then the temporal_reference of the
two field VOPs of that coded frame are not identical.

vop_structure: This is a 2-bit integer defined in the Table AMD1-18.

Table AMD1-18 -- Meaning of vop_structure

vop_structure Meaning
00 reserved
01 Top Field
10 Bottom Field
11 Frame picture

When a frame is encoded in the form of two field VOPs both fields must be of the same vop_coding_type, except
where the first encoded field is an I-VOP in which case the second may be either an I-VOP or a P-VOP.

The first encoded field of a frame may be a top-field or a bottom field, and the next field must be of opposite parity.

When a frame is encoded in the form of two field VOPs the following syntax elements may be set independently in
each field VOP:

• vop_fcode[0][0], vop_fcode[0][1]

• vop_fcode[1][0], vop_fcode[1][1]

• dct_precision, alpha_dct_precision[i]

• intra_dc_precision, q_scale_type, alpha_intra_dc_precision[i], alpha_q_scale_type[i]

• alternate_scan

• temporal_reference

vop_coding_type: The vop_coding_type identifies whether a VOP is an intra-coded VOP (I), predictive-coded
VOP (P), bidirectionally predictive-coded VOP (B) or sprite VOP (S). The meaning of vop_coding_type is defined in
Table AMD1-19.

Table AMD1-19 -- Meaning of vop_coding_type

vop_coding_type coding method

00 intra-coded (I)
01 predictive-coded (P)
10 bidirectionally-predictive-coded (B)
11 sprite (S)

vop_coded: This is a 1-bit flag which when set to ‘0’ indicates that no subsequent data exists for the VOP. In this
case, the following decoding rule applies: For an arbitrarily shaped VO (i.e. when the shape type of the VO is either
‘binary’ or ‘binary only’), the alpha plane of the reconstructed VOP shall be completely transparent. For a
rectangular VO (i.e. when the shape type of the VO is ‘rectangular’), the corresponding rectangular alpha plane of
the VOP, having the same size as its luminance component, shall be completely transparent. If there is no alpha
plane being used in the decoding and composition process of a rectangular VO, the reconstructed VOP is filled with
the respective content of the immediately preceding VOP for which vop_coded!=0.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 61

vop_width: This is a 14-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle that
includes the VOP. The width of the encoded luminance component of VOP in macroblocks is (vop_width+15)/16.
The rectangle part is left-aligned in the encoded VOP. A zero value is forbidden.

vop_height: This is a 14-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that
includes the VOP. The height of the encoded luminance component of VOP in macroblocks is (vop_height+15)/16.
The rectangle part is top-aligned in the encoded VOP. A zero value is forbidden.

vop_horizontal_mc_spatial_ref: This is a 14-bit signed integer which specifies, in pixel units, the horizontal
position of the top left of the rectangle defined by horizontal size of vop_width. The value of
vop_horizontal_mc_spatial_ref shall be divisible by two. This is used for decoding and for picture composition.

vop_vertical_mc_spatial_ref: This is a 14-bit signed integer which specifies, in pixel units, the vertical position of
the top left of the rectangle defined by vertical size of vop_height. The value of vop_vertical_mc_spatial_ref shall be
divisible by two for progressive and divisible by four for interlaced motion compensation. This is used for decoding
and for picture composition.

top_field_first: The meaning of this element depends upon vop_structure, progressive_sequence and
repeat_first_field.

If progressive_sequence is equal to ‘0’, this flag indicates what field of a reconstructed frame is output first by the
decoding process:

In a field VOP top_field_first shall have the value ‘0’, and the only field output by the decoding process is the
decoded field VOP.

In a frame VOP top_field_first being set to ‘1’ indicates that the top field of the reconstructed frame is the first field
output by the decoding process. top_field_first being set to ‘0’ indicates that the bottom field of the reconstructed
frame is the first field output by decoding process

If progressive_sequence is equal to ‘1’, this flag, combined with repeat_first_field, indicates how many times (one,
two or three) the reconstructed frame is output by the decoding process.

If repeat_first_field is set to 0, top_field_first shall be set to ‘0’. In this case the output of the decoding process
corresponding to this reconstructed frame consists of one progressive frame.

If top_field_first is set to 0 and repeat_first_field is set to ‘1’, the output of the decoding process corresponding to
this reconstructed frame consists of two identical progressive frames.

If top_field_first is set to 1 and repeat_first_field is set to ‘1’, the output of the decoding process corresponding to
this reconstructed frame consists of three identical progressive frames.

repeat_first_field: This flag is applicable only in a frame VOP, in a field VOP it shall be set to zero and does not
affect the decoding process.

If progressive_sequence is equal to 0 and progressive_frame is equal to 0, repeat_first_field shall be zero, and the
output of the decoding process corresponding to this reconstructed frame consists of two fields.

If progressive_sequence is equal to 0 and progressive_frame is equal to 1:

If this flag is set to 0, the output of the decoding process corresponding to this reconstructed frame consists of two
fields. The first field (top or bottom field as identified by top_field_first) is followed by the other field.

If it is set to 1, the output of the decoding process corresponding to this reconstructed frame consists of three fields.
The first field (top or bottom field as identified by top_field_first) is followed by the other field, then the first field is
repeated.

If progressive_sequence is equal to 1:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

62 © ISO/IEC 2002 – All rights reserved

If this flag is set to 0, the output of the decoding process corresponding to this reconstructed frame consists of one
frame.

If it is set to 1, the output of the decoding process corresponding to this reconstructed frame consists of two or
three frames, depending on the value of top_field_first.

progressive_frame: If progressive_frame is set to 0 it indicates that the two fields of the frame are interlaced fields
in which an interval of time of the field period exists between (corresponding spatial samples) of the two fields. In
this case the following restriction applies:

• repeat_first_field shall be zero (two field duration).

If progressive_frame is set to 1 it indicates that the two fields (of the frame) are actually from the same time instant
as one another. In this case a number of restrictions to other parameters and flags in the bitstream apply:

• vop_structure shall be “Frame”

• if progressive_sequence is equal to one, frame_pred_frame_dct shall be 1

intra_predictors_reset: This flag indicates whether the macroblock to be decoded shall be decoded independently
of any parameters of the previous macroblocks of the current VOP even if the macroblock is not located at the start
of a slice. If this flag is set to 1, each predictor, such as for intra dc coefficient, is reset in the same way as done at
the start of a sliece. Otherwise, predictions are used between neighbouring macroblocks in the same slice.

alternate_scan: This flag affects the decoding of transform coefficient data as described in 7.16.4.2.

frame_pred_frame_dct: If this flag is set to ‘1’ then only frame-DCT and frame prediction are used. In a field VOP
it shall be ‘0’. frame_pred_frame_dct shall be ‘1’ if progressive_sequence is ‘1’. This flag affects the syntax of the
bitstream.

dct_precision: This is a 2-bit integer defining the value of base_quantiser according to Table AMD1-20. This flag
affects the inverse quantisation process as defined in 7.16.4.3.

Table AMD1-20 – DCT precision

dct_precision base_quantiser
00 1.000
01 0.500
10 0.250
11 0.125

In case of mpeg2_stream = 1, dct_precision shall be set to ‘00’.

intra_dc_precision: This is a 2-bit integer defined in the Table AMD1-21.

Table AMD1-21 -- Intra DC precision

intra_dc_precision Precision (bits)
00 bits_per_pixel
01 bits_per_pixel+1
10 bits_per_pixel+2
11 bits_per_pixel+3

The inverse quantisation process for the Intra DC coefficients is modified by this parameter as explained in
7.16.3.3.1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 63

q_scale_type: This flag affects the inverse quantisation process as described in 7.16.4.3.2.2.

vop_fcode[s][t]: A 4 bit unsigned integer taking values 1 through 9, or 15. The value zero is forbidden and the
values 10 through 14 are reserved. It is used in the decoding of motion vectors, see 7.16.7.4.1.

In an I-VOP vop_fcode[s][t] is not used (since motion vectors are not used) and shall take the value 15 (all ones).
Similarly, in an I-VOP or a P-VOP vop_fcode[1][t] is not used in the decoding process (since it refers to backwards
motion vectors) and shall take the value 15 (all ones).

See Table AMD1-42 for the meaning of the indices; s and t.

dead_zone_disable: This is a one bit flag which affect the inverse quantisation process as described in 7.16.4.2.3.

alpha_dct_precision[i]: This is a 2-bit integer defined in the Table AMD1-22. This flag affects the inverse
quantisation process of the alpha macroblock in the same way as dct_precision does for that of the luminance
macroblock.

Table AMD1-22 – alpha base quantiser

alpha_dct_precision alpha_base_quantiser
00 1.000
01 0.500
10 0.250
11 0.125

alpha_intra_dc_precision[i]: This is a 2-bit integer defined in the Table AMD1-23.

Table AMD1-23 – Alpha Intra DC precision

alpha_intra_dc_precision Precision (bits)
00 bits_per_pixel
01 bits_per_pixel+1
10 bits_per_pixel+2
11 bits_per_pixel+3

The inverse quantisation process for the Intra DC coefficients of alpha channel is modified by this parameter in the
same way as the luminance component.

alpha_q_scale_type[i]: This flag affects the inverse quantisation process for alpha channel in the same way as the
luminance components.

vop_sprite_brightness_change: This is a one-bit flag which when set to ‘1’ indicates a change in brightness
during sprite warping, alternatively, a value of ‘0’ means no change in brightness.

composite_display_flag -- This flag is set to 1 to indicate that the following fields are of use when the input
pictures have been coded as (analogue) composite video prior to encoding into a bitstream that complies with this
specification. If it is set to 0 then these parameters do not occur in the bitstream.

The information relates to the picture that immediately follows the extension. In the case that this picture is a frame
picture the information relates to the first field of that frame. The equivalent information for the second field may be
derived (there is no way to represent it in the bitstream).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

64 © ISO/IEC 2002 – All rights reserved

NOTES

1 The various syntactic elements that are included in the bitstream if composite_display_flag is ‘1’ are not used in the
decoding process.

2 repeat_first_field will cause a composite video field to be repeated out of the 4-field or 8-field sequence. It is
recommended that repeat_first_field and composite_display_flag are not both set simultaneously.

v_axis -- A 1-bit integer used only when the bitstream represents a signal that had previously been encoded
according to PAL systems. v_axis is set to 1 on a positive sign, v_axis is set to 0 otherwise.

field_sequence -- A 3-bit integer which defines the number of the field in the eight field sequence used in PAL
systems or the four field sequence used in NTSC systems as defined in the Table AMD1-24.

Table AMD1-24 Definition of field_sequence.

field
sequence

frame field

000 1 1
001 1 2
010 2 3
011 2 4
100 3 5
101 3 6
110 4 7
111 4 8

sub_carrier -- This is a 1-bit integer. When set to zero it means the sub-carrier/line frequency relationship is
correct. When set to 1 the relationship is not correct.

burst_amplitude -- This is a 7-bit integer defining the burst amplitude (for PAL and NTSC only). The amplitude of
the sub-carrier burst is quantised as a Recommendation ITU-R BT.601 luminance signal, with the MSB omitted.

sub_carrier_phase -- This is an 8-bit integer defining the phase of the reference sub-carrier at the field-
synchronisation datum with respect, to field start as defined in Recommendation ITU-R BT.470. See Table AMD1-
25.

Table AMD1-25 Definition of sub_carrier_phase.

sub_carrier_phase Phase
0 ([360o÷256] * 0)
1 ([360o÷256] * 1)
… …

255 ([360o÷256] * 255)

extra_bit_picture: A bit indicates the presence of the following extra information. If extra_bit_picture is set to ‘1’,
extra_information_picture will follow it. If it is set to ‘0’, there are no data following it. extra_bit_picture shall be set to
‘0’, the value ‘1’ is reserved for possible future extensions defined by ITU-T|ISO/IEC.

extra_information_picture: Reserved. A decoder conforming to this specification that encounters
extra_information_picture in a bitstream shall ignore it (i.e. remove from the bitstream and discard). A bitstream
conforming to this specification shall not contain this syntax element.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 65

6.3.13.6 Studio Sprite coding

warping_mv_code(dmv) : The codeword for each differential motion vector consists of a VLC indicating the length
of the dmv code (dmv_length) and a FLC, dmv_code-, with dmv_length bits. The codewords are listed in Table
AMD1-93.

brightness_change_factor (): The codeword for brightness_change_factor consists of a variable length code
denoting brightness_change_factor_size and a fixed length code, brightness_change_factor, of
brightness_change_factor_size bits (sign bit included). The codewords are listed in Table AMD1-94.

defocusing_control_parameter: This specifies the defocusing control parameter for luminance and chrominance
sprite images by the following defocusing process.

The defocusing is performed by a filtering process. The applied filter),(yxPs is shown in Figure AMD1-10.



 ≤≤

=
else

ayaxa
yxPs

,
0
4/1

),(
2

The value "a" is used as the defocusing control parameter.

The defocusing control parameter "a" for chrominance signals is divided by two in vertical direction or horizontal
direction according to the chroma format.

 - 4:4:4 format "a" is not divided.

 - 4:2:2 format "a" is divided by two in horizontal direction.

 - 4:2:0 format "a" is divided by two both in horizontal direction and in vertical direction.

In case the filter taps lie outside the image, outer pixels shall be obtained by the padding process as defined in
subclause 7.16.5.9.1.

a

-a

-a

a

a-a

x

y

x

24
1
a

Figure AMD1-10 – Defocusing filter

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

66 © ISO/IEC 2002 – All rights reserved

The length of this value varies according to the sprite warping accuracy. Table AMD1-26 shows the length of the
defocusing control parameter.

Table AMD1-26 -- Length of defocusing control parameter

sprite warping accuracy length of defocusing control
parameter

defocusing control parameter

½ pixel 9 bits 0-511

¼ pixel 10 bits 0-1023

1/8 pixel 11 bits 0-2047

1/16 pixel 12 bits 0-4095

lens_distortion_parameter(): The codeword for lens_distortion_parameter consists of the following 4 syntax
elements. lens_distortion_parameter_1 and lens_distortion_parameter_2 are 16-bit signed (two's complement)
integer and lens_center_horizontal and lens_center_vertical are 14-bit unsigned integer. These parameters
represent camera lens distortion of the following equation.

yy

xx

ccyuy
ccxux

+−=′
+−=′

)~(
)~(

with

222
2

1
24

1
1

)~()~(
)(1 53

yx

WW

cyscxR
RkkRu

−+−=
⋅+⋅+=

where

)~,~(yx is the position of a distorted point

),(yx ′′ is the position of no radial lens distortion point

),(yx cc is the lens center position in the image coordinates

(lens_center_horizontal, lens_center_vertical)

1k is the first lens distortion coefficient

 lens_distortion_parameter_1

2k is the second lens distortion coefficient

 lens_distortion_parameter_2

W is the maximum image size

 the larger one of video_object_layer_width or video_object_layer_height in
StudioVideoObjectLayer()

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 67

s is the aspect ratio of each pixel

aspect_ratio_info in StudioVideoObjectLayer()

Note: These syntax elements provide no normative decoding procedure.

6.3.13.7 Studio Slice

slice_start_code: This is the bit string ‘000001B7’ in hexadecimal. It marks the start of a slice.

macroblock_number: This is a variable length code with length between 1 and 14 bits. It identifies the
macroblock number within a VOP. The number of the top-left macroblock in a VOP shall be zero. The macroblock
number increases from left to right and from top to bottom. The actual length of the code depends on the total
number of macroblocks in the VOP calculated according to Table AMD1-27, the code itself is simply a binary
representation of the macroblock number.

Table AMD1-27 -- Length of macroblock_number code

length of macroblock_number code ((vop_width+15)/16) * ((vop_height+15)/16)
1 1-2
2 3-4
3 5-8
4 9-16
5 17-32
6 33-64
7 65-128
8 129-256
9 257-512
10 513-1024
11 1025-2048
12 2049-4096
13 4097-8192
14 8193-16384

quantiser_scale_code: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this value until
another quantiser_scale_code is encountered either in StudioSlice() or StudioMacroblock(). The value zero is
forbidden.

alpha_quantiser_scale_code[i]: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this value
until another alpha_quantiser_scale_code[i] is encountered either in StudioSlice() or StudioMacroblock(). The value
zero is forbidden.

slice_extension_flag: This flag shall be set to ‘1’ to indicate the presence of intra_slice, slice_VOP_enable and
slice_VOP_id in the bitstream.

intra_slice: This flag shall be set to ‘0’ if any of the macroblocks in the slice are non-intra macroblocks. If all of the
macroblocks are intra macroblocks then intra_slice may be set to ‘1’. intra_slice may be omitted from the bitstream
(by setting intra_slice_flag to ‘0’) in which case it shall be assumed to have the value zero.

intra_slice is not used by the decoding process. intra_slice is intended to aid a DSM application in performing
FF/FR .

slice_VOP_id_enable: This flag controls the semantics of slice_VOP_id. If slice_VOP_id_enable is set to "0",
slice_VOP_id is not used by this specification and shall have the value zero. If slice_VOP_id_enable is set to "1",
slice_VOP_id may have a value different from zero.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

68 © ISO/IEC 2002 – All rights reserved

slice_VOP_id_enable must have the same value in all the slices of a VOP. slice_VOP_id_enable may be omitted
from the bitstream (by setting slice_extension_flag to '0') in which case it shall be assumed to have the value zero.

slice_VOP_id_enable is not used by the decoding process.

slice_VOP_id: This is a 6 bit integer. If slice_VOP_id_enable is set to "0", slice_VOP_id is not used by this
specification and shall have the value zero. If slice_VOP_id_enable is set to "1", slice_VOP_id is application
defined and may have any value, with the constraint that slice_VOP_id shall have the same value in all the slices of
a VOP.

slice_VOP_id is not used by the decoding process. slice_VOP_id is intended to aid recovery on severe bursts of
errors for certain types of applications. For example the application may increment slice_VOP_id with each
transmitted VOP, so that in case of severe burst error, when several slices are lost, the decoder can know if the
slice following the burst error belongs to the current VOP or to another VOP, which may be the case if at least a
VOP header has been lost.

extra_bit_slice: This flag indicates the presence of the following extra information. If extra_bit_slice is set to ‘1’,
extra_information_slice will follow it. If it is set to ‘0’, there are no data following it. extra_bit_slice shall be set to ‘0’,
the value ‘1’ is reserved for possible future extensions defined by ITU-T|ISO/IEC.

extra_information_slice: Reserved. A decoder conforming to this specification that encounters
extra_information_slice in a bitstream shall ignore it (i.e. remove from the bitstream and discard). A bitstream
conforming to this specification shall not contain this syntax element.

6.3.13.8 Studio Macroblock

not_coded: This is a 1-bit flag which signals if a macroblock is coded or not. When set to’1’ it indicates that a
macroblock is not coded and no further data is included in the bitstream for this macroblock (with the exception of
alpha data that may be present). The decoder shall treat this macroblock as ‘inter’ with motion vector equal to zero
and no DCT coefficient data for P-VOPs. When set to ‘0’ it indicates that the macroblock is coded and its data is
included in the bitstream.

compression_mode: This is a flag which is set to ‘0’ to indicate that the texture component of a current
macroblock shall be coded following the DPCM block syntax. Otherwise, the macroblock is coded as DCT data.

dpcm_scan_order: This is a flag that indicates the scanning order of blocks for DPCM coding. If set to value ‘0’
the block is scanned from top line to bottom line, and from left to right. If set to value ‘1’ the block is scanned from
bottom line to top line, and from right to left.

coda_i[j]: This is a one-bit flag which is set to “1” to indicate that all the values in the grayscale alpha macroblock
are equal to maximum_alpha_level[j] (AlphaOpaqueValue[j]). When set to “0”, this flag indicates that one or more
8x8 blocks are coded according to alpha_pattern_code[j].

alpha_compression_mode[j]: This is a flag which is set to ‘0’ to indicate that the alpha component ‘j' of a current
macroblock shall be coded following the DPCM block syntax. Otherwise, the macroblock is coded as DCT data.

alpha_macroblock_quant[j]: This is set to 1 to indicate that alpha_quantiser_scale_code[j] is present in the
bitstream.

alpha_quantiser_scale_code[j]: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this value
until another alpha_quantiser_scale_code[j] is encountered either in StudioSlice() or StudioMacroblock(). The value
zero is forbidden.

alpha_dpcm_scan_order[j]: This is a flag that indicates the scanning order of a alpha block for DPCM coding. If
set to value ‘0’ the block is scanned from top line to bottom line. If set to value ‘1’ the block is scanned from bottom
line to top line.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 69

coda_pb[j]: This is a VLC indicating the coding status for P alpha macroblocks. The semantics are given in the
table below (Table AMD1-28). When this VLC indicates that the alpha macroblock is all opaque, this means that all
values are set to maximum_alpha_level[j] (AlphaOpaqueValue[j]).

Table AMD1-28-- coda_pb[j] codes and corresponding values

coda_pb[j] Meaning
1 alpha residue all zero
01 alpha macroblock all opaque
00 alpha residue coded

cbpa[j]: This is the coded block pattern for an inter macroblock of grayscale alpha texture data. This VLC is
defined in Table AMD1-88 - Table AMD1-91. cbpa is followed by the alpha block data which is coded in the same
way as texture block data. Note that grayscale alpha blocks in an inter macroblock with alpha all equal to 0 (alpha
residual all zero) are not included in the bitstream.

alpha_pattern_code[i]: The value of this internal flag is set to 1 if the alpha block with the index value i (i=0,…,3)
includes one or more DCT coefficients that are decoded through the same process as the luminance components.
Otherwise, the value of this flag shall be set to 0. For an alpha intra macroblock, alpha_pattern_code[i] shall be set
to 1, and for an alpha inter macroblock alpha_pattern_code[i] shall be derived from cbpa[j].

6.3.13.8.1 Studio MB Binary Shape Coding

bab_type: This is a variable length code between 1 and 6 bits. It indicates the coding mode used for the bab.
There are five bab_types as depicted in Table AMD1-29. The VLC tables used depend on the decoding context i.e.
the bab_types of blocks already received. For I-VOPs, the context-switched VLC table of Table AMD1-80 is used.
For P-VOPs, the context-switched table of Table AMD1-81 is used.

Table AMD1-29 -- List of bab_types and usage

bab_type Semantic Used in
0 MVs==0 && No Update P- VOPs
1 MVs!=0 && No Update P- VOPs
2 transparent All VOP types
3 Opaque All VOP types
4 HHC All VOP types

The bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the bab_type = 0, 2 or 3. Opaque means that all pixels of the bab are part of the object.
Transparent means that none of the bab pixels belong to the object. HHC means the Hierarchical Huffman
decoding will be required to reconstruct the pixel of the bab. No_update means that motion compensation is used
to copy the bab from the previous VOP’s binary alpha map.

mvs_x: This is a variable-length code between 1 and 18 bits. It represents the horizontal element of the motion
vector difference for the bab. The motion vector is in full integer precision. The VLC table is shown in Table
AMD1-82.

mvs_y: This is a variable-length code between 1 and 18 bits. It represents the vertical element of the motion vector
difference for the bab. The motion vector is in full integer precision. If mvs_x is '0', then the VLC table of Table
AMD1-83, otherwise the VLC table of Table AMD1-82 is used.

inferior_symbol_macroblock: This is a 1-bit flag indicating less frequent pixel between the opaque and
transparent pixel in the macroblock. If this flag is set to “0”, the transparent symbol is inferior and the opaque
symbol is superior. If this flag is set to “1”, the opaque symbol is inferior and the transparent is superior.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

70 © ISO/IEC 2002 – All rights reserved

inferior_symbol_block: This is a 1-bit flag indicating less frequent pixel between the opaque and transparent
pixel in the block. If this flag is set to “0”, the transparent symbol is inferior and the opaque symbol is superior. If this
flag is set to “1”, the opaque symbol is inferior and the transparent is superior.

cbbp: This is a variable-length code between 3 to 7 bits. It indicates the existence of inferior symbol in each block.
The VLC table is shown in Table AMD1-84.

scan_direction: This is a 1-bit flag indicating whether the block is divided into horizontal rows or vertical columns.
If this flag is set to “0”, the block is divided into horizontal rows. If this flag is set to “1”, the block is divided into
vertical columns.

backward_load_flag: This is a 1-bit flag indicating whether the order of the line bit pattern is changed. If this flag is
set to “0”, the order of the line bit pattern isn’t changed. If this flag is set to “1”, the order of the line bit pattern is
turned right side left in scan_direction==”0” or upside down in scan_direction==’1’.

clp: This is a variable-length code between 2 to 24 bits. It indicates the existence of an inferior symbol in each pixel
line. The VLC table is shown in Table AMD1-85.

lbp: This is a variable-length code between 2 to 23 bits. It indicates the bit pattern of an inferior symbol in the pixel
line. The VLC table is shown in Table AMD1-86.

6.3.13.8.2 Studio Macroblock modes

macroblock_type: Variable length coded indicator which indicates the method of coding and content of the
macroblock according to the Table AMD1-50 and Table AMD1-51, selected by vop_coding_type.

macroblock_quant: Derived from macroblock_type according to the Table AMD1-50 and Table AMD1-51. This is
set to 1 to indicate that quantiser_scale_code is present in the bitstream.

macroblock_motion_forward: Derived from macroblock_type according to the Table AMD1-50 and Table
AMD1-51. This flag affects the bitstream syntax and is used by the decoding process.

macroblock_pattern: Derived from macroblock_type according to the Table AMD1-50 and Table AMD1-51. This is
set to 1 to indicate that coded_block_pattern() is present in the bitstream.

macroblock_intra: Derived from macroblock_type according to the Table AMD1-50 and Table AMD1-51. This flag
affects the bitstream syntax and is used by the decoding process.

frame_motion_type: This is a two bit code indicating the macroblock prediction type, defined in Table AMD1-30.

If frame_pred_frame_dct is equal to 1 then frame_motion_type is omitted from the bitstream. In this case motion
vector decoding and prediction formation shall be performed as if frame_motion_type had indicated “Frame-based
prediction”.

Table AMD1-30 -- Meaning of frame_motion_type

code prediction type motion_vector
_count

mv_format

00 reserved
01 Field-based 2 field
10 Frame-based 1 frame
11 reserved

field_motion_type: This is a two bit code indicating the macroblock prediction type, defined in Table AMD1-31.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 71

Table AMD1-31 -- Meaning of field_motion_type

code prediction type motion_vector
_count

mv_format

00 reserved
01 Field-based 1 field
10 16x8 MC 2 field
11 reserved

dct_type: This is a flag indicating whether the macroblock is frame DCT coded or field DCT coded. If this is set to
‘1’, the macroblock is field DCT coded; otherwise, the macroblock is frame DCT coded. Boundary blocks are
always coded in frame-based mode.

In the case that dct_type is not present in the bitstream then the value of dct_type (used in the remainder of the
decoding process) shall be derived as shown in Table AMD1-32.

Table AMD1-32 -- Value of dct_type if dct_type is not in the bitstream.

Condition dct_type
vop_structure == “field” unused because there is no frame/field distinction in a

field vop.
frame_pred_frame_dct == 1 0 (“frame”)

!(macroblock_intra || macroblock_pattern) unused - macroblock is not coded
macroblock is skipped unused - macroblock is not coded

compression_mode == "DPCM" 0("frame") - This is used for alpha macroblock.
vop_structure == "frame" &&

frame_pred_frame_dct == 0 &&
macroblock_pattern == 0 &&

macroblock_intra == 0

0("frame") - This is used for alpha macroblock.

6.3.13.8.3 Motion vectors

motion_vector_count is derived from field_motion_type or frame_motion_type as indicated in the Table AMD1-30
and Table AMD1-31.

mv_format is derived from field_motion_type or frame_motion_type as indicated in the Table AMD1-30 and Table
AMD1-31. mv_format indicates if the motion vector is a field-motion vector or a frame-motion vector. mv_format is
used in the syntax of the motion vectors and in the process of motion vector prediction.

motion_vertical_field_select[r][s] -- This flag indicates which reference field shall be used to form the prediction.
If motion_vertical_field_select[r][s] is zero then the top reference field shall be used, if it is one then the bottom
reference field shall be used. (See Table AMD1-42 for the meaning of the indices; r and s.)

6.3.13.8.4 Motion vector

motion_code[r][s][t] -- This is a variable length code, as defined in Table AMD1-92, which is used in motion
vector decoding as described in 7.16.5.4.1. (See Table AMD1-42 for the meaning of the indices; r, s and t.)

motion_residual[r][s][t] -- This is an integer which is used in motion vector decoding as described in 7.16.5.4.1.
(See Table Table AMD1-42 for the meaning of the indices; r, s and t.) The number of bits in the bitstream for
motion_residual[r][s][t], r_size, is derived from vop_fcode[s][t] as follows;

r_size = vop_fcode[s][t] - 1
NOTE - The number of bits for both motion_residual[0][s][t] and motion_residual[1][s][t] is denoted by
vop_fcode[s][t].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

72 © ISO/IEC 2002 – All rights reserved

6.3.13.8.5 Coded block pattern

coded_block_pattern_420 -- A variable length code that is used to derive the variable cbp according to
Table AMD1-87.

coded_block_pattern_1 --

coded_block_pattern_2 -- For 4:2:2 and 4:4:4 data the coded block pattern is extended by the addition of either a
two bit or six bit fixed length code, coded_block_pattern_1 or coded_block_pattern_2. Then the pattern_code[i] is
derived using the following:

for (i=0; i<12; i++) {

 if (macroblock_intra)

 pattern_code[i] = 1;

 else

 pattern_code[i] = 0;

}

if (macroblock_pattern) {

 for (i=0; i<6; i++)

 if (cbp & (1<<(5-i))) pattern_code[i] = 1;

 if (chroma_format == “4:2:2”)

 for (i=6; i<8; i++)

 if (coded_block_pattern_1 & (1<<(7-i))) pattern_code[i] = 1;

 if (chroma_format == “4:4:4”)

 for (i=6; i<12; i++)

 if (coded_block_pattern_2 & (1<<(11-i))) pattern_code[i] = 1;

}

If pattern_code[i] is equal to 1, i=0 to (block_count-1), then the block number i defined in Figures 6-5, AMD1-4 and
AMD1-5 is contained in this macroblock.

The number “block_count” which determines the number of blocks in the macroblock is derived from the
chrominance format as shown in Table AMD1-33.

Table AMD1-33 -- block_count as a function of chroma_format

chroma_format block_count
4:2:0 6
4:2:2 8
4:4:4 12

If the block number i is transparent, transparent_block(i)=1, the velue of pattern_code[i] does not affect the
decoding process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 73

6.3.13.9 Studio Block

dct_dc_size_luminance: This is a variable length code as defined in Table AMD1-52 that is used to derive the
value of the differential dc coefficients of luminance values in blocks in intra macroblocks. This value categorizes
the coefficients according to their size.

dct_dc_differential: This is a variable length code as defined in Table AMD1-54-1 that is used to derive the value
of the differential dc coefficients in blocks in intra macroblocks. After identifying the category of the dc coefficient in
size from dct_dc_size_luminance or dct_dc_size_chrominance, this value denotes which actual difference in that
category occurred.

dct_dc_size_chrominance: This is a variable length code as defined in Table AMD1-53 that is used to derive the
value of the differential dc coefficients of chrominance values in blocks in intra macroblocks. This value categorizes
the coefficients according to their size.

6.3.13.9.1 Studio Alpha Block

alpha_pattern_code[i]: The value of this internal flag is set to 1 if the alpha block with the index value i indicates
one or more DCT coefficients that are decoded in the same way as the luminance component. Otherwise the value
of this flag is set to 0.

The other semantics of StudioAlphaBlock() are described in clause 7.

6.3.13.10 Studio DPCM Block

block_mean: This is an unsigned integer that indicates the average value of pixels within a DPCM coded block.
This mean value is also used for efficient prediction of the sign of residuals in DPCM coding.

rice_parameter: This is an unsigned integer that indicates the length of the rice_suffix_code field. The value 0 is
forbidden. The value 15 shall be interpreted as 0.

rice_prefix_code: This is a variable length code that represents the most significant bits of a DPCM residual. This
code may also represent an escape sequence in which case a DPCM residual is coded by dpcm_residual instead
of a combination of rice_prefix_code and rice_suffix_code.

dpcm_residual: This is an unsigned integer that indicates the value of a DPCM residual.

rice_suffix_code: This is an unsigned integer that represents the least significant bits of a DPCM residual.

Table AMD1-34 -- Variable length codes for rice_prefix_code

Variable length code rice_prefix_code
1 0
01 1
001 2
0001 3
0000 1 4
0000 01 5
0000 001 6
0000 0001 7
0000 0000 1 8
0000 0000 01 9
0000 0000 001 10
0000 0000 0001 escape

"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

74 © ISO/IEC 2002 – All rights reserved

29) Replace paragraph 2 in clause 7 with the following:

"

In subclauses 7.1 through 7.9 the VOP decoding process is specified in which shape, motion, texture decoding
processes are the major contents. The video object decoding for the studio profile is specified in subclause 7.16.
The still texture object decoding is described in subclause 7.10. Subclause 7.11 includes the mesh decoding
process, and subclause 7.12 features the face object decoding process. The output of the decoding process is
explained in subclause 7.13.

"

30) Add the following subclause 7.16 after subclause 7.15:

"
7.16 Video object decoding for the studio profile

This subclause specifies the video object decoding for the studio profile.

7.16.1 Video decoding process

(The identical description to clause 7.1)

7.16.2 Higher syntactic structures

The various parameters and flags in the bitstream for StudioVideoObjectLayer(),
Group_of_StudioVideoObjectPlane(), StudioVideoObjectPlane(), StudioSlice(), StudioMacroblock(), StudioBlock()
and StudioDPCMBlock(), as well as other syntactic structures related to them shall be interpreted as discussed
earlier. Many of these parameters and flags affect the decoding process. Once all the macroblocks in a given VOP
have been processed, the entire VOP will have been reconstructed.

Texture data in a macroblock shall have been encoded by either DCT or DPCM.

If compression_mode == 1, texture data in the macroblock shall have been encoded by DCT. The decoding
process is indicated in subclause 7.16.4

If compression_mode == 0, texture data in the macroblock shall have been encoded by DPCM. The decoding
process is indicated in subclause 7.16.5

Reconstructed fields shall be associated together in pairs to form reconstructed frames. (See “vop_structure” in
6.3.13.5.)

The sequence of reconstructed frames shall be reordered as described in 6.3.13.5.

If progressive_sequence == 1 the reconstructed frames shall be output from the decoding process at regular
intervals of the frame period as shown in Figure AMD1-26.

If progressive_sequence == 0 the reconstructed frames shall be broken into a sequence of fields which shall be
output from the decoding process at regular intervals of the field period as shown in Figure AMD1-27. In the case
that a frame picture has repeat_first_field == 1 the first field of the frame shall be repeated after the second field.
(See “repeat_first_field” in 6.3.13.5.)

7.16.3 VOP reconstruction

The luminance and chrominance values of a VOP from the decoded texture and motion information are
reconstructed as indicated in this subclause. Figure AMD1-11 represents the process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 75

Texture Decoding

(7.16.5)

p[y][x]

f[y][x]

d’[y][x] = d’’[y][x]

Adding (7.16.3)

compression_mode==1

compression_mode==0

saturation
(7.16.3) d[y][x]

(IDPCM)

Motion

(7.16.7)
Compensation

Texture Decoding

(7.16.4)
(IDCT)

d’[y][x]

Figure AMD1-11 – VOP reconstruction from the decoded texutre and motion compensated data

1. In case of INTRA macroblocks of compression_mode==1, the luminance and chrominance values f[y][x] from
the decoded texture data form the luminance and chrominance values: d’[y][x] = f[y][x].

2. In case of INTER macroblocks, first the prediction values p[y][x] are calculated using the decoded motion
vector information and the texture information of the respective reference VOPs. Then, the decoded texture
data f[y][x] is added to the prediction values, resulting in the luminance and chrominance values: d’[y][x] =
p[y][x] + f[y][x]

3. In case of INTRA macroblocks of compression_mode==0, the luminance and chrominance values d’’[y][x] from
the decoded texture data form the luminance and chrominance values: d’[y][x] = d’’[y][x].

4. Finally, the calculated luminance and chrominance values are saturated so that









<
−≤≤

−>

=
 0]][[' ;0

12]][['0];][['
12]][[' 1;-2

]][[__

xyd
xydxyd

xyd
xyd pixelperbits

pixelperbitspixelperbits

NOTE : The saturation defined above limits output sample values for Y, Cr and Cb to the range [0:2bits_per_pixel-1].
Therefore, the values which are assigned as the reserved code words for timing reference in ITU-R BT.601 and
BT.709 can occasionally occur.

7.16.4 Texture decoding from DCT coefficients

This subclause describes the process used to decode the texture information of a VOP in case of
compression_mode==1. The process of video texture decoding from coded DCT coefficients is given in Figure
AMD1-12.

Variable
Length
Decoding

Inverse Scan Inverse
Quantisation

Inverse DCT

Coded QFS[n] QF[v][u] f[y][x]F[v][u]
DCT Data

Figure AMD1-12 – Video Texture Decoding Process from DCT coefficients

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

76 © ISO/IEC 2002 – All rights reserved

7.16.4.1 Variable length decoding

This subclause explains the decoding process. Subclause 7.16.4.1.1 specifies the process used for the DC
coefficients (n=0) in an intra coded block. (n is the index of the coefficient in the appropriate zigzag scan order).
Subclause 7.16.4.1.2 specifies the decoding process for all other coefficients; AC coefficients (0≠n) and DC
coefficients in non-intra coded blocks.

Let cc denote the colour component. It is related to the block number as specified in Table AMD1-35. In case of
rgb_components==0, cc is zero for the Y component, one for the Cb component and two for the Cr component. In
case of rgb_components==1, zero for the G component, one for the B component and two for the R component.

Table AMD1-35 -- Definition of cc, colour component index

 cc
Block Number 4:2:0 4:2:2 4:4:4

0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 1 1 1
5 2 2 2
6 1 1
7 2 2
8 1
9 2
10 1
11 2

7.16.4.1.1 DC coefficients decoding in intra blocks

Differential DC coefficients in blocks in intra macroblocks are decoded as a variable length code denoting
dct_dc_size as defined in Table AMD1-52 and Table AMD1-53 in annex B, and a fixed length code
dct_dc_differential (Table AMD1-54-1). The dct_dc_size categorizes the dc coefficients according to their “size”.
For each category additional bits are appended to the dct_dc_size code to uniquely identify which difference in that
category actually occurred (Table AMD1-54-1). This is done by appending a fixed length code, dct_dc_differential,
of dct_dc_size bits.

In case of rgb_components==0, if cc is zero then Table AMD1-52 shall be used for dct_dc_size. If cc is non-zero
then Table AMD1-53 shall be used for dct_dc_size.

In case of rgb_components==1, Table AMD1-52 shall be used for dct_dct_size for all of the components, cc.

Three predictors are maintained, one for each of the colour components, cc. Each time a DC coefficient in a block
in an intra macroblock is decoded the predictor is added to the differential to recover the actual coefficient. Then
the predictor shall be set to the value of the coefficient just decoded. At various times, as described below, the
predictors shall be reset. The reset value except when a macroblock is encoded as DPCM residuals is derived
from the combination of the parameters bits_per_pixel , dct_precision and intra_dc_precision as;

2 ^ (bits_per_pixel+dct_precision+intra_dc_precision-1)
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 77

The predictors shall be reset to the above reset value at the following times:

• Whenever a macroblock is decoded if intra_predictors_reset == 1.

• At the start of a slice.

• Whenever a non-intra macroblock is decoded.

• Whenever a macroblock is skipped. i.e. not_coded == 1.

• Whenever a macroblock and a block is transparent.

When a macroblock is encoded as DPCM residuals, the reset value is derived as;

block_mean x (2 ^ (dct_precision+intra_dc_precision))

Because block_mean is encoded for each component independently, the reset value for each component can be
different.

The predictors are denoted dct_dc_pred[cc].

QFS[0] shall be calculated from dct_dc_size and dct_dc_differential by any process equivalent to:

if (dct_dc_size == 0) {

 dct_diff = 0;

} else {

 half_range = 2 ^ (dct_dc_size - 1);

 if (dct_dc_differential >= half_range)

 dct_diff = dct_dc_differential;

 else

 dct_diff = (dct_dc_differential + 1) - (2 * half_range);

}

QFS[0] = dct_dc_pred[cc] + dct_diff;

dct_dc_pred[cc] = QFS[0]

NOTE 1 - The symbol ^ denotes power (not XOR).

NOTE 2 - dct_diff and half_range are temporary variables which are not used elsewhere in this specification.

It is a requirement of the bitstream that QFS[0] shall lie in the range:

0 to ((2^(dct_precision + bits_per_pixel + intra_dc_precision))-1)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

78 © ISO/IEC 2002 – All rights reserved

7.16.4.1.2 Other coefficients

All coefficients with the exception of the DC intra coefficients shall be decoded using a set of 12 VLC tables, T[0] to
T[11] . The default set of the 12 tables is defined in Table AMD1-55 to Table AMD1-66 for intra macroblocks and
Table AMD1-67 to 78 for inter macroblocks. The set of tables can be downloaded using the extension syntax of
vlc_code_extension().

The decision rule to select one table from the 12 tables for decoding a symbol is defined in this subclause.

In all cases a variable length code shall first be decoded using one of the tables. The decoded value of this code
denotes one of three courses of action:

1) End of Block. In this case there are no more coefficients in the block in which case the remainder
of the coefficients in the block (those for which no value has yet been decoded) shall be set to zero.
This is denoted by “End of block” in the syntax specification of 6.2.13.9.

2) A “normal” coefficient. In which a symbol denoting a value of run and/or level is decoded followed
by a fixed length code of the size indicated by the variable length code according to Table AMD1-
36. The variable length code categorizes symbols according to the value of run and/or level as
indicated in Table AMD1-36. For each category a fixed length code is appended to the variable
length code to uniquely identify which value in that category actually occurred. The additional
codes are defined in Table AMD1-54-2~AMD1-54-4. For decoding group No.1~6, Table AMD1-54-
2 shall be used. For decoding group No.7~12, Table AMD1-54-3 shall be used. For decoding
group No.13~20, Table AMD1-54-4 shall be used.

3) An “Escape” coded coefficient. In which a value of level is fixed length coded as described in
7.16.4.1.3.

The VLC table which is used to decode a variable length code for the current symbol shall be decided from the 12
tables according to the immediately previous symbol which has already been decoded in a zigzag scanning order.
After decoding the current symbol, it is used to decide the VLC table for decoding the next symbol from the 12
tables.

The relation of the value of the current symbol and the VLC table used for decoding a variable length code for the
next symbol is indicated in Table AMD1-36.

The relation of the value of the previous symbol and the VLC table for decoding the current symbol is shown in
Table AMD1-36. A variable length code for the current symbol is decoded using one of the 12 tables, and the
variable length code indicates the group (0~21) that the value of the current symbol belongs to. Depending on the
group, the size of a fixed length code used to identify the value of the current symbol and the VLC table for
decoding the next symbol is decided. For the first non DC coefficient in a block the VLC table T[0] shall be used as
the initial table.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 79

Table AMD1-36 -- Categorizing ac symbol into groups

group no. symbols of DCT AC coefficients
(zigzag scanning order)

the size of an additional code VLC table for
the next symbol

0 EOB 0 ---

1 0*1 0 T[1]

2 0*2 to 0*3 1 T[1]

3 0*4 to 0*7 2 T[1]

4 0*8 to 0*15 3 T[1]

5 0*16 to 0*31 4 T[1]

6 0*32 to 0*63 5 T[1]

7 0*1[1,-1] 1 T[2]

8 0*2[1,-1] to 0*3[1,-1] 2 T[2]

9 0*4[1,-1] to 0*7[1,-1] 3 T[2]

10 0*8[1,-1] to 0*15[1,-1] 4 T[2]

11 0*16[1,-1] to 0*31[1,-1] 5 T[2]

12 0*32[1,-1] to 0*63[1,-1] 6 T[2]

13 -1, or 1 1 T[3]

14 -3 to –2, or 2 to 3 2 T[4]

15 -7 to –4, or 4 to 7 3 T[5]

16 -15 to –8, or 8 to 15 4 T[6]

17 -31 to –16, or 16 to 31 5 T[7]

18 -63 to –32, or 32 to 63 6 T[8]

19 -127 to –64, or 64 to 127 7 T[9]

20 -255 to –128, or 128 to 255 8 T[10]

21 -(2 bits_per_pixel+dct_precision+3-1) to –
256,

or 256 to (2 bits_per_pixel+dct_precision+3-
1)

(escape code)

bits_per_pixel + dct_precision
+ 4

T[11]

 Note : Table T[0] shall be used for the first non DC coefficient in a block.

 The VLC code for group ‘0’ of T[0] for inter macroblocks shall not be assigned
 because there shall be at least one non zero DCT coefficient in an inter block which
 is indicated as ‘coded’ by pattern_code[].

 The VLC code for group ‘0’~’13’ of T[1] shall not be assigned because there shall
 be at least one level value , the absolute value of which is more than ‘1’, just after
 group ‘1’~’6’ occurred.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

80 © ISO/IEC 2002 – All rights reserved

7.16.4.1.3 Escape coding

Level values, the absolute value of that is more then 255, are encoded by using the escape code. The escape code that is
assigned to group No.21 is followed by a fixed length code of the length ‘bits_per_pixel+dct_precision+4’. The following equation
defines the relation among the fixed length code, the length and level to be decoded.

 if flc>>(flclen-1) is 1

level = -1 * ((flc^((1<<flclen)-1)) + 1)

 else level = flc

Where, flc and flclen denote the fixed length code and its length. The symbol ^ denotes XOR in this subclause.

7.16.4.2 Inverse scan

This subclause specifies the way in which the one dimensional data, QFS[n] is converted into a two-dimensional
array of coefficients denoted by QF[v][u] where u and v both lie in the range of 0 to 7. Let the data at the output of
the variable length decoder be denoted by QFS[n] where n is in the range of 0 to 63.

Two scan patterns are defined. The scan that shall be used shall be determined by alternate_scan which is
encoded in StudioVideoObjectPlane().

Figure AMD1-13 defines scan[alternate_scan][v][u] for the case that alternate_scan is zero. Figure AMD1-14
defines scan[alternate_scan][v][u] for the case that alternate_scan is one.

 u
 0 1 2 3 4 5 6 7
 0 0 1 5 6 14 15 27 28
 1 2 4 7 13 16 26 29 42
 2 3 8 12 17 25 30 41 43
 3 9 11 18 24 31 40 44 53
 4 10 19 23 32 39 45 52 54
 5 20 22 33 38 46 51 55 60
 6 21 34 37 47 50 56 59 61
v 7 35 36 48 49 57 58 62 63

Figure AMD1-13 -- Definition of scan[0][v][u]

 u
 0 1 2 3 4 5 6 7
 0 0 4 6 20 22 36 38 52
 1 1 5 7 21 23 37 39 53
 2 2 8 19 24 34 40 50 54
 3 3 9 18 25 35 41 51 55
 4 10 17 26 30 42 46 56 60
 5 11 16 27 31 43 47 57 61
 6 12 15 28 32 44 48 58 62
v 7 13 14 29 33 45 49 59 63

Figure AMD1-14 -- Definition of scan[1][v][u]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 81

The inverse scan shall be any process equivalent to the following:

for (v=0; v<8; v++)

 for (u=0; u<8; u++)

 QF[v][u] = QFS[scan[alternate_scan][v][u]]

NOTE - The scan patterns defined here are often referred to as “zigzag scanning order”.

7.16.4.2.1 Inverse scan for matrix download

When the quantisation matrices are downloaded they are encoded in the bitstream in a scan order that is converted
into the two-dimensional matrix used in the inverse quantiser in an identical manner to that used for coefficients.

For matrix download the scan defined by Figure AMD1-13 (i.e. scan[0][v][u]) shall always be used.

Let W[w][v][u] denote the weighting matrix in the inverse quantiser (see 7.16.4.3.2.1), and W’[w][n] denote the
matrix as it is encoded in the bitstream. The matrix download shall then be equivalent to the following:

for (v=0; v<8; v++)

 for (u=0; u<8; u++)

 W[w][v][u] = W’[w][scan[0][v][u]]

7.16.4.3 Inverse quantisation

The two-dimensional array of coefficients, QF[v][u], is inverse quantised to produce the reconstructed DCT
coefficients. This process is essentially a multiplication by the base quantiser and the quantiser step size. The
quantiser step size is modified by two mechanisms; a weighting matrix is used to modify the step size within a block
and a scale factor is used in order that the step size can be modified at the cost of only a few bits (as compared to
encoding an entire new weighting matrix). In case of mpeg2_stream==0, the base quantiser is used to adjust the
dynamic range of the output of the inverse quantisation to the range [−2bits_per_pixel + 6 , 2bits_per_pixel + 6 − 1]. In case of
mpeg2_stream==1, the base quantiser shall not affect the decoding process below.

Inverse
Quantisation
Arithmetic

Saturation

QF[v][u] F''[v][u] F'[v][u] F[v][u]

quantiser_scale_code

W[w][v][u]

Mismatch
Control

base_quantiser

Figure AMD1-15 -- Inverse quantisation process

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

82 © ISO/IEC 2002 – All rights reserved

Figure AMD1-15 illustrates the overall inverse quantisation process. After the appropriate inverse quantisation
arithmetic the resulting coefficients, F''[v][u], are saturated to yield F'[v][u] and then a mismatch control operation is
performed to give the final reconstructed DCT coefficients, F[v][u].

NOTE Attention is drawn to the fact that the method of achieving mismatch control in this part of ISO/IEC 14496 is identical to
that employed by ISO/IEC 13818-2: 1996.

7.16.4.3.1 Intra dc coefficient

The DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other coefficients.

In intra blocks F’’[0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier, intra_dc_mult, (constant in
the sense that it is not modified by either the weighting matrix or the scale factor). The multiplier is related to the
parameters base_quantiser and intra_dc_precision that are encoded in StudioVideoObjectPlane(). Table AMD1-37
specifies the relation between intra_dc_precision, base_quantiser and intra_dc_mult. This relation changes
according to the value of mpeg2_stream. The precision of the intra dc coefficient is defined as
‘bits_per_pixel+dct_precision+intra_dc_precision’.

Table AMD1-37 (a) In case of mpeg2_stream==0:
Reletion among intra_dc_precision, base_quantiser and intra_dc_mult

intra_dc_precision intra_dc_mult
0 8 x base_quantiser x 8
1 4 x base_quantiser x 8
2 2 x base_quantiser x 8
3 1 x base_quantiser x 8

Table AMD1-37(b) In case of mpeg2_stream==1:
Reletion between intra_dc_precision, intra_dc_mult

intra_dc_precision intra_dc_mult
0 8
1 4
2 2
3 1

The reconstructed DC values are computed as follows.

F’’[0][0] = intra_dc_mult* QF[0][0]

7.16.4.3.2 Other coefficients

All coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified in this
subclause.

7.16.4.3.2.1 Weighting matrices

In the 4:2:0 format, two weighting matrices are used. One shall be used for intra macroblocks and the other for
non-intra macroblocks. In the 4:2:2 or 4:4:4 format, four matrices are used allowing different matrices to be used
for luminance and chrominance data. Each matrix has a default set of values which may be overwritten by down-
loading a user defined matrix as explained in 6.2.13.2.4.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 83

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 3 indicating which of the
matrices is being used. Table AMD1-38 summarises the rules governing the selection of w.

Table AMD1-38 -- Selection of w

4:2:0 4:2:2 and 4:4:4
luminance

(cc = 0)
chrominance

(cc ≠ 0)
luminance

(cc = 0)
chrominance

(cc ≠ 0)
intra blocks

(macroblock_intra = 1)
0 0 0 2

non-intra blocks
(macroblock_intra = 0)

1 1 1 3

7.16.4.3.2.2 Quantiser scale factor

The quantisation scale factor is decoded as a 5 bit fixed length code, quantiser_scale_code. This indicates the
appropriate quantiser_scale to apply in the inverse quantisation arithmetic.

q_scale_type (encoded in StudioVideoObjectPlane()) indicates which of two mappings between
quantiser_scale_code and quantiser_scale shall apply. Table AMD1-39 shows the two mappings between
quantiser_scale_code and quantiser_scale.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

84 © ISO/IEC 2002 – All rights reserved

Table AMD1-39 -- Relation between quantiser_scale and quantiser_scale_code

 quantiser_scale[q_scale_type]
quantiser_scale_code q_scale_type = 0 q_scale_type = 1

0 (forbidden)
1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
8 16 8
9 18 10
10 20 12
11 22 14
12 24 16
13 26 18
14 28 20
15 30 22
16 32 24
17 34 28
18 36 32
19 38 36
20 40 40
21 42 44
22 44 48
23 46 52
24 48 56
25 50 64
26 52 72
27 54 80
28 56 88
29 58 96
30 60 104
31 62 112

7.16.4.3.2.3 Reconstruction formulae

The following equation specifies the arithmetic to reconstruct F''[v][u] from QF[v][u] (for all coefficients except intra
DC coefficients) in the case of mpeg2_stream==0.

 F ' ' [v][u] = ((2 × QF [v][u] + k) × W [w][v][u] × quantiser_scale) 32
where :

k = 0 intra blocks / non-intra blocks if dead_zone_disable==1
Sign (QF [v][u]) non - intra blocks if dead_zone_disable==0





× base_quantiser × 8

NOTE - The above equation uses the “/” operator as defined in 4.1.

This equation changes in the case of mpeg2_stream==1 as following:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 85

 F ' ' [v][u] = ((2 × QF [v][u] +k) × W [w][v][u] × quantiser_scale) 32
where :

k = 0 intra blocks
Sign (QF [v][u]) non- intra blocks





NOTE - The above equation uses the “/” operator as defined in 4.1.

7.16.4.3.3 Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range [−2bits_per_pixel + 6 ,
2bits_per_pixel + 6 − 1] in the case of mpeg2_stream==0. Thus:









−<−
−≤≤−

−>−
=

++

++

++

6ixelbits_per_p6ixelbits_per_p

6ixelbits_per_p6ixelbits_per_p

6ixelbits_per_p6ixelbits_per_p

2]][[''2
12]][[''2]][[''

12]][[''12
]][['

uvF
uvFuvF

uvF
uvF

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range [−2bits_per_pixel + 3 ,
2bits_per_pixel + 3 − 1] in the case of mpeg2_stream==1. Thus:









−<−
−≤≤−

−>−
=

++

++

++

3ixelbits_per_p3ixelbits_per_p

3ixelbits_per_p3ixelbits_per_p

3ixelbits_per_p3ixelbits_per_p

2]][[''2
12]][[''2]][[''

12]][[''12
]][['

uvF
uvFuvF

uvF
uvF

7.16.4.3.4 Mismatch control

Mismatch control shall be performed by any process equivalent to the following. Firstly all of the reconstructed,
saturated coefficients, F'[v][u] in the block shall be summed. This value is then tested to determine whether it is
odd or even. If the sum is even then a correction shall be made to just one coefficient; F[7][7]. Thus:

sum = F ' [v][u]
u = 0

u < 8

∑
v=0

v <8

∑
F[v][u] = F ' [v][u] for all u , v except u = v = 7

F[7][7] =
F ' [7][7] if sum is odd

F ' [7][7] − 1 if F ' [7][7] is odd

F ' [7][7] + 1 if F ' [7][7] is even









if sum is even





 

NOTE 1 It may be useful to note that the above correction for F[7][7] may simply be implemented by toggling the
least significant bit of the twos complement representation of the coefficient. Also since only the “oddness” or
“evenness” of the sum is of interest an exclusive OR (of just the least significant bit) may be used to calculate
“sum”.

NOTE 2 Warning. Small non-zero inputs to the IDCT may result in zero output for compliant IDCTs. If this
occurs in an encoder, mismatch may occur in some pictures in a decoder that uses a different compliant IDCT.
An encoder should avoid this problem and may do so by checking the output of its own IDCT. It should ensure
that it never inserts any non-zero coefficients into the bitstream when the block in question reconstructs to zero
through its own IDCT function. If this action is not taken by the encoder, situations can arise where large and very
visible mismatches between the state of the encoder and decoder occur.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

86 © ISO/IEC 2002 – All rights reserved

7.16.4.3.5 Summary of quantiser process

In summary, the inverse quantisation process is any process numerically equivalent to:

for (v=0; v<8;v++) {

 for (u=0; u<8;u++) {

 if ((u==0) && (v==0) && (macroblock_intra)) {

 F''[v][u] = intra_dc_mult * QF[v][u];

 } else {

 if (macroblock_intra) {

 F''[v][u] = (QF[v][u] * W[0][v][u] * quantiser_scale * base_quantiser * 8 * 2) / 32;

 } else {

 F''[v][u] = (((QF[v][u] * 2) + Sign(QF[v][u])) * W[1][v][u]

 * quantiser_scale * base_quantiser * 8) / 32;

 }

 }

 }

}

sum = 0;

for (v=0; v<8;v++) {

 for (u=0; u<8;u++) {

 if (F’'[v][u] > 2 bits_per_pixel + 6 − 1) {

 F’[v][u] = 2 bits_per_pixel + 6 − 1;

 } else {

 if (F’'[v][u] < -2 bits_per_pixel + 6) {

 F’[v][u] = -2 bits_per_pixel + 6 ;

 } else {

 F’[v][u] = F'‘[v][u];

 }

 }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 87

 sum = sum + F’[v][u];

 F[v][u] = F’[v][u];

 }

}

if ((sum & 1) == 0) {

 if ((F[7][7] & 1) != 0) {

 F[7][7] = F'[7][7] - 1;

 } else {

 F[7][7] = F'[7][7] + 1;

 }

}

7.16.4.4 Inverse DCT

Once the DCT coefficients, F[u][v] are reconstructed, an IDCT transform that conforms to the specifications of
Annex A shall be applied to obtain the inverse transformed values, [][]xyf . In the case of mpeg2_stream==0, the
decimal point of F[u][v] is shifted 3bits to the left in the binary scale in order to adjust the decimal point of the IDCT
input. In the case of mpeg2_stream==1, the reconstructed coefficients are directly input to an IDCT function without
the shift process. The inverse transformed values shall be saturated so that: -2bits_per_pixel ≤ f[y][x] ≤ 2bits_per_pixel – 1 ,
for all x, y.

7.16.4.4.1 Non-coded blocks and skipped macroblocks

In a macroblock that is not skipped, if pattern_code[i] is one for a given block in the macroblock, then coefficient
data is included in the bitstream for that block. This is decoded as specified in the preceding clauses.

However, if pattern_code[i] is zero, or if the macroblock is skipped (not_coded==1), then that block contains no
coefficient data. The sample domain coefficients f[y][x] for such a block shall all take the value zero.

7.16.5 Texture decoding from DPCM redisuals

If the DPCM mode is selected each non-transparent block is decoded as follows. First the rice_parameter field is
decoded. It indicates the length of each subsequent rice_suffix_code field. The block is scanned line by line, row
by row, and the following process is applied to each pixel. An unsigned residual is retrieved by a combination of the
rice_prefix_code, rice_suffix_code and dpcm_residual fields. If rice_prefix_code indicates the escape mode,
the unsigned residual is given by dpcm_residual. Otherwise the unsigned residual is given by
(rice_prefix_code<<rice_parameter)+rice_suffix_code.

Then the unsigned residual is mapped to a signed residual according to the following transformation:

x → x>>1 if x is even

x → -x>>1 if x is odd

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

88 © ISO/IEC 2002 – All rights reserved

A prediction is computed based on the pixels that lie directly to the left ‘a’, directly above ‘b’, and directly left above
‘c’. If any of these pixels lies outside of the block boundary it is given the default value of 2bits_per_pixel-1. The
prediction ‘p’ is computed as:

p = a+b-c

if (p < min(a,b)) p = min(a,b)

if (p > max(a,b)) p = max(a,b)

A second prediction p2 is computed as:

p2 = (min(a,b,c)+max(a,b,c)) / 2

If p2 is equal to p, p2 is assigned the value of block_mean.

If p2 is larger than p, the sign of the residual is inverted. Otherwise no operation is applied to the residual.

Finally the reconstructed pixel value, d’’[y][x], is obtained by adding the signed residual and the prediction p,
modulo 2bits_per_pixel.

7.16.6 Shape decoding

Binary shape decoding uses a block-based representation. The primary data structure used is denoted as the
binary alpha block (bab). The bab is a square block of binary valued pixels representing the opacity/transparency
for the pixels in a specified block-shaped spatial region of size 16x16 pels. In fact, each bab is co-located with each
texture macroblock.

7.16.6.1 Higher syntactic structures

7.16.6.1.1 VOL decoding

If video_object_layer_shape is equal to ‘00’ then no binary shape decoding is required. Otherwise, binary shape
decoding is carried out.

7.16.6.1.2 VOP decoding

If video_object_layer_shape is not equal to ‘00’ then, for each subsequent VOP, the dimensions of the bounding
rectangle of the reconstructed VOP are obtained from:

• vop_width

• vop_height

If these decoded dimensions are not multiples of 16, then the values of vop_width and vop_height are rounded up
to the nearest integer, which is a multiple of 16. If vop_structure is decoded as field structure, both values are
definded in the absolute field coordinates.

Additionally, in order to facilitate motion compensation, the horizontal and spatial position of the VOP are obtained
from:

• vop_horizontal_mc_spatial_ref

• vop_vertical_mc_spatial_ref

These spatial references may be different for each VOP. The absolute frame coordinate system must be used for
all frame VOPs, while the absolute field coordinate system must be used for all field VOPs. Additionally, the
decoded spatial references must have an even value.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 89

Once the above elements have been decoded, the binary shape decoder may be applied to decode the shape of
each macroblock within the bounding rectangle.

7.16.6.2 Macroblock decoding

The shape information for each macroblock residing within the bounding rectangle of the VOP is decoded into the
form of a 16x16 bab.

7.16.6.2.1 Mode decoding

Each bab belongs to one of five types listed in Table AMD1-40. The type information is given by the bab_type field
which influences decoding of further shape information.

Table AMD1-40 -- List of bab types

bab_type Semantic Used in
0 MVs==0 && No Update P-VOPs
1 MVs!=0 && No Update P-VOPs
2 Transparent All VOP types
3 Opaque All VOP types
4 HHC All VOP types

7.16.6.2.1.1 I-VOPs

In this specification (Studio Profile), only five bab_types are adopted independently of vop_type.

Suppose that f(x,y) is the bab_type of the bab located at (x,y), where x is the BAB column number and y is the BAB
row number. The code word for the bab_type at the position (i,j) is determined as follows. A context C is computed
from a previously decoded bab_type.

C = f(i-1,j)-2

If f(x,y) references a bab outside the current VOP, bab_type is assumed to be transparent for that bab (i.e.
f(x,y)=2). bab_type of the bab outside the current slice is also assumed to be transparent. The VLC used to
decode bab_type for the current bab is switched according to the value of the context C. This context-switched VLC
table is given in Table AMD1-80. The context C shall be set to zero for all macroblocks in a VOP in case of
intra_predictors_reset==1 or for a macroblock located at the start of a slice.

If the type of the bab is transparent, then the current bab is filled with zero (transparent) values. A similar procedure
is carried out if the type is opaque, where the reconstructed bab is filled with values of 255 (opaque). For both
transparent and opaque types, no further decoding of shape-related data is required for the current bab. Otherwise
further decoding steps are necessary, which is called HHC. Decoding for HHC is described in subclause 7.16.6.2.5.

7.16.6.2.1.2 P-VOPs

The decoding of the current bab_type is dependent on the bab_type of the co-located bab in the reference VOP.
The reference VOP is a forward reference VOP. The forward reference VOP is defined as the most recent non-
empty (i.e. vop_coded != 0) I- or P-VOP in the past. If the current VOP is a P-VOP, the forward reference VOP is
selected as the reference VOP.

If the current VOP is a field VOP of the interlaced sequence, the forward reference VOP is defined as the most
recent non empty I- or P- field VOP of the same position (top or bottom field) in the past. When the second field of
the first frame in GOV is coded as P-VOP, the reference VOP is the first field coded as I-VOP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

90 © ISO/IEC 2002 – All rights reserved

If the sizes of the current and reference VOPs are different, some babs in the current VOP may not have a co-
located equivalent in the reference VOP. Therefore the bab_type matrix of the reference VOP is manipulated to
match the size of the current VOP. Two rules are defined for that purpose, namely a cut rule and a copy rule:

• cut rule. If the number of lines (respectively columns) is smaller in the current VOP than in the reference VOP,

the bottom lines (respectively rightmost columns) are eliminated from the reference VOP such that both VOP
sizes match.

• copy rule. If the number of lines (respectively columns) is larger in the current VOP than in the reference VOP,
the bottom line (respectively rightmost column) is replicated as many times as needed in the reference VOP
such that both VOP sizes match.

An example is shown in Figure AMD1-16 where both rules are applied.

2 112 21 2
2 012 21 2
2 011 10 2
2 011 10 2
2 001 00 1
3 030 00 3
0 000 30 1

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30

2 112 22
2 012 21
2 011 11
2 011 10
1 001 00
3 003 00
0 000 00
0 000 00

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30
0 000 30

(a) (b) (c)

(d)

Previous
VOP

cut
copy

Current
VOP

Figure AMD1-16 -- Example of size fitting between current VOP and reference VOP. The numbers represent
the type of each bab

The VLC to decode the current bab_type is switched according to the bab_type value of the co-located bab in the
reference VOP. These context-switched VLC tables for P-VOPs are given in Table AMD1-81. If the type of the bab
is transparent, then the current bab is filled with zero (transparent) values. A similar procedure is carried out if the
type is opaque, where the reconstructed bab is filled with values of 255 (opaque). For both transparent and opaque
types, no further decoding of shape-related data is required for the current bab. Otherwise further decoding steps
are necessary, as listed in Table AMD1-41. Decoding for motion compensation is described in subclause 7.16.6.2.4,
and HHC decoding in subclause 7.16.6.2.5.

Table AMD1-41 -- Decoder components applied for each type of bab

bab_type Motion compensation HHC
0 yes no
1 yes no
2 no no
3 no no
4 no yes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 91

7.16.6.2.2 Binary alpha block motion compensation

Motion Vector of a shape (MVs) is used for motion compensation (MC) of the shape. The value of MVs is
reconstructed as described in subclause 7.16.6.2.3. Integer pixel motion compensation is carried out on a 16x16
block basis according to subclause 7.16.6.2.4.

If bab_type is MVs==0 && No Update or MVs!=0 && No Update then the motion compensated bab is taken to be
the decoded bab, and no further decoding of the bab is necessary. Otherwise, HHC decoding is required.

7.16.6.2.3 Motion vector decoding

If bab_type indicates that MVs!=0, then mvs_x and mvs_y are VLC decoded. For decoding mvs_x, the VLC given
in Table AMD1-82 is used. The same table is used for decoding mvs_y, unless the decoded value of mvs_x is zero.
If mvs_x == 0, the VLC given in Table AMD1-83 is used for decoding mvs_y. If bab_type indicates that MVs==0,
then both mvs_x and mvs_y are set to zero.

7.16.6.2.4 Motion compensation

For inter mode babs (bab_type = 0 or 1), motion compensation is carried out by simple MV displacement according
to the MVs.

Specifically, when bab_type is equal to 0 or 1 i.e. for the no-update modes, a displaced block of 16x16 pixels is
copied from the binary alpha map of the previously decoded I or P VOP for which vop_coded is not equal to ‘0’. If
the displaced position is outside the bounding rectangle, then these pixels are assumed to be “transparent”.

If the macroblock is in the field VOP, a displayed block is copied from previously decoded field I-VOP of the same
position (top or bottom field). When the second field of the first frame in GOV is coded as P-VOP, a displayed block
is copied from the first field coded as I-VOP.

7.16.6.2.5 HHC decoding

If an inferior_symbol_macroblock is equal to ‘0’ then the inferior symbol means transparent and the superior symbol
means opaque. Otherwise, the inferior symbol means opaque and the superior symbol means transparent. After
the inferior symbol is decided, the pattern of inferior symbol in the block is decoded as the following hierarchical
process.

7.16.6.2.5.1 Coded binary block pattern

The index of cbbp is obtained by decoding the variable length code to produce coded_binary_block_pattern[i]
(i=0,1,2,3). If coded_binary_block_pattern[i] is one for a given block in the macroblock then the data of the block
layer is included in the bitstream for that block. However, if coded_binary_block_pattern[i] is zero, then that block
contains no inferior symbol for the macroblock. The binary alpha coefficients for such shape blocks shall all take
the value equal to the superior symbol for the macroblock.

7.16.6.2.5.2 Binary block decoding

For the block whose coded_binary_block_pattern[I] is one, the data of the block layer is decoded. The inferior and
the superior symbol for the block is indicated by inferior_symbol_block. If scan_direction is equal to 0, the block is
divided into horizontal rows. If scan_direction is equal to 1, the block is divided into vertical columns. If
backward_read_flag is set to ‘0’, lbp corresponds to the pixel pattern from left to right pixel in scan_direction=’0’ or
from upper to lower pixel in scan_direction=’1’. If backward_read_flag is set to ‘1’, lbp corresponds to the pixel
pattern from right to left pixel in scan_type=’0’ or from lower to upper pixel in scan_type=’1’.

The index of clp is obtained by decoding the variable length code to produce coded_line_pattern[i] (I=0,1,2, ,7). If
coded_line_pattern[i] is one for a given line in the block then lbp information is included in the bitstream for that line.
However, if coded_line_pattern[i] is zero, then that line contains no inferior symbol for the block. The binary alpha
coefficient for such shape lines shall all take the value equal to the superior symbol for the block.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

92 © ISO/IEC 2002 – All rights reserved

The index of lbp is obtained by decoding the variable length code to produce line_bit_pattern[i] (I=0,1,2, ,7). If
backward_read_flag is set to ‘1’, line_bit_pattern[i] is set to line_bit_pattern[7-i]. Note that line_bit_pattern[i] equal to
‘1’ means the pixel is the inferior symbol for the block. Otherwise, line_bit_pattern[i] is equal to ‘1’ means the pixel
is the superior symbol for the block .

After all pixels are decoded, the inferior symbol and superior symbol are set to either opaque or transparent symbol,
respectively.

7.16.6.3 Grayscale Shape Decoding

Grayscale alpha plane decoding is achieved by the separate decoding of a support region and the values of the
alpha channel. The support region is transmitted by using the binary shape as described above. The alpha values
are transmitted as texture data with arbitrary shape, using almost the same coding method as is used for the
luminance texture channel.

Gray-Level
Alpha

Support Texture

Binary
Shape Coder

Texture Coder

Figure AMD1-17 -- Grayscale shape coding

All samples which are indicated to be transparent by the binary shape data must be set to the value of
minimum_alpha_level[i](transparent) in the decoded grayscale alpha plane i. Within the VOP, alpha samples have
the values produced by the grayscale alpha decoding process. Decoding of binary shape information is not
dependent on the decoding of grayscale alpha. The alpha values are decoded into 16x16 macroblocks in the same
way as the luminance channel (see subclause 7.16.4, 7.16.5 and 7.16.7). The 16x16 blocks of alpha values are
referred to as alpha macroblocks hereafter. The data for each alpha macroblock is present in the bitstream
immediately following the texture data for the corresponding texture macroblock. Any aspect of alpha decoding that
is not covered in this document should be assumed to be the same as for the decoding of luminance.

7.16.6.3.1 Grayscale Alpha COD Modes

When decoding grayscale alpha macroblocks, CODA is first encountered and indicates the coding status for alpha.
It is important to understand that the macroblock syntax elements for alpha are still present in the bitstream for inter
macroblocks even if the texture syntax elements indicate “not-coded” (not_coded=’1’). In this respect, the decoding
of the alpha and texture data are independent.

For macroblocks which are completely transparent (indicated by the binary shape coding), no alpha syntax
elements are present and the grayscale alpha samples must all be set to the value of minimum_alpha_level[i]
(transparent). If CODA=”all opaque” (intra, inter macroclocks) or CODA = "residual all zero" (inter macroblocks)
then no more alpha data is present. Otherwise, other alpha syntax elements follow, i.e. alpha texture data encoded
as either DCT coefficients which are coded and non-transparent or DPCM residuals, as is the case for regular
luminance macroblock texture data.

When CODA=”all opaque”, the corresponding decoded alpha macroblock is filled with the value of
maximum_alpha_level[i]. This value will be called AlphaOpaqueValue[i].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 93

7.16.6.3.2 Intra Macroblocks coded as DPCM residuals

In case of alpha_compression_mode[i]==1(DPCM mode), the grayscale alpha data shall be decoded as DPCM
residuals. DPCM mode can be selected independently of intra/inter mode of the texture data.

7.16.6.3.3 Intra Macroblocks coded as DCT coefficients

When the texture is encoded as DPCM residuals (compression_mode==1) or intra DCT coefficients
(compression_mode==0 && macroblock_intra==1), and if alpha_compression_mode[i]==0, the grayscale alpha
data is encoded as intra DCT residual.

The intra dc value is decoded in the same way as for luminance.

The DC predictor is used in the same way as for luminance. However, when coda_i indicates that a macroblock is
all opaque, the predictor shall be reset so that the next intra block to be decoded is correctly decoded. The reset
value is defined as;

 AlphaOpaqueValue[i] * (2^(alpah_dct_precision[i]+alpha_intra_dc_precision[i]))

AlphaOpaqueValue[i] is described in subclaused 7.16.6.3.1.

7.16.6.3.4 Inter Macroblocks and Motion Compensation

When the texture data in a P-VOP is encoded as inter macroblock (compression_mode==0 &&
macroblock_intra==0), and if alpha_compression_mode[i]==0, the alpha macroblock shall be decoded as inter
macroblock.

Motion compensation is carried out for inter macroblocks, using the 16x16 or 16x8 luminance motion vectors, in the
same way as for luminance data. Where the luminance motion vectors are not present because the texture
macroblock is skipped, the exact same style of non-coded motion compensation used for luminance is applied to
the alpha data. Note that this does not imply that the alpha macroblock is skipped, because an error signal to
update the resulting motion compensated alpha macroblock may still be present if indicated by coda_pb.

cbpa is defined in Table AMD1-88 and alpha_pattern_code is derived from cbps.

Alpha inter DCT coefficients are decoded in the same way as the luminance coefficients. The only exception is that
the inverse quantisation process in 7.16.4.2.3 shall perfom as if dead_zone_disable is set to zero independently of
the value of dead_zone_disable.

7.16.6.3.5 Method to be used when blending with greyscale alpha signal

The following explains the blending method to be applied to the video object in the compositor, which is controlled
by the composition_method flag and the linear_composition flag. The linear_composition flag is informative only,
and the decoder may ignore it and proceed as if it had the value 0. However, it is normative that the
composition_method flag be acted upon.

The descriptions below show the processing taking place in YUV space; note that the processing can of course be
implemented in RGB space to obtain equivalent results.

saturation

The alpha signals are saturated to lie in the range [Tr, Op]. Thus:

 { Op if alpha > Op
alpha = { alpha if Tr <= alpha <= Op
 { Tr if alpha < Tr

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

94 © ISO/IEC 2002 – All rights reserved

composition_method=0 (cross-fading)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited Y, U, V
and alpha values are:

 Pyuv = ((R - (Nalpha-Tr)) * Myuv + ((Nalpha-Tr) * Nyuv)) / R
 Palpha = Op

composition_method=1 (Additive mixing)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited Y, U, V
and alpha values are:

 { Myuv Nalpha = Tr
Pyuv = {
 { (Myuv - BLACK) - ((Myuv - BLACK) * (Nalpha-Tr)) / R+ Nyuv Nalpha > Tr

(this is equivalent to Pyuv = Myuv*(1-alpha) + Nyuv, taking account of black level and the fact that the video
decoder does not produce an output in areas where alpha=0)

Palpha = Nalpha + Malpha -Tr - ((Nalpha-Tr)*(Malpha-Tr)) / R
where
 BLACK is the common black value of foreground and background objects.
 Tr: level for complete transparency

 Op: level for complete opacity
 R: = Op - Tr (dynamic range of alpha signal)

NOTE The compositor must convert foreground and background objects to the same black value and signal
range before composition. The black level of each video object is specified by the video_range bit in the
video_signal_type field, or by the default value if the field is not present. (The RGB values of synthetic objects are
specified in a range from 0 to 1, as described in ISO/IEC 14496-1).

• linear_composition = 0: The compositing process is carried out using the video signal in the format from which
it is produced by the video decoder, that is, without converting to linear signals. Note that because video
signals are usually non-linear (“gamma-corrected”), the composition will be approximate.

• linear_composition = 1: The compositing process is carried out using linear signals, so the output of the video
decoder is converted to linear if it was originally in a non-linear form, as specified by the video_signal_type field.
Note that the alpha signal is always linear, and therefore requires no conversion.

7.16.6.4 Multiple Auxiliary Component Decoding

Auxiliary components are defined for the VOP on a pixel-by-pixel basis, and contain data related to the video object,
like disparity, depth, additional texture. Up to 3 auxiliary components (including the grayscale shape) are possible.
The number and type of these components is indicated by the video_object_layer_shape_extension given in Table
AMD1-12. For example, a value ‘0000’ indicates the grayscale (alpha) shape. The same support region as
described in 7.16.6.2 is used for all auxiliary components, and the decoding procedure is the same as described in
7.16.6.3.

7.16.7 Motion compensation decoding

The motion compensation process forms predictions from previously decoded VOPs which are combined with the
coefficient data (from the output of the IDCT) in order to recover the final decoded samples.

In general up to two separate predictions are formed for each block which are combined together to form the final
prediction block p[y][x].

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 95

In the case of intra coded macroblocks no prediction is formed so that p[y][x] will be zero. The saturation shown in
Figure AMD1-11 is still required in order to remove prohibited values from f[y][x].

In the case where a block is not coded, either because the entire macroblock is skipped or the specific block is not
coded there is no coefficient data. In this case f[y][x] is zero and the decoded samples are simply the prediction,
p[y][x].

All the processes except for resetting motion vector predictors in 7.16.7.4.4 are never executed when a macroblock
is completely transparent.

Framestore
Addressing

Prediction
Field/Frame

Selection

Vector
Decoding

Σ

Framestores

Half-pel
Prediction
Filtering

S
at

ur
at

io
n

Vector
Predictors

From
Bitstream

Decoded
Samples

f [y][x] d [y][x]

p [y][x]

vector [r][s][t]

Half-Pel
Info. Combine

Predictions

Scaling
for Colour

Components

vector '[r][s][t]

Figure AMD1-18 Simplified motion compensation process

7.16.7.1 Motion compensation decoding of arbitrary shaped VOP

In order to perform motion compensated prediction on a per VOP basis, a special padding technique, i.e. the
macroblock-based repetitive padding, is applied for the reference VOP. The details of these techniques are
described in the following subclauses.

Since a VOP may have arbitrary shape, and this shape can change from one instance to another, conventions are
necessary to ensure the consistency of the motion compensation process.

The absolute (frame or field) coordinate system is used for referencing every VOP. At every given instance, a
bounding rectangle that includes the shape of that VOP, as described in subclause 7.16.4, is defined. The left and
top corner, in the absolute coordinates, of the bounding rectangle is decoded from VOP spatial reference. Thus, the
motion vector for a particular feature inside a VOP, e.g. a macroblock, refers to the displacement of the feature in
absolute coordinates. No alignment of VOP bounding rectangles at different time instances is performed.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

96 © ISO/IEC 2002 – All rights reserved

7.16.7.1.1 Padding process

The padding process defines the values of luminance and chrominance samples outside the VOP for prediction of
arbitrarily shaped objects. Figure AMD1-19 shows a simplified diagram of this process.

Vertical
Repetitive
Padding

Extended
Padding

Horizontal
Repetitive
Padding

Saturation

Σ

Predictions

Framestores

f [y][x]

d [y][x]

s [y][x]

s’ [y][x]

hor_pad [y][x] hv_pad [y][x]

d’ [y][x]

Figure AMD1-19 -- Simplified padding process

A decoded macroblock d[y][x] is padded by referring to the corresponding decoded shape block s[y][x]. The
luminance component is padded per 16 x 16 samples, while the chrominance components are padded per 8 x 8
samples for 4:2:0 format, 16 x 8 samples for 4:2:2 format, 16 x 16 samples for 4:4:4 format. A macroblock that lies
on the VOP boundary (hereafter referred to as a boundary macroblock) is padded by replicating the boundary
samples of the VOP towards the exterior. This process is divided into horizontal repetitive padding and vertical
repetitive padding. The remaining macroblocks that are completely outside the VOP (hereafter referred to as
exterior macroblocks) are filled by extended padding.

NOTE The padding process is applied to all macroblocks inside the bounding rectangle of a VOP. The bounding rectangle of
the luminance component is defined by vop_width and vop_height extended to a multiple of 16, while that of the chrominance
components is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

7.16.7.1.1.1 Horizontal repetitive padding

Each sample at the boundary of a VOP is replicated horizontally to the left and/or right direction in order to fill the
transparent region outside the VOP of a boundary macroblock. If there are two boundary sample values for filling a
sample outside of a VOP, the two boundary samples are averaged (//2).

hor_pad[y][x] is generated by any process equivalent to the following example. For every line with at least one
shape sample s[y][x] == 1(inside the VOP) :

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 97

for (x=0; x<N; x++) {

 if (s[y][x] == 1) { hor_pad[y][x] = d[y][x]; s’[y][x] = 1; }

 else {

 if (s[y][x’] == 1 && s[y][x”] == 1) {

 hor_pad[y][x] = (d[y][x’]+ d[y][x”])//2;

 s’[y][x] = 1;

 } else if (s[y][x’] == 1) {

 hor_pad[y][x] = d[y][x’]; s’[y][x] = 1;

 } else if (s[y][x”] == 1) {

 hor_pad[y][x] = d[y][x”]; s’[y][x] = 1;

 }

 }

}

where x’ is the location of the nearest valid sample (s[y][x’] == 1) at the VOP boundary to the left of the current
location x, x” is the location of the nearest boundary sample to the right, and N is the number of samples of a line in
a macroblock. s’[y][x] is initialized to 0.

7.16.7.1.1.2 Vertical repetitive padding

The remaining unfilled transparent horizontal samples (where s’[y][x] == 0) from subclause 7.16.7.1.1.1 are padded
by a similar process as the horizontal repetitive padding but in the vertical direction. The samples already filled in
subclause 7.16.7.1.1.1 are treated as if they were inside the VOP for the purpose of this vertical pass.

hv_pad[y][x] is generated by any process equivalent to the following example. For every column of hor_pad[y][x] :

for (y=0; y<M; y++) {

 if (s’[y][x] == 1)

 hv_pad[y][x] =hor_pad[y][x];

 else {

 if (s’[y’][x] == 1 && s’[y”][x] == 1)

 hv_pad[y][x] = (hor_pad[y’][x] + hor_pad[y”][x])//2;

 else if (s’[y’][x] == 1)

 hv_pad[y][x] = hor_pad[y’][x];

 else if (s’[y”][x] == 1)

 hv_pad[y][x] = hor_pad[y”][x];

 }

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

98 © ISO/IEC 2002 – All rights reserved

where y’ is the location of the nearest valid sample (s’[y’][x] == 1) above the current location y at the boundary of
hv_pad, y” is the location of the nearest boundary sample below y, and M is the number of samples of a column in
a macroblock.

7.16.7.1.1.3 Extended padding

Exterior macroblocks immediately next to boundary macroblocks are filled by replicating the samples at the border
of the boundary macroblocks. Note that the boundary macroblocks have been completely padded in subclause
7.16.7.1.1.1 and subclause 7.16.7.1.1.2. If an exterior macroblock is next to more than one boundary macroblock,
one of the macroblocks is chosen, according to the following convention, for reference.

The boundary macroblocks surrounding an exterior macroblock are numbered in priority according to Figure
AMD1-20. The exterior macroblock is then padded by replicating upwards, downwards, leftwards, or rightwards the
row of samples from the horizontal or vertical border of the boundary macroblock having the largest priority number.

The remaining exterior macroblocks (not located next to any boundary macroblocks) are filled with 2bits_per_pixel-1. For
8-bit luminance component and associated chrominance this implies filling with 128.

Exterior
macroblock

Boundary
macroblock 3

Boundary
macroblock 0

Boundary
macroblock 1

Boundary
macroblock 2

Figure AMD1-20 -- Priority of boundary macroblocks surrounding an exterior macroblock

7.16.7.1.1.4 Padding for chrominance components

Chrominance components are padded according to subclauses 7.16.7.1.1.1 through 7.16.7.1.1.3. The padding is
performed by referring to a shape block generated by decimating the shape block of the corresponding luminance
component. This decimating of the shape block is performed by the subsampling process described in subclause
6.1.3.6.

7.16.7.1.1.5 Padding of interlaced macroblocks

Macroblocks of an interlaced VOP (progressive_sequence = 0) are padded according to 7.16.7.1.1.1 through
7.16.7.1.1.3. The vertical padding of the luminance component, however, is performed for each field independently.
A sample outside of a VOP is therefore filled with the value of the nearest boundary sample of the same field.
Completely transparent blocks are padded with 2bits_per_pixel-1. Chrominance components of interlaced VOP are
padded according to subclause 7.16.7.1.1.4, however, based on fields. The padding method described in this
subclause is not used outside the bounding rectangle of the VOP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 99

7.16.7.2 Prediction modes

There are two major classifications of the prediction mode:

- field prediction; and

- frame prediction.
In field prediction, predictions are made independently for each field by using data from one or more previously
decoded fields. Frame prediction forms a prediction for the frame from one or more previously decoded frames. It
must be understood that the fields and frames from which predictions are made may themselves have been
decoded as either field VOPs or frame VOPs.

Within a field VOP all predictions are field predictions. However in a frame VOP either field predictions or frame
predictions may be used (selected on a macroblock-by macroblock basis).

In addition to the major classification of field or frame prediction a special prediction mode is used:

• 16x8 motion compensation - In which two motion vectors are used for each macroblock. The first motion
vector is used for the upper 16x8 region, the second for the lower 16x8 region. In this specification 16x8 motion
compensation shall only be used with field VOPs.

7.16.7.3 Prediction field and frame selection

The selection of which fields and frames shall be used to form predictions shall be made as detailed in this clause.

7.16.7.3.1 Field prediction

In P-VOPs, the two reference fields from which predictions shall made are the most recently decoded reference top
field and the most recently decoded reference bottom field. The simplest case illustrated in Figure AMD1-21 shall
be used when predicting the first VOP of a coded frame or when using field prediction within a frame-VOP. In
these cases the two reference fields are part of the same reconstructed frame.

NOTES -

1 The reference fields may themselves have been reconstructed from two field-VOPs or a single frame-VOP.

2 In the case of predicting a field VOP, the field being predicted may be either the top field or the bottom field.

Top
Reference

Field

Bottom
Reference

Field
Possible

Intervening
B-VOPs

(Not yet decoded)

Figure AMD1-21 -- Prediction of the first field or field prediction in a frame-VOP

The case when predicting the second field VOP of a coded frame is more complicated because the two most
recently decoded reference fields shall be used, and in this case, the most recent reference field was obtained from
decoding the first field VOP of the coded frame. Figure AMD1-22 illustrates the situation when this second VOP is
the bottom field. Figure AMD1-23 illustrates the situation when this second VOP is the top field.

NOTE - The earlier reference field may itself have been reconstructed by decoding a field VOP or a frame VOP.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

100 © ISO/IEC 2002 – All rights reserved

Top
Reference

Field

Bottom
Reference

Field
Possible

Intervening
B-VOPs

(Not yet decoded)

Figure AMD1-22 -- Prediction of the second field-VOP when it is the bottom field

Top
Reference

Field

Bottom
Reference

FieldPossible
Intervening
B-VOPs

(Not yet decoded)

Figure AMD1-23 -- Prediction of the second field-VOP when it is the top field

7.16.7.3.2 Frame prediction

In P-VOPs prediction shall be made from the most recently reconstructed reference frame. This is illustrated in
Figure AMD1-24.

NOTE - The reference frame may itself have been reconstructed from two field VOPs or a single frame VOP.

Reference
Frame

Possible
Intervening
B-VOPs

(Not yet decoded)

Figure AMD1-24 -- Frame-prediction for P-VOPs

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 101

7.16.7.4 Motion vectors

Motion vectors are coded differentially with respect to previously decoded motion vectors in order to reduce the
number of bits required to represent them. In order to decode the motion vectors the decoder shall maintain two
motion vector predictors (each with a horizontal and vertical component) denoted PMV[r][s][t]. For each prediction,
a motion vector, vector’[r][s][t] is first derived. This is then scaled depending on the sampling structure (4:2:0, 4:2:2
or 4:4:4) to give a motion vector, vector[r][s][t], for each colour component. The meanings associated with the
dimensions in this array are defined in Table AMD1-42.

Table AMD1-42 -- Meaning of indices in PMV[r][s][t], vector[r][s][t] and vector’[r][s][t]

 0 1
r First motion vector in Macroblock Second motion vector in Macroblock
s Forward motion Vector unused
t Horizontal Component Vertical Component

7.16.7.4.1 Decoding the motion vectors

Each motion vector component, vector’[r][s][t], shall be calculated by any process that is equivalent to the following
one. Note that the motion vector predictors shall also be updated by this process.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

102 © ISO/IEC 2002 – All rights reserved

r_size = vop_fcode[s][t] - 1

f = 1 << r_size

high = (16 * f) - 1;

low = ((-16) * f);

range = (32 * f);

if ((f == 1) || (motion_code[r][s][t] == 0))

 delta = motion_code[r][s][t] ;

else {

 delta = ((Abs(motion_code[r][s][t]) - 1) * f) + motion_residual[r][s][t] + 1;

 if (motion_code[r][s][t] < 0)

 delta = - delta;

}

prediction = PMV[r][s][t];

if ((mv_format == “field”) && (t==1) && (VOP_structure == “Frame VOP”))

 prediction = PMV[r][s][t] DIV 2;

vector’[r][s][t]= prediction + delta;

if (vector’[r][s][t] < low)

 vector’[r][s][t] = vector’[r][s][t] + range;

if (vector’[r][s][t] > high)

 vector’[r][s][t] = vector’[r][s][t] - range;

if ((mv_format == “field”) && (t==1) && (VOP_structure == “Frame VOP”))

 PMV[r][s][t] = vector’[r][s][t] * 2;

else

 PMV[r][s][t] = vector’[r][s][t];

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 103

The parameters in the bitstream shall be such that the reconstructed differential motion vector, delta, shall lie in the
range [low:high]. In addition the reconstructed motion vector, vector’[r][s][t], and the updated value of the motion
vector predictor PMV[r][s][t], shall also lie in the range [low : high]. The allowed range [low : high] for the motion
vectors depends on the parameter vop_fcode[s][t].

r_size, f, delta, high , low and range are temporary variables that are not used in the remainder of this specification.

motion_code[r][s][t] and motion_residual[r][s][t] are fields recovered from the bitstream. mv_format is recovered
from the bitstream using Table AMD1-30 and Table AMD1-31.

r, s and t specify the particular motion vector component being processed as identified in Table AMD1-42.

vector’[r][s][t] is the final reconstructed motion vector for the luminance component of the macroblock.

7.16.7.4.2 Motion vector restrictions

In frame VOPs, the vertical component of the field motion vectors shall be restricted so that they only cover half the
range that is supported by the vop_fcode that relates to those motion vectors. This restriction ensures that the
motion vector predictors will always have values that are appropriate for decoding subsequent frame motion
vectors. Table AMD1-43 summarises the size of motion vectors that may be coded as a function of vop_fcode.

Table AMD1-43 -- Allowable motion vector range as a function of vop_fcode[s][t]

vop_fcode[s]

[t]

Vertical components (t==1)
of

field vectors in frame
VOPs

All other cases

0 (forbidden)
1 [-4: +3,5] [-8: +7,5]
2 [-8: +7,5] [-16: +15,5]
3 [-16: +15,5] [-32: +31,5]
4 [-32: +31,5] [-64: +63,5]
5 [-64: +63,5] [-128: +127,5]
6 [-128: +127,5] [-256: +255,5]
7 [-256: +255,5] [-512: +511,5]
8 [-512: +511,5] [-1024: +1023,5]
9 [-1024: +1023,5] [-2048: +2047,5]

10-14 (reserved)
15 (used when a particular vop_fcode[s][t] will not be used)

7.16.7.4.3 Updating motion vector predictors

Once all of the motion vectors present in the macroblock have been decoded using the process defined in the
previous clause it is sometimes necessary to update other motion vector predictors. This is because in some
prediction modes fewer than the maximum possible number of motion vectors are used. The remainder of the
predictors that might be used in the VOP must retain “sensible” values in case they are subsequently used.

The motion vector predictors shall be updated as specified in Table AMD1-44 and Table AMD1-45. The rules for
updating motion vector predictors in the case of skipped macroblocks are specified in 7.16.5.7.

NOTE - It is possible for an implementation to optimise the updating (and resetting) of motion vector predictors depending
on the VOP type. For example in a P-VOP the predictors for backwards motion vectors are unused and need not be maintained.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

104 © ISO/IEC 2002 – All rights reserved

Table AMD1-44 -- Updating of motion vector predictors in frame VOPs

frame_motion_- macroblock_motion_- macroblock_-
type forward intra Predictors to Update

Frame-based‡ - 1 PMV[1][0][1:0] = PMV[0][0][1:0]
Frame-based 1 0 PMV[1][0][1:0] = PMV[0][0][1:0]
Frame-based‡ 0 0 PMV[r][s][t] = 0 §
Field-based 1 0 (none)
NOTE - PMV[r][s][1:0] = PMV[u][v][1:0] means that;
 PMV[r][s][1] = PMV[u][v][1] and PMV[r][s][0] = PMV[u][v][0]
‡ frame_motion_type is not present in the bitstream but is assumed to be Frame-based
§ (Only occurs in P-VOP) PMV[r][s][t] is set to zero (for all r, s and t). See 7.16.7.4.4.

Table AMD1-45 -- Updating of motion vector predictors in field VOPs

field_motion_- macroblock_motion_- macroblock_-
type forward intra Predictors to Update

Field-based‡ - 1 PMV[1][0][1:0] = PMV[0][0][1:0]
Field-based 1 0 PMV[1][0][1:0] = PMV[0][0][1:0]
Field-based‡ 0 0 PMV[r][s][t] = 0 §
16x8 MC 1 0 (none)
NOTE - PMV[r][s][1:0] = PMV[u][v][1:0] means that;
 PMV[r][s][1] = PMV[u][v][1] and PMV[r][s][0] = PMV[u][v][0]
‡ field_motion_type is not present in the bitstream but is assumed to be Field-based
§ (Only occurs in P-VOP) PMV[r][s][t] is set to zero (for all r, s and t). See 7.16.7.4.4.

7.16.7.4.4 Resetting motion vector predictors

All motion vector predictors shall be reset to zero in the following cases:

• At the start of each slice.

• Whenever a macroblock is completely transparent.

• Whenever an intra macroblock is decoded.

• Whenever a macroblock is encoded as DPCM residuals.

• In a P-VOP when a macroblock is skipped (not coded = 1).

7.16.7.4.5 Prediction in P-VOP

In the case that a P field VOP is used as the second field of a frame in which the first field is an I field VOP a series
of semantic restrictions apply. These ensure that prediction is only made from the I field VOP. These restrictions
are;

• Field prediction in which motion_vertical_field_select indicates the same parity as the field being
predicted shall not be used.

• There shall be no skipped macroblocks (not_coded = 0).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 105

7.16.7.4.6 Motion vectors for chrominance components

The motion vectors calculated in the previous clauses refer to the luminance component where;

 vector[r][s][t] = vector’[r][s][t] (for all r, s and t)

For each of the two chrominance components the motion vectors shall be scaled as follows:

4:2:0 Both the horizontal and vertical components of the motion vector are scaled by dividing by two:
 vector[r][s][0] = vector’[r][s][0] / 2;

 vector[r][s][1] = vector’[r][s][1] / 2;

4:2:2 The horizontal component of the motion vector is scaled by dividing by two, the vertical component
is not altered:

 vector[r][s][0] = vector’[r][s][0] / 2;

 vector[r][s][1] = vector’[r][s][1];

4:4:4 The motion vector is unmodified:
 vector[r][s][0] = vector’[r][s][0];

 vector[r][s][1] = vector’[r][s][1];

7.16.7.4.7 Semantic restrictions concerning predictions

It is a restriction on the bitstream that reconstructed motion vectors shall not refer to samples outside the decoded
area of a reference VOP. For an arbitrary shape VOP, the decoded area refers to the area within the bounding
rectangle, padded as described in subclause 7.16.7.1.1. A bounding rectangle is defined by vop_width and
vop_height extended to multiple of 16.

7.16.7.5 Forming predictions

Predictions are formed by reading prediction samples from the reference fields or frames. A given sample is
predicted by reading the corresponding sample in the reference field or frame offset by the motion vector in the
absolute coordinate system.

A positive value of the horizontal component of a motion vector indicates that the prediction is made from samples
(in the reference field/frame) that lie to the right of the samples being predicted in the absolute coordinate system.

A positive value of the vertical component of a motion vector indicates that the prediction is made from samples (in
the reference field/frame) that lie the below the samples being predicted in the absolute coordinate system.

All motion vectors are specified to an accuracy of one half sample. Thus if a component of the motion vector is odd,
the samples will be read from mid-way between the actual samples in the reference field/frame. These half-
samples are calculated by simple linear interpolation from the actual samples.

In the case of field-based predictions it is necessary to determine which of the two available fields to use to form
the prediction. In the case of field-based prediction and 16x8 MC an additional bit, motion_vertical_field_select, is
encoded to indicate which field to use.

If motion_vertical_field_select is zero then the prediction is taken from the top reference field.

If motion_vertical_field_select is one then the prediction is taken from the bottom reference field.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

106 © ISO/IEC 2002 – All rights reserved

For each prediction block the integer sample motion vectors int_vec[t] and the half sample flags half_flag[t] shall be
formed as follows;

for (t=0 ; t<2 ; t++) {

 int_vec[t] = vector[r][s][t] DIV 2 ;

 if ((vector[r][s][t] – (2 * int_vec[t]) != 0)

 half_flag[t] = 1 ;

 else

 half_flag[t] = 0 ;

}

Then for each sample in the prediction block the samples are read and the half sample prediction applied as
follows;

 if ((! half_flag[0])&& (! half_flag[1]))

 pel_pred[y][x] = pel_ref[y + int_vec[1]][x + int_vec[0]] ;

 if ((! half_flag[0])&& half_flag[1])

 pel_pred[y][x] = (pel_ref[y + int_vec[1]][x + int_vec[0]] +

 pel_ref[y + int_vec[1]+1][x + int_vec[0]]) // 2 ;

 if (half_flag[0]&& (! half_flag[1]))

 pel_pred[y][x] = (pel_ref[y + int_vec[1]][x + int_vec[0]] +

 pel_ref[y + int_vec[1]][x + int_vec[0]+1]) // 2 ;

 if (half_flag[0]&& half_flag[1])

 pel_pred[y][x] = (pel_ref[y + int_vec[1]][x + int_vec[0]] +

 pel_ref[y + int_vec[1]][x + int_vec[0]+1] +

 pel_ref[y + int_vec[1]+1][x + int_vec[0]] +

 pel_ref[y + int_vec[1]+1][x + int_vec[0]+1]) // 4 ;

where pel_pred[y][x] is the prediction sample being formed and pel_ref[y][x] are samples in the reference field or
frame.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 107

7.16.7.6 Motion vector selection

Table AMD1-46 shows the prediction modes used in field VOPs and Table AMD1-47 shows the predictions used in
frame VOPs. In each table the motion vectors that are present in the bitstream are listed in the order in which they
appear in the bitstream.

Table AMD1-46 -- Predictions and motion vectors in field VOPs

field_ macro-
motion_ macroblock_motion_- block_-

type forward intra Motion vector Prediction formed for

Field-based‡ - 1 vector'[0][0][1:0] None
Field-based 1 0 vector'[0][0][1:0] whole field, forward
Field-based‡ 0 0 vector'[0][0][1:0]*§ whole field, forward
16x8 MC 1 0 vector'[0][0][1:0] upper 16x8 field, forward
 vector'[1][0][1:0] lower 16x8 field, forward
NOTE - Motion vectors are listed in the order they appear in the bitstream
 ‡ field_motion_type is not present in the bitstream but is assumed to be Field-based
 * These motion vectors are not present in the bitstream
 § The motion vector is taken to be (0; 0) as explained in 7.16.7.4.5.

Table AMD1-47 -- Predictions and motion vectors in frame VOPs

frame_- macro-
motion_- macroblock_motion_- block_-

type forward intra Motion vector Prediction formed for

Frame-based‡ - 1 vector'[0][0][1:0] None
Frame-based 1 0 vector'[0][0][1:0] frame, forward
Frame-based‡ 0 0 vector'[0][0][1:0]*§ frame, forward
Field-based 1 0 vector'[0][0][1:0] top field, forward
 vector'[1][0][1:0] bottom field, forward
NOTE - Motion vectors are listed in the order they appear in the bitstream
 ‡ frame_motion_type is not present in the bitstream but is assumed to be Frame-based
 * These motion vectors are not present in the bitstream
 § The motion vector is taken to be (0; 0) as explained in 7.16.7.4.5.

7.16.7.7 Skipped macroblocks

A skipped macroblock is a macroblock for which no data is encoded, that is part of a coded slice. With the
exception of the first non-transparent macroblock in a slice, if not_coded flag in a macroblock is ‘1’, the macroblock
is to be skipped. The decoder shall form a prediction for skipped macroblocks which shall then be used as the final
decoded sample values.

The process differs between field VOPs and frame VOPs.

There shall be no skipped macroblocks in I-VOPs. STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

108 © ISO/IEC 2002 – All rights reserved

7.16.7.7.1 P field VOP

• The prediction shall be made as if field_motion_type is “Field-based”

• The prediction shall be made from the field of the same parity as the field being predicted.

• Motion vector predictors shall be reset to zero.

• The motion vector shall be zero.

7.16.7.7.2 P frame VOP

• The prediction shall be made as if frame_motion_type is “Frame-based”

• Motion vector predictors shall be reset to zero.

• The motion vector shall be zero.

7.16.7.8 Combining predictions

The final stage is to combine the various predictions together in order to form the final prediction blocks.

It is also necessary to organise the data into blocks that are either field organised or frame organised in order to be
added directly to the decoded coefficients.

The transform data is either field organised or frame organised as specified by dct_type.

7.16.7.8.1 Simple frame predictions

In the case of simple frame predictions no further processing is required.

The predictions for chrominance components of 4:2:0, 4:2:2 and 4:4:4 formats shall be of size 8 samples by 8 lines,
8 samples by 16 lines and 16 samples by 16 lines respectively.

7.16.7.8.2 Simple field predictions

In the case of simple field predictions (i.e. not 16�8) no further processing is required

In the case of simple field prediction in a frame picture the predictions for chrominance components of 4:2:0, 4:2:2
and 4:4:4 formats for each field shall be of size 8 samples by 4 lines, 8 samples by 8 lines and 16 samples by 8
lines respectively.

7.16.7.8.3 16x8 Motion compensation

In this prediction mode separate predictions are formed for the upper 16x8 region of the macroblock and the lower
16x8 region of the macroblock.

The predictions for chrominance components, for each 16x8 region, of 4:2:0, 4:2:2 and 4:4:4 formats shall be of
size 8 samples by 4 lines, 8 samples by 8 lines and 16 samples by 8 lines respectively.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 109

7.16.8 Output of the decoding process

This section describes the output of the theoretical model of the decoding process that decodes bitstreams
conforming to this specification.

The decoding process input is one or more coded video bitstreams (one for each of the layers). The video layers
are generally multiplexed by the means of a system stream that also contains timing information.

The output of the decoding process is a series of fields or frames that are normally the input of a display process.
The order in which fields or frames are output by the decoding process is called the display order, and may be
different from the coded order (when B-pictures are used). The display process is responsible for the action of
displaying the decoded fields or frames on a display device. If the display device cannot display at the frame rate
indicated in the bitstream, the display process may perform frame rate conversion. This specification does not
describe a theoretical model of the display process nor the operation of the display process.

Since some of the syntax elements, such as progressive_frame, may be needed by the display process, in this
theoretical model of the decoding process, all the syntactic elements that are decoded by the decoding process are
output by the decoding process and may be accessed by the display process.

When a progressive sequence is decoded (progressive_sequence is equal to 1), the luminance and chrominance
samples of the reconstructed frames are output by decoding process in the form of progressive frames and the
output rate is the frame rate. Figure AMD1-25 illustrates this in the case of chroma_format equals to 4:2:0.

frame period
=1/frame_rate

Figure AMD1-25. progressive_sequence == 1

The same reconstructed frame is output one time if repeat_first_field is equal to 0, and two or three consecutive
times if repeat_first_field is equal to 1, depending on the value of top_field_first. Figure AMD1-26 illustrates this in
the case of chroma_format equals to 4:2:0 and repeat_first_field equals 1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

110 © ISO/IEC 2002 – All rights reserved

top_field_first: 0 1 0

frame period
=1/frame_rate

Figure AMD1-26. progressive_sequence == 1, repeat_first_field = 1

When decoding an interlaced sequence (progressive_sequence is equal to 0), the luminance samples of the
reconstructed frames are output by the decoding process in the form of interlaced fields at a rate that is twice the
frame rate. Figure AMD1-27 illustrates this.

frame period
=1/frame_rate

field period

Figure AMD1-27. progressive_sequence == 0

It is a requirement on the bitstream that the fields at the output of the decoding process shall always be alternately
top and bottom (note that the very first field of a sequence may be either top or bottom).

If the reconstructed frame is interlaced (progressive_frame is equal to 0), the luminance samples and chrominance
samples are output by the decoding process in the form of two consecutive fields. The first field output by the
decoding process is the top field or the bottom field of the reconstructed frame, depending on the value of
top_field_first.

Although all the samples of progressive frames represent the same instant in time, all the samples are not output at
the same time by the decoding process when the sequence is interlaced.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 111

If the reconstructed frame is progressive (progressive_frame is equal to 1), the luminance samples are output by
the decoding process in the form of two or three consecutive fields, depending on the value of repeat_first_field.

NOTE - The information that these fields originate from the same progressive frame in the bitstream is conveyed to the
display process.

All of the chrominance samples of the reconstructed progressive frame are output by the decoding process at the
same time as the first field of luminance samples. This is illustrated in Figures AMD1-28 and AMD1-29.

progressive_frame: 0 1 1 0

Figure AMD1-28. progressive_sequence == 0 with 4:2:0 chrominance.

progressive_frame: 0 1 1 0

Figure AMD1-29. progressive_sequence == 0 with 4:2:2 or 4:4:4 chrominance.

7.16.9 Sprite decoding

The subclause specifies the additional decoding process for a sprite video object. The sprite decoding can operate
in two modes: basic sprite decoding and low-latency sprite decoding. Figure AMD1-30 is a diagram of the sprite
decoding process. It is simplified for clarity.
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

112 © ISO/IEC 2002 – All rights reserved

Shape/Texture
Decoding

Shape/Texture
Decoding

Warping Vector
Decoding

Warping

Sprite BufferI-VOP
Bitstream

S-VOP
Bitstream

Reconstructed
Samples

Figure AMD1-30 -- The sprite decoding process

7.16.9.1 Higher syntactic structures

The various parameters in the VOL and VOP bitstreams shall be interpreted as described in clause 6. When
sprite_enable == ‘1’, vop_coding_type shall be “I” only for the initial VOP in a VOL for basic sprites (i.e.
low_latency_sprite_enable == ‘0’), and all the other VOPs shall be S-VOPs (i.e. vop_coding_type == “S”). The
reconstructed I-VOP in a VOL for basic sprites is not displayed but stored in a sprite memory, and will be used by
all the remaining S-VOPs in the same VOL. An S-VOP is reconstructed by applying warping to the VOP stored in
the sprite memory, using the warping parameters (i.e. a set of motion vectors) embedded in the VOP bitstream.
Alternatively, in a VOL for low-latency sprites (i.e. low_latency_sprite_enable == ‘1’), these S-VOPs can update the
information stored in the sprite memory before applying warping.

7.16.9.2 Sprite Reconstruction

The luminance, chrominance and grayscale alpha data of a sprite are stored in two-dimensional arrays. The width
and height of the luminance array are specified by sprite_width and sprite_height respectively. The samples in the
sprite luminance, chrominance and grayscale alpha arrays are addressed by two-dimensional integer pairs (i’, j’)
and (ic’, jc’) as defined in the following:

• Top left luminance and grayscale alpha sample
(i’, j’) = (sprite_left_coordinate, sprite_top_coordinate)

• Bottom right luminance and grayscale alpha sample
(i’, j’) = (sprite_left_coordinate + sprite_width − 1,
 sprite_top_coordinate + sprite_height − 1)

• Top left chrominance sample
For 4:2:0 VOPs,
(ic’, jc’) = (sprite_left_coordinate / 2, sprite_top_coordinate / 2)
For 4:2:2 VOPs,
(ic’, jc’) = (sprite_left_coordinate / 2, sprite_top_coordinate)
For 4:4:4 VOPs,
(ic’, jc’) = (sprite_left_coordinate, sprite_top_coordinate)

• Bottom right chrominance sample
For 4:2:0 VOPs,
(ic’, jc’) = (sprite_left_coordinate / 2 + sprite_width// 2 − 1,
 sprite_top_coordinate / 2 + sprite_height// 2 − 1).
For 4:2:2 VOPs,
(ic’, jc’) = (sprite_left_coordinate / 2 + sprite_width// 2 − 1,
 sprite_top_coordinate + sprite_height − 1).
For 4:4:4 VOPs,
(ic’, jc’) = (sprite_left_coordinate + sprite_width − 1,
 sprite_top_coordinate + sprite_height − 1).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 113

• Likewise, the addresses of the luminance, chrominance and grayscale alpha samples of the VOP currently
being decoded are defined in the following:

• Top left sample of luminance and grayscale alpha
(i, j) = (0, 0) for rectangular VOPs, and
(i, j) = (vop_horizontal_mc_spatial_ref, vop_vertical_mc_spatial_ref) for non-rectangular VOPs

• Bottom right sample of luminance and grayscale alpha
(i, j) = (video_object_layer_width - 1, video_object_layer_height - 1) for rectangular VOPs, and
(i, j) = (vop_horizontal_mc_spatial_ref + vop_width - 1,
 vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular VOPs

• Top left sample of chrominance
(ic, jc) = (0, 0) for rectangular VOPs, and
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2, vop_vertical_mc_spatial_ref / 2) for non-rectangular 4:2:0
VOPs
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2, vop_vertical_mc_spatial_ref) for non-rectangular 4:2:2 VOPs
(ic, jc) = (vop_horizontal_mc_spatial_ref, vop_vertical_mc_spatial_ref) for non-rectangular 4:4:4 VOPs

• Bottom right sample of chrominance
(ic, jc) = (video_object_layer_width / 2 - 1, video_object_layer_height / 2 - 1) for rectangular 4:2:0 VOPs,
and
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2 + vop_width// 2 - 1,
 vop_vertical_mc_spatial_ref / 2 + vop_height// 2 - 1) for non-rectangular 4:2:0 VOPs
(ic, jc) = (video_object_layer_width / 2 - 1, video_object_layer_height - 1) for rectangular 4:2:2 VOPs, and
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2 + vop_width// 2 - 1,
 vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular 4:2:2 VOPs
(ic, jc) = (video_object_layer_width - 1, video_object_layer_height - 1) for rectangular 4:4:4 VOPs, and
(ic, jc) = (vop_horizontal_mc_spatial_ref + vop_width- 1,
 vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular 4:4:4 VOPs

7.16.9.3 Sprite reference point decoding

The syntactic elements in sprite_trajectory () and below shall be interpreted as specified in clause 6. du[i] and dv[i]
(0 =< i < no_sprite_point) specifies the mapping between indexes of some reference points in the VOP and the
corresponding reference points in the sprite. These points are referred to as VOP reference points and sprite
reference points respectively in the rest of the specification.
The index values for the VOP reference points are defined as:

 (i0, j0) = (0, 0) when video_object_layer_shape == ‘rectangle’, and
 (vop_horizontal_mc_spatial_ref, vop_vetical_mc_spatial_ref) otherwise,
 (i1, j1) = (i0+W, j0),
 (i2, j2) = (i0, j0 + H),
 (i3, j3) = (i0+W, j0+H)

where W = video_object_layer_width and H = video_object_layer_height when video_object_layer_shape ==
‘rectangle’ or W = vop_width and H = vop_height otherwise. Only the index values with subscripts less than
no_sprite_point shall be used for the rest of the decoding process.

The index values for the sprite reference points shall be calculated as follows:
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

114 © ISO/IEC 2002 – All rights reserved

 (i0’, j0’) = (s / 2) (2 i0 + du[0], 2 j0 + dv[0])

 (i1’, j1’) = (s / 2) (2 i1 + du[1] + du[0], 2 j1 + dv[1] + dv[0])

 (i2’, j2’) = (s / 2) (2 i2 + du[2] + du[0], 2 j2 + dv[2] + dv[0])

 (i3’, j3’) = (s / 2) (2 i3 + du[3] + du[2] + du[1] + du[0], 2 j3 + dv[3] + dv[2] + dv[1] + dv[0])

where i0’, j0’, etc are integers in 1

s
 pel accuracy, where s is specified by sprite_warping_accuracy. Only the index

values with substcripts less than no_sprite_point need to be calculated.

When no_of_sprite_warping_points == 2 or 3, the index values for the virtual sprite points are additionally
calculated as follows:

 (i1’’, j1’’) = (16 (i0 + W’) + ((W − W’) (r i0’ − 16 i0) + W’ (r i1’ − 16 i1)) // W,
 16 j0 + ((W − W’) (r j0’ − 16 j0) + W’ (r j1’ − 16 j1)) // W)
 (i2’’, j2’’) = (16 i0 + ((H − H’) (r i0’ − 16 i0) + H’ (r i2’ − 16 i2)) // H,
 16 (j0 + H’) + ((H − H’) (r j0’ − 16 j0) + H’ (r j2’ − 16 j2)) // H)

where i1’’, j1’’, i2’’, and j2’’ are integers in 1

16
 pel accuracy, and r = 16/s. W’ and H’ are defined as the smallest

integers that satisfy the following condition:

W’ = 2α, H’ = 2β, W’ ≥ W, H’ ≥ H, α > 0, β > 0, both α and β are integers.

The calculation of i2’’, and j2’’ is not necessary when no_of_sprite_warping_points == 2.

7.16.9.4 Warping

For any pixel (i, j) inside the VOP boundary, (F(i, j), G(i, j)) and (Fc(ic, jc), Gc(ic, jc)) are computed as described as
follows. These quantities are then used for sample reconstruction as specified in subclause 7.16.9.5. The following
notations are used to simplify the description:

I = i - i0,
J = j - j0,

For 4:2:0 VOPs,

Ic = 4 ic - 2 i0 + 1,

Jc = 4 jc - 2 j0 + 1,

For 4:2:2 VOPs,

Ic = 4 ic - 2 i0 + 1, for calculating Fc(ic, jc),

Ic = 2 ic - i0, for calculating Gc(ic, jc),

Jc = 2 jc - 2 j0 + 1, for calculating Fc(ic, jc),

Jc = jc - j0, for calculating Gc(ic, jc),

For 4:4:4 VOPs,

Ic = ic - i0 ,

Jc = jc - j0 ,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 115

When no_of_sprite_warping_point == 0,

(F(i, j), G(i, j)) = (si, sj),
(Fc(ic, jc), Gc(ic, jc)) = (sic, sjc).

When no_of_sprite_warping_point == 1,

(F(i, j), G(i, j)) = (i0’ + sI, j0’ + sJ),
(Fc(ic, jc), Gc(ic, jc)) = (i0’ /// 2 + s (ic − i0 / 2), j0’ /// 2 + s (jc − j0 / 2)), for 4:2:0 VOPs.

(Fc(ic, jc), Gc(ic, jc)) = (i0’ /// 2 + s (ic − i0 / 2), j0’ + sJc), for 4:2:2 VOPs.

(Fc(ic, jc), Gc(ic, jc)) = (i0’ + sIc, j0’ + sJc), for 4:4:4 VOPs.

When no_of_sprite_warping_points == 2,

(F(i, j), G(i, j)) = (i0’ + ((−r i0’ + i1’’) I + (r j0’ − j1’’) J) /// (W’ r) ,
 j0’ + ((−r j0’ + j1’’) I + (−r i0’ + i1’’) J) /// (W’ r)),
(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’) /// (4 W’ r),
 ((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2 W’ r j0’ − 16W’) /// (4 W’ r)),

 for 4:2:0 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’) /// (4 W’ r),
 j0’ + ((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc) /// (W’ r)),

 for 4:2:2 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (i0’ + ((−r i0’ + i1’’) Ic + (r j0’ − j1’’) Jc) /// (W’ r) ,
 j0’ + ((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc) /// (W’ r)),

 for 4:4:4 VOPs.

According to the definition of W’ and H’ (i.e. W’ = 2α and H’ = 2β), the divisions by “///” in these functions can be
replaced by binary shift operations. By this replacement, the above equations can be rewritten as:

(F(i, j), G(i, j)) = (i0’ + (((−r i0’ + i1’’) I + (r j0’ − j1’’) J + 2α+ρ-1) >> (α+ρ)) ,
 j0’ + (((−r j0’ + j1’’) I + (−r i0’ + i1’’) J + 2α+ρ-1) >> (α+ρ)),
(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2),
 ((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2 W’ r j0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2)),

 for 4:2:0 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1 ’’) Ic + (r j0’ − j1’’) Jc + 2 W’ r i0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2),
 j0’ + (((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2α+ρ-1)),

 for 4:2:2 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (i0’ + (((−r i0’ + i1’’) Ic + (r j0’ − j1’’) Jc + 2α+ρ-1) >> (α+ρ)) ,
 j0’ + (((−r j0’ + j1’’) Ic + (−r i0’ + i1’’) Jc + 2α+ρ-1) >> (α+ρ)),

 for 4:4:4 VOPs.
where 2ρ=r.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

116 © ISO/IEC 2002 – All rights reserved

When no_of_sprite_warping_points == 3,

(F(i, j), G(i, j)) = (i0’ + ((−r i0’ + i1’’) H’ I + (−r i0’+ i2’’)W’ J) /// (W’H’r),
 j0’ + ((−r j0’ + j1’’) H’ I + (−r j0’+ j2’’)W’ J) /// (W’H’r)),
(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) H’ Ic + (−r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ − 16W’H’) /// (4W’H’r),
 ((−r j0’ + j1’’) H’ Ic + (−r j0’+ j2’’)W’ Jc + 2 W’H’r j0’ − 16W’H’) /// (4W’H’r)),

 for 4:2:0 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) H’ Ic + (−r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ − 16W’H’) /// (4W’H’r),
 j0’ + ((−r j0’ + j1’’) H’ Ic + (−r j0’+ j2’’)W’ Jc) /// (W’H’r))

 for 4:2:2 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (i0’ + ((−r i0’ + i1’’) H’ Ic + (−r i0’+ i2’’)W’ Jc) /// (W’H’r),
 j0’ + ((−r j0’ + j1’’) H’ Ic + (−r j0’+ j2’’)W’ Jc) /// (W’H’r)),

 for 4:4:4 VOPs.

According to the definition of W’ and H’, the computation of these functions can be simplified by dividing the
denominator and numerator of the division beforehand by W’ (when W’ < H’) or H’ (when W’ ≥ H’). As in the case of
no_of_sprite_warping_points == 2, the divisions by “///” in these functions can be replaced by binary shift
operations. For example, when W’ ≥ H’ (i.e. α ≥ β) the above equations can be rewritten as:

(F(i, j), G(i, j)) = (i0’ +(((−r i0’ + i1’’) I + (−r i0’+ i2’’) 2α-β J + 2α+ρ-1) >> (α+ρ)),
 j0’ + (((−r j0’ + j1’’) I + (−r j0’+ j2’’) 2α-β J + 2α+ρ-1) >> (α+ρ))),
(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) Ic + (−r i0’+ i2’’) 2α-β Jc + 2W’r i0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2),
 ((−r j0’ + j1’’) Ic + (−r j0’+ j2’’) 2α-β Jc + 2W’r j0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2)),

 for 4:2:0 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (((−r i0’ + i1’’) Ic + (−r i0’+ i2’’) 2α-β Jc + 2W’r i0’ − 16W’ + 2α+ρ+1) >> (α+ρ+2),
 j0’ + (((−r j0’ + j1’’) Ic + (−r j0’+ j2’’) 2α-β Jc + 2α+ρ-1) >> (α+ρ))),

 for 4:2:2 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = (i0’ +(((−r i0’ + i1’’) Ic + (−r i0’+ i2’’) 2α-β Jc + 2α+ρ-1) >> (α+ρ)),
 j0’ + (((−r j0’ + j1’’) Ic + (−r j0’+ j2’’) 2α-β Jc + 2α+ρ-1) >> (α+ρ))),

 for 4:4:4 VOPs.

When no_of_sprite_warping_point == 4,

(F(i, j), G(i, j)) = ((a I + b J + c) /// (g I + h J + D W H),
 (d I + e J + f) /// (g I + h J + D W H)),
(Fc(ic, jc), Gc(ic, jc)) = ((2 a Ic + 2 b Jc + 4 c − (g Ic + h Jc + 2 D W H) s) /// (4 g Ic + 4 h Jc + 8 D W H),
 (2 d Ic + 2 e Jc + 4 f − (g Ic + h Jc + 2 D W H) s) /// (4 g Ic + 4 h Jc + 8 D W H)),
 for 4:2:0 VOPs,

(Fc(ic, jc), Gc(ic, jc)) = ((2 a Ic + 2 b Jc + 4 c − (g Ic + h Jc + 2 D W H) s) /// (4 g Ic +4 h Jc +8 D W H),
 (d Ic + e Jc + f) /// (g Ic + h Jc + D W H)),

 for 4:2:2 VOPs,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 117

(Fc(ic, jc), Gc(ic, jc)) = ((a Ic+ b Jc + c) /// (g Ic + h Jc + D W H),
 (d Ic + e Jc + f) /// (g Ic + h Jc + D W H)),

 for 4:4:4 VOPs.

where

 g = ((i0’ − i1’ − i2’ + i3’) (j2’ − j3’) − (i2’ − i3’) (j0’ − j1’ − j2’ + j3’)) H ,
 h = ((i1’ − i3’) (j0’ − j1’ − j2’ + j3’) − (i0’ − i1’ − i2’ + i3’) (j1’ − j3’)) W ,
 D = (i1’ − i3’) (j2’ − j3’) − (i2’ − i3’) (j1’ − j3’),
 a = D (i1’ − i0’) H + g i1’ ,
 b = D (i2’ − i0’) W + h i2’,
 c = D i0’ W H,
 d = D (j1’ − j0’) H + g j1’,
 e = D (j2’ − j0’) W + h j2’,
 f = D j0’ W H.

A set of parameters that causes the denominator of any of the above equations to be zero for any pixel in an
opaque or boundary macroblock is disallowed. The implementor should be aware that a 32bit register may not be
sufficient for representing the denominator or the numerator in the above transform functions for affine and
perspective transforms. The usage of a 64 bit floating point representation should be sufficient in such cases.

7.16.9.5 Sample reconstruction

The reconstructed value Y of the luminance sample (i, j) in the currently decoded VOP shall be defined as

Y = ((s - rj)((s –ri) Y00 + ri Y01) + rj ((s - ri) Y10 + ri Y11)) // s2,

where Y00, Y01, Y10, Y11 represent the sprite luminance sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s + 1,G(i, j)////s),
(F(i, j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i, j) –(F(i, j)////s)s and rj =G(i, j) –
(G(i, j)////s)s. Figure AMD1-30 illustrates this process.

In case any of Y00, Y01, Y10 and Y11 lie outside the sprite luminance binary mask, it shall be obtained by the padding
process as defined in subclause 7.16.7.1.1.

When brightness_change_in_sprite == 1, the final reconstructed luminance sample (i, j) is further computed as Y =
Y * (brightness_change_factor * 0.01 + 1), clipped to the range of [0, 2^(bits_per_pixel-1)].

Similarly, the reconstructed value C of the chrominance sample (ic, jc) in the currently decoded VOP shall be
defined as

C = ((s - rj)((s –ri) C00 + ri C01) + rj ((s - ri) C10 + ri C11)) // s2,

where C00, C01, C10, C11 represent the sprite chrominance sample at (Fc(ic, jc)////s, Gc(ic, jc)////s), (Fc(ic, jc)////s + 1,
Gc(ic, jc)////s), (Fc(ic, jc)////s, Gc(ic, jc)////s + 1), and (Fc(ic, jc)////s + 1, Gc(ic, jc)////s + 1) respectively, and ri = Fc(ic, jc) –
(Fc(ic, jc))////s)s and rj = Gc(ic, jc) – (Gc(ic, jc)////s)s. In case any of C00, C01, C10 and C11 lies outside the sprite
chrominance binary mask, it shall be obtained by the padding process as defined in subclause 7.16.7.1.1.

The same method is used for the reconstruction of grayscale alpha and luminance samples. The reconstructed
value A of the grayscale alpha sample (i, j) in the currently decoded VOP shall be defined as

A = ((s - rj)((s - ri) A00 + ri A01) + rj ((s - ri) A10 + ri A11)) // s2,

where A00, A01, A10, A11 represent the sprite grayscale alpha sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s + 1,G(i,
j)////s), (F(i, j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i, j) –(F(i, j)////s)s and rj
=G(i, j) – (G(i, j)////s)s. In case any of A00, A01, A10 and A11 lies outside the sprite luminance binary mask, it shall be
obtained by the padding process as defined in subclause 7.16.7.1.1.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

118 © ISO/IEC 2002 – All rights reserved

The reconstructed values of luminance binary mask samples BY(i,j) shall be computed following the identical
process for the luminance samples. However, corresponding binary mask sample values shall be used in place of
luminance samples Y00, Y01, Y10, Y11. Assume the binary mask sample opaque is equal to 255 and the binary mask
sample transparent is equal to 0. If the computed value is bigger or equal to 128, BY(i, j) is defined as opaque.
Otherwise, BY (i, j) is defined as transparent. The chrominance binary mask samples shall be reconstructed by
decimating the corresponding 2 x 2 adjacent luminance binary mask samples as specified in subclause
7.16.7.1.1.4.

Y00

Y11Y10

Y01

×

×

×

×

°

r
s
i

Y

1

r
s
j

1

Figure AMD1-31 -- Pixel value interpolation (it is assumed that sprite samples are located on an integer
grid)

"

31) Add the following Table in subclause 9.1 after tableV2-39

"

Table AMD1-48 — Tools for ISO/IEC 14496-2:2001 Amendment 1 Visual Object Types

 Visual Object Type

Visual Tools

Simple Studio Core Studio

Basic
-Progressive/Interlaced
-Frame/Field Structure
-Slice Structure
-Studio DPCM Block
-Studio Binary Shape
-Studio Grayscale Shape

X X

I-VOP X X
P-VOP X
Studio Sprite X

NOTE 3 — The allowed values of ‘chroma_format’ in StudioVideoObjectLayer() are defined in the level definition.

NOTE 4 — The allowed values of ‘bits_per_pixel’ and ‘alpha_bits_per_pixel’ in StudioVideoObjectLayer() are defined in the level
definition

"
 STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:20
01

/Amd 1
:20

02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 119

32) Add the following Table and text at the end of subclause 9.2:

"

Table AMD1-49 — ISO/IEC 14496-2:2001 Amendment 1 Visual Profiles

 Object Types

Profiles

Simple Studio Core Studio

AMD1-1 Simple Studio X
AMD1-2 Core Studio X X

Note that object types that are not listed in this table are not decordable by decoders complying to the Profiles listed in this table.

Note that the Profiles listed in this table can be grouped into Natural Visual.

"

33) Add the following subclause A.1.1 in clause A.1:

A.1.1 Discrete cosine transform for the Studio Profile

The NxN two dimensional DCT is defined as:

 F(u, v) =
2

N
C(u)C(v)

x= 0

N −1

∑ f (x,y)cos
(2x +1)uπ

2Ny=0

N−1

∑ cos
(2y +1)vπ

2N

 with u, v, x, y = 0, 1, 2, … N-1

 where x, y are spatial coordinates in the sample domain

 u, v are coordinates in the transform domain

 C(u), C(v) =
1

2
for u,v = 0

1 otherwise





The inverse DCT (IDCT) is defined as:

 f (x, y) =
2

N u =0

N −1

∑ C(u)C(v)F(u,v)cos
(2x +1)uπ

2Nv= 0

N −1

∑ cos
(2y +1)vπ

2N

If each pixel is represented by n bits per pixel, the input to the forward transform and output from the inverse
transform is represented with (n+1) bits. The bit precision of the DCT coefficients changes in accordance with the
value of mpeg2_stream defined in StudioVideoObjectLayer(). In case of mpeg2_stream = 0, The coefficients are
represented in (n+7) bits including three fractional bits. The dynamic range of the coefficients is [-2n+6:+2n+6-1]. In
case of mpeg2_stream = 1, The coefficients are represented in (n+4) bits. The dynamic range is [-2n+3:+2n+3-1].

The N by N inverse discrete transform shall conform to IEEE Standard Specification for the Implementations of 8 by
8 Inverse Discrete Cosine Transform, Std 1180-1990, December 6, 1990.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

120 © ISO/IEC 2002 – All rights reserved

NOTE 1 Clause 2.3 Std 1180-1990 “Considerations of Specifying IDCT Mismatch Errors” requires the specification of
periodic intra-picture coding in order to control the accumulation of mismatch errors. Every macroblock is required to be
refreshed before it is coded 132 times as predictive macroblocks. Macroblocks in B-pictures (and skipped macroblocks in P-
pictures) are excluded from the counting because they do not lead to the accumulation of mismatch errors. This requirement is
the same as indicated in 1180-1990 for visual telephony according to ITU-T Recommendation H.261.

NOTE 2 Whilst the IEEE IDCT standard mentioned above is a necessary condition for the satisfactory implementation of the
IDCT function it should be understood that this is not sufficient. In particular, attention is drawn to the following sentence from
subclause 5.4: “Where arithmetic precision is not specified, such as the calculation of the IDCT, the precision shall be sufficient
so that significant errors do not occur in the final integer values.”

34) Add the following clause B.3 after clause B.2:

"
B.3 Variable length codes for the studio profile

B.3.1 Macroblock type

The properties of the macroblock are determined by the macroblock type VLC according to these tables.

Table AMD1-50 -- Variable length codes for macroblock_type in I-VOPs

macroblock_type VLC code
macroblock_quant

macroblock_motion_forward
macroblock_motion_backward

macroblock_pattern
macroblock_intra

Description
1 0 0 0 0 1 Intra
01 1 0 0 0 1 Intra, Quant

Table AMD1-51 -- Variable length codes for macroblock_type in P-VOPs

macroblock_type VLC code
 macroblock_quant
 macroblock_motion_forward
 macroblock_motion_backward
 macroblock_pattern
 macroblock_intra
 Description
1 0 1 0 1 0 MC, Coded
01 0 0 0 1 0 No MC, Coded
001 0 1 0 0 0 MC, Not Coded
0001 1 0 0 0 0 1 Intra
0001 0 1 1 0 1 0 MC, Coded, Quant
0000 1 1 0 0 1 0 No MC, Coded, Quant
0000 01 1 0 0 0 1 Intra, Quant

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 121

B.3.2 DCT coefficients

Table AMD1-52 -- Variable length codes for dct_dc_size_luminance

Variable length code dct_dc_size_luminance
001110 0
00110 1
0000 2
0010 3
111 4
101 5
011 6
010 7
100 8
110 9
0001 10
0011110 11
00111110 12
001111110 13
0011111110 14
00111111110 15
001111111110 16
0011111111110 17
0011111111111 18

Table AMD1-53 -- Variable length codes for dct_dc_size_chrominance

Variable length code dct_dc_size_chrominance
0000 0
0010 1
111 2
101 3
011 4
010 5
100 6
110 7
0001 8
00110 9
001110 10
0011110 11
00111110 12
001111110 13
0011111110 14
00111111110 15
001111111110 16
0011111111110 17
0011111111111 18

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

122 © ISO/IEC 2002 – All rights reserved

Table AMD1-54-1 — Differential DC additional codes

Additional code Differential DC Size
000000000000000000 to
011111111111111111 *

-131072 to -262143 18

00000000000000000 to
01111111111111111 *

-65536 to -131071 17

0000000000000000 to
0111111111111111 *

-32768 to -65535 16

000000000000000 to
011111111111111 *

-16384 to -32767 15

00000000000000 to
01111111111111 *

-8192 to -16383 14

0000000000000 to
0111111111111 *

-4096 to -8191 13

000000000000 to 011111111111 * -2048 to -4095 12
00000000000 to 01111111111 * -1024 to -2047 11
0000000000 to 0111111111 * -512 to -1023 10
000000000 to 011111111 * -256 to -511 9

00000000 to 01111111 -255 to -128 8
0000000 to 0111111 -127 to -64 7
000000 to 011111 -63 to -32 6

00000 to 01111 -31 to -16 5
0000 to 0111 -15 to -8 4
000 to 011 -7 to -4 3

00 to 01 -3 to -2 2
0 -1 1
 0 0
1 1 1

10 to 11 2 to 3 2
100 to 111 4 to 7 3

1000 to 1111 8 to 15 4
10000 to 11111 16 to 31 5

100000 to 111111 32 to 63 6
1000000 to 1111111 64 to 127 7

10000000 to 11111111 128 to 255 8
100000000 to 111111111 * 256 to 511 9

1000000000 to 1111111111 * 512 to 1023 10
10000000000 to 11111111111 * 1024 to 2047 11

100000000000 to 111111111111 * 2048 to 4095 12
1000000000000 to
1111111111111 *

4096 to 8191 13

10000000000000 to
11111111111111 *

8192 to 16383 14

100000000000000 to
111111111111111 *

16384 to 32767 15

1000000000000000 to
1111111111111111 *

32768 to 65535 16

10000000000000000 to
11111111111111111 *

65536 to 131071 17

100000000000000000 to
111111111111111111 *

131072 to 262143 18

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 123

In cases where dct_dc_size is greater than 8, marked ‘*’ in Table AMD1-54-1, a marker bit is inserted after the
dct_dc_additional_code to prevent start code emulations.

Table AMD1-54-2 — Additional codes for group No.1~6 (zero run length)

Size Additional code zero run length
0 --- 1
1 0 to 1 2 to 3
2 00 to 11 4 to 7
3 000 to 111 8 to 15
4 0000 to 1111 16 to 31
5 00000 to 11111 32 to 63

Table AMD1-54-3 — Additional codes for group No.7~12 (zero run length and +/-1 level)

Size Additional code zero run length level(+1/-1)
6 000000 to 111110 32 to 63 -1
5 00000 to 11110 16 to 31 -1
4 0000 to 1110 8 to 15 -1
3 000 to 110 4 to 7 -1
2 00 to 10 2 to 3 -1
1 0 1 -1
0 --- --- ---
1 1 1 +1
2 01 to 11 2 to 3 +1
3 001 to 111 4 to 7 +1
4 0001 to 1111 8 to 15 +1
5 00001 to 11111 16 to 31 +1
6 000001 to 111111 32 to 63 +1

Table AMD1-54-4 — Additional codes for group No.13~20 (level value)

Size Additional code level value
8 00000000 to 01111111 -255 to -128
7 0000000 to 0111111 -127 to -64
6 000000 to 011111 -63 to -32
5 00000 to 01111 -31 to -16
4 0000 to 0111 -15 to -8
3 000 to 011 -7 to -4
2 00 to 01 -3 to -2
1 0 -1
0 --- ---
1 1 1
2 10 to 11 2 to 3
3 100 to 111 4 to 7
4 1000 to 1111 8 to 15
5 10000 to 11111 16 to 31
6 100000 to 111111 32 to 63
7 1000000 to 1111111 64 to 127
8 10000000 to 11111111 128 to 255

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

124 © ISO/IEC 2002 – All rights reserved

Table AMD1-55 — VLC Table T[0] for intra macroblock

symbol group variable length code

0 0011

1 0010

2 1001110

3 100111101

4 10011110010

5 100111100110

6 1001111001110

7 1000

8 10010

9 011011

10 0110100

11 0110101

12 10011111

13 11

14 000

15 010

16 101

17 0111

18 01100

19 100110

20 1001111000

21 1001111001111

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 125

Table AMD1-56 — VLC Table T[1] for intra macroblock

symbol group variable length code

0 ---

1 ---

2 ---

3 ---

4 ---

5 ---

6 ---

7 ---

8 ---

9 ---

10 ---

11 ---

12 ---

13 ---

14 0

15 10

16 110

17 1110

18 11110

19 111110

20 1111110

21 1111111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

126 © ISO/IEC 2002 – All rights reserved

Table AMD1-57 — VLC Table T[2] for intra macroblock

symbol group variable length code

0 110

1 01110

2 11111

3 0111101

4 011110000

5 01111000111110

6 0111100011111111

7 010

8 100

9 0110

10 1110

11 011111

12 0111100010

13 00

14 101

15 11110

16 01111001

17 01111000110

18 011110001110

19 011110001111110

20 0111100011111110

21 0111100011110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 127

Table AMD1-58 — VLC Table T[3] for intra macroblock

symbol group variable length code

0 10001

1 1001

2 10111

3 1000001

4 1000000000

5 1000000001101111

6 1000000001101110

7 011

8 0100

9 1010

10 10110

11 100000001

12 10000000011010

13 00

14 11

15 0101

16 100001

17 10000001

18 10000000010

19 100000000111

20 100000000110110

21 1000000001100

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

128 © ISO/IEC 2002 – All rights reserved

Table AMD1-59 — VLC Table T[4] for intra macroblock

symbol group variable length code

0 1000110

1 1001

2 11111

3 1111011

4 111101010

5 111101011010110

6 111101011010111

7 110

8 1110

9 100010

10 1000111

11 1111010111

12 11110101101010

13 00

14 01

15 101

16 10000

17 111100

18 11110100

19 11110101100

20 111101011011

21 1111010110100

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 129

Table AMD1-60 — VLC Table T[5] for intra macroblock

symbol group variable length code

0 0000101001

1 00000

2 0000110

3 0000101010

4 000010100010

5 0000101000111100

6 0000101000111101

7 00010

8 0000100

9 00001011

10 00001010000

11 000010100011100

12 000010100011101

13 11

14 01

15 10

16 001

17 00011

18 0000111

19 0000101011

20 000010100011111

21 0000101000110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

130 © ISO/IEC 2002 – All rights reserved

Table AMD1-61 — VLC Table T[6] for intra macroblock

symbol group variable length code

0 11000011110

1 1101

2 11000001

3 1100001110

4 11000011010

5 1100001111111010

6 1100001111111011

7 110001

8 11000000

9 1100001100

10 110000111110

11 11000011111111

12 110000111111100

13 001

14 000

15 01

16 10

17 111

18 11001

19 11000010

20 11000011011

21 1100001111110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 131

Table AMD1-62 — VLC Table T[7] for intra macroblock

symbol group variable length code

0 0011011110

1 00111

2 001100101

3 00110110

4 00110011

5 00110111111110

6 001101111111111

7 0011010

8 001100100

9 0011011101

10 00110111110

11 001101111110

12 001101111111110

13 0010

14 0000

15 11

16 01

17 10

18 0001

19 0011000

20 0011011100

21 0011011111110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

132 © ISO/IEC 2002 – All rights reserved

Table AMD1-63 — VLC Table T[8] for intra macroblock

symbol group variable length code

0 1100000001

1 110001

2 1100000011

3 11000000100

4 11000010

5 11000000101000

6 110000001010011

7 11000001

8 110000110

9 1100001110

10 1100001111

11 110000001011

12 110000001010010

13 1101

14 111

15 001

16 10

17 01

18 000

19 11001

20 1100000000

21 1100000010101

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 133

Table AMD1-64 — VLC Table T[9] for intra macroblock

symbol group variable length code

0 001001011111000

1 0010001

2 0010010110

3 0010011

4 00100001

5 001001011110

6 001001011111011

7 00100100

8 001000001

9 001001010

10 00100101110

11 001001011111001

12 001001011111010

13 00101

14 0011

15 110

16 000

17 10

18 01

19 111

20 001000000

21 0010010111111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

134 © ISO/IEC 2002 – All rights reserved

Table AMD1-65 — VLC Table T[10] for intra macroblock

symbol group variable length code

0 000111101101011

1 0001110

2 00011011

3 1101

4 000111101100

5 00011110110100

6 000111101101010

7 0001100

8 00011010

9 000111100

10 0001111010

11 00011110111

12 0001111011011

13 00000

14 00001

15 1100

16 111

17 001

18 10

19 01

20 00010

21 00011111

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 135

Table AMD1-66 – VLC Table T[11] for intra macroblock

symbol group variable length code

0 010110001111011

1 0101101

2 010110000

3 010110001011

4 0101100011101

5 01011000111100

6 010110001111010

7 010111

8 01011001

9 01011000110

10 010110001010

11 0101100011100

12 0101100011111

13 0100

14 0110

15 01010

16 0111

17 0011

18 0010

19 000

20 1

21 01011000100

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

136 © ISO/IEC 2002 – All rights reserved

Table AMD1-67 — VLC Table T[0] for inter macroblock

symbol group variable length code

0 ---

1 11000

2 11001

3 1101011

4 110101000

5 11010100110

6 1101010011110

7 111

8 011

9 0000

10 0101

11 01001

12 11011

13 10

14 001

15 0001

16 01000

17 110100

18 11010101

19 1101010010

20 110101001110

21 1101010011111

 STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

© ISO/IEC 2002 – All rights reserved 137

Table AMD1-68 — VLC Table T[1] for inter macroblock

symbol group variable length code

0 ---

1 ---

2 ---

3 ---

4 ---

5 ---

6 ---

7 ---

8 ---

9 ---

10 ---

11 ---

12 ---

13 ---

14 0

15 10

16 110

17 1110

18 11110

19 111110

20 1111110

21 1111111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

138 © ISO/IEC 2002 – All rights reserved

Table AMD1-69 — VLC Table T[2] for inter macroblock

symbol group variable length code

0 000

1 00111

2 10111

3 001101

4 00110001

5 00110000110

6 00110000111110

7 100

8 010

9 011

10 0010

11 10110

12 001100000

13 11

14 1010

15 0011001

16 0011000010

17 001100001110

18 001100001111110

19 0011000011111110

20 0011000011111111

21 0011000011110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:20

01
/Amd 1

:20
02

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

