INTERNATIONAL ISO/IEC
STANDARD 14496-2

Second edition
2001-12-01

AMENDMENT 1
2002-02-01

Information technology — Coding of
audio-visual objects —

Part 2:
Visual

AMENDMENT 1; Studio profile

Technologies de l'ipformation — Codage des objets audiovisuels —
Partie 2: Codage visuel
AMENDEMENT 1: Profil du studio

Reference number
ISO/IEC 14496-2:2001/Amd.1:2002(E)

1IEC

© ISO/IEC 2002

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Detalls of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

A

ISO/IEC 2002

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

i © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commissian
form the specialized system for worldwide standardization. National bodies that are members of ISO of 1E(
participate in the development of International Standards through technical committees establishednby th¢
respective organization to deal with particular fields of technical activity. ISO and IEC technical cemmittee
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, i
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO.cand IEC havs
established a joint technical committee, ISO/IEC JTC 1.

D=0 7=

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives; Part 3.

The main task of the joint technical committee is to prepare International Standards.Draft International Standard
adopted by the joint technical committee are circulated to national bodies for voting.(Publication as an Internationg|
Standard requires approval by at least 75 % of the national bodies casting a vote.

o

—

Attention is drawn to the possibility that some of the elements of this Amendment may be the subject of paten
rights. ISO and IEC shall not be held responsible for identifying any or all\such patent rights.

Amendment 1 to International Standard ISO/IEC 14496-2:2001 was prepared by Joint Technical Committes
ISO/IEC JTC 1, Information technology, Subcommittee SC 29\ Coding of audio, picture, multimedia and
hypermedia information.

"

© ISO/IEC 2002 — All rights reserved iii

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Information technology — Coding of audio-visual objects —
Part 2: Visual

AMENDMENT 1: Studio profile

1) Add the following text at the end of ‘Overview of the object based non scalable syntax’ of ‘Introduction?:

In order to preserve the lossless quality, or to restrict the maximum bit count of block data, thé block based DPCM
coding can be used for ISO/IEC 14496-2:2001 Amendment 1 (Studio Profile Amendment).

2) Replace text in ‘Coding of Shapes’ of ‘Introduction’,

In natural video scenes, VOPs are generated by segmentation of the.scene according to some semantic meaning.
For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to a$
alpha plane. The binary alpha plane is coded on a macroblock{basis by a coder which uses the context information,
motion compensation and arithmetic coding.

In natural video scenes, VOPs are generated by segmentation of the scene according to some semantic meaning.
For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to ag
alpha plane. The binary alpha plane-is coded on a macroblock basis by a coder which uses the context information,
motion compensation and arithmetic coding. For high quality applications, the uncompressed binary alpha bloc
coding is used.

3) Add the-following text in ‘Introduction’ following ‘Coding of Shapes’:

Coding*interlaced video

N

Each frame of mterlaced V|deo conS|sts of two fields which are separated by one fleld perlod This part of ISO/IE(,

encoding or field encodlng can be adaptlvely selected on a frame- by-frame basis. Frame encoding is typ|cally
preferred when the video scene contains significant detail with limited motion. Field encoding, in which the second
field can be predicted from the first, works better when there is fast movement.

© ISO/IEC 2002 — All rights reserved 1

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

4) Replace text in ‘Motion representation - macroblocks' of ‘Introduction’,

The choice of 16x16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-
off between the coding gain provided by using motion information and the overhead needed to represent it. Each
macroblock can further be subdivided to 8x8 blocks for motion estimation and compensation depending on the

verhead that can be afforded. In order to encode the highly active scene with higher vop rate, a Reduced

Resolution VOP tool is provided. When this tool is used , the size of the macroblock used for motion compensation
decoding is 32 x 32 pixels and the size of block is 16 x 16 pixels.

Wwith

The choice of 16x16 blocks (referred to as macroblocks) for the motion-compensation unit)is-a result of the trade-
off between the coding gain provided by using motion information and the overhead needed to represent it. Each
macroblock can further be subdivided to 8x8 blocks for motion estimation and compensation depending on the
¢verhead that can be afforded. In order to encode the highly active scene with*higher vop rate, a Reduced
Resolution VOP tool is provided. When this tool is used , the size of the macroblock used for motion compensation
decoding is 32 x 32 pixels and the size of block is 16 x 16 pixels.

In frame encoding, the prediction from the previous reference frame canritself be either frame-based or field-based.

%) Replace text in ‘Chrominance formats’ of ‘Introductior,

[his part of ISO/IEC 14496 currently supports:the 4:2:0 chrominance format.

with

[his part of ISO/IEC 14496-currently supports the 4:2:0 chrominance format.

ISO/IEC 14496-2:2009 Amendment 1 also supports the 4:2:2 and 4:4:4 chorominance formats in addition.

%) Add-the following text in ‘Introduction’ following ‘Chrominance formats’:

RGB color components

ISO/IEC 14496-2:2001 Amendment 1 supports coding of RGB color components. The resolution of each
component shall be identical when input data is treated as RGB color components.

2 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7) Add the following text at the end of ‘Pixel depth’ of ‘Introduction’:

ISO/IEC 14496-2:2001 Amendment 1 supports 8, 10 and 12 bits in luminance and chrominance or RGB planes.

8) Replace subclauses 3.38, 3.82, 3.107, and 3.131 with the following:

3.38

3.82

3.107

3.131

9) Add the following subclauses in clause 3 and renumber the subsequent items.

component: A matrix, block or single sample from one of the three matrices (luminance and two
chrominance or green, blue and red color primaries) that make up a picture.

frame: A frame contains lines of spatial information of a video signal. For progressive video, these line
contain samples starting from one time instant and continuing through successiye-lines to the bottom g
the frame. For interlaced video a frame consists of two fields, a top field and abottom field. One of thesd
fields will commence one field period later than the other.

O—="0"

macroblock: The four 8x8 blocks of luminance data and the two (for 4:2.0 chrominance format), four (fg
4:2:2 chrominance format) or eight (for 4:4:4 chrominance fermat) corresponding 8x8 blocks ¢
chrominance data coming from a 16x16 section of the luminance €omponent of the picture. Macroblock i
sometimes used to refer to the sample data and sometimes_t0tHe coded representation of the sampld
values and other data elements defined in the macroblock-header of the syntax defined in this part o
ISO/IEC 14496. The usage is clear from the context.

= ==

D

picture: Source, coded or reconstructed image data<A source or reconstructed picture consists of threq
rectangular matrices of N-bit numbers representing, the luminance and two chrominance signals or rg
colour signals. A “coded VOP” was defined earlier: For progressive video, a picture is identical to a framg,
while for interlaced video, a picture can refer.to'a frame, or the top field or the bottom field of the fram
depending on the context.

o

A1

3.6 B-field VOP: A field-structure B-VOP.

3.7 B-frame VOP:) A frame structure B-VOP.

3.20 bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially located
immediately below the corresponding line of the top field.

333 coded B-frame: A B-frame VOP or a pair of B-field VOPs that is coded.

3.34 coded frame: A coded frame is a coded I-frame, a coded P-frame or a coded B-frame.

3.35 coded I-frame: An I-frame VOP or a pair of field VOPs that is coded where the first field VOP is an I-
VOP and the second field VOP is an I-VOP or a P-VOP..

3.36 coded P-frame: A P-frame VOP or a pair of field VOPs that is coded.

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

3.42 coded order: The order in which the VOPs are transmitted and decoded. This order is not
necessarily the same as the display order.

3.64 display aspect ratio: The ratio height/width (in spatial measurement units such as centimeters) of the
intended display.

3.66 display process: The (non-normative) process by which reconstructed frames are displayed.

3.85 fast forward playback: The process of displaying a sequence, or parts of a sequence, of \YOPs in
display-order, faster than real-time.

3.86 fast reverse playback: The process of displaying a sequence, or parts of a sequence, of VOPs in the
reverse of display order, faster than real-time.

3.88 field: For an interlaced video signal, a “field” is the assembly of alternate lines of a frame. Therefore
an interlaced frame is composed of two fields, a top field and a bottom field.

3.89 field-based prediction: A prediction mode using only one field of'the reference frame. The predicted
block size is 16x16 luminance samples. Field-based prediction’is not used in progressive frames.

3.90 field period: The reciprocal of twice the frame rate.

3.91 field VOP; field structure VOP: A field structure"VOP is a coded VOP with vop_structure is equal to
“Top field” or “Bottom field”.

3.99 frame-based prediction: A predictioh mode using both fields of the reference frame.

3.102 frame VOP; frame structure VOP: A frame structure VOP is a coded VOP with vop_structure is
equal to “Frame”.

3.103 future reference frame (field): A future reference frame (field) is a reference frame (field) that occurs
at a later time_than the current VOP in display order.

3.113 I-fieldVOP: A field structure I-VOP.

3.114 I-frame VOP: A frame structure I-VOP.

3.147 RGB component: A matrix, block or single sample representing one of the three primary colours. The
symbols used for the rgb signals are Green, Blue and Red.

3.148 P-field VOP: A field structure P-VOP.

3.149 P-frame VOP: A frame structure P-VOP.

4 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

3.171 sample aspect ratio: (abbreviated to SAR). This specifies the relative distance between samples. It is
defined (for the purposes of this specification) as the vertical displacement of the lines of luminance
samples in a frame divided by the horizontal displacement of the luminance samples. Thus its units
are (metres per line) + (metres per sample)

3.182 skipped macroblock: A macroblock for which no data is encoded.

3.192 top field: One of two fields that comprise a frame. Each line of a top field is spatially ‘located
immediately above the corresponding line of the bottom field.

10) Add the following subclause 5.2.9 after subclause 5.2.8:

5.2.9 Definition of next_start_code_studio() function

The next_start_code_studio() function removes any zero bit and zero byte Stuffing and locates the next start code.

next_start_code_studio() { No. of bits | Mnemonic
while ('bytealigned())
zero_bit 1 ‘0
while (nextbits() != ‘0000 0000 0000 0000 2000 0001)
zero_byte 8 ‘0000 0000’
}

This function checks whether the current position is byte aligned. If it is not, zero stuffing bits are present. After thgt
any number of zero stuffing bytes may be\present before the start code. Therefore start codes are always byts
aligned and may be preceded by any nufnber of zero stuffing bits.

14

11) Replace subclause 6/t with the following:

6.1.1 Visual object sequence

Visual object sequence is the highest syntactic structure of the coded visual bitstream.
A visual object sequence commences with a visual object sequence start code which is followed by

profile_and_level_indication, and one or more visual objects coded concurrently. The visual object sequence i$
terminated by a visual_object_sequence_end_code.

At various points in the visual object sequence, a repeat visual_object_sequence_start_code can be inserted for
coded video data. In that case, the repeat visual_object_sequence_start_code shall follow a particular VOP.

When profile_and_level_indication indicates a Studio Profile, StudioVisualObject() shall follow it.

© ISO/IEC 2002 — All rights reserved 5

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

12) Replace subclause 6.1.2 with the following:

6.1.2 Visual object

A visual object commences with a visual_object_start_code and a visual object id, which are followed by a video
object, a still texture object, a mesh object, or an FBA object.

fFor Studio Profiles, only video object type is supported.

13) Replace subclause 6.1.3 with the following:

6.1.3 Video object
A\ video object commences with a video_object_start_code, and is followed byne or more video object layers.
A video object layer commences with video object layer_start _code) which may optionally be followed by

Sroup_of StudioVideoObjectPlane() and then by one or more coded VOPs. The order of the coded frames in the
¢oded bitstream is the order in which the decoder processes them, which is not necessarily the display order.

14) Replace subclause 6.1.3.1 with the following:

6.1.3.1 Progressive and interlaced sequences

[his part of ISO/IEC 14496 deals with gading of both progressive and interlaced sequences.

The sequence, at the output of the decoding process, consists of a series of reconstructed VOPs separated in time
and are readied for display via.the compositor.

For Studio Profiles paticularly, the output of the decoding process for interlaced sequences consists of a series of
a;—:‘constructed fields that are separated in time by a field period. The two fields of a frame may be coded separately

ield-VOPs). Alternatively the two fields may be coded together as a frame (frame-VOPs). Both frame VOPs and
eld VOPs may bé7Used in a single video sequence.

In progressive.sequences each VOP in the sequence shall be a frame VOP. The sequence, at the output of the
decodingfprocess, consists of a series of reconstructed frames that are separated in time by a frame period.

15) Replace subclause 6.1.3.2 with the following :

6.1.3.2 Frame

A frame consists of three rectangular matrices of integers; a luminance matrix (Y), and two chrominance matrices
(Cb and Cr).

6 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The relationship between these Y, Cb and Cr components and the primary (analogue) Red, Green and Blue
Signals (E’R, E’G and E’B), the chromaticity of these primaries and the transfer characteristics of the source frame
may be specified in the bitstream (or specified by some other means). This information does not affect the
decoding process.

For Studio Profiles particularly, the three rectangular matrices can be the primary RGB colour matrices.

16) Add the following subclause in subclause 6.1.3 and renumber the subsequent items
6.1.3.3 Field
A field consists of every other line of samples in the three rectangular matrices of integers representing a frame.

A frame is the union of a top field and a bottom field. The top field is the field that contains the top-most line of each
of the three matrices. The bottom field is the other one.

17) Replace subclause 6.1.3.3 with the following:

6.1.3.3 VOP
A reconstructed VOP is obtained by decoding a coded VOP. A coded VOP may have been derived from a
progressive or interlaced frame or an interlaced field: A reconstructed VOP is either a reconstructed frame (when

decoding a frame VOP), or one field of a reconstructed frame (when decoding a field VOP).

An I-frame VOP or a pair of field VOPs, where the first field VOP is an I-picture and the second field VOP is an |
VOP or a P-VOP, is called a coded I-frame.

A P-frame VOP or a pair of P-field VOPs is called a coded P-frame.

A B-frame VOP or a pair of B-field VOPs is called a coded B-frame.

A coded I-frame, a coded P-frame or a coded B-frame is called a coded frame.
6.1.1.4.1 Field VOPs

If field VOPs<are used, then they shall occur in pairs (one top field followed by one bottom field, or one bottom field

followed by-one top field) and together constitute a coded frame. The two field VOPs that comprise a coded fram
shall be-encoded in the bitstream in the order in which they shall occur at the output of the decoding process.

D

When-the first VOP of the coded frame is a P-field VOP, then the second VOP of the coded frame shall also be a
P-field VOP. Similarly when the first VOP of the coded frame is a B-field VOP the second VOP of the coded framg

shall alea ha o R _finld \/O\D
oo oot —oB1Teia—v o

When the first VOP of the coded frame is a I-field VOP, then the second VOP of the frame shall be either an I-field
VOP or a P-field VOP. If the second VOP is a P-field VOP, then certain restrictions apply (see 7.16.7.4.5).

© ISO/IEC 2002 — All rights reserved 7

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.1.1.4.2 Frame VOPs

When coding interlaced sequences using frame VOPs, the two fields of the frame shall be interleaved with one
another and then the entire frame is coded as a single frame-VOP.

18) Replace the following text in subclause 6.1.3.5,

1) the modulo part (i.e. the full second units) of the time base for the next VOP after the GOV theader in
display order

with

1) the modulo part (i.e. the full second units) of the time base for the next*VOP after the GOV header in
display order. For Studio Profiles particularly, SMPTE 12M time code“information that is not used by the
decoding process.

19) Replace the following text in subclause 6.1.3.6,

6.1.3.6 Format

In this format the Cb and Cr matrices shall be-onhe half the size of the Y-matrix in both horizontal and vertical
dimensions. The Y-matrix shall have an evennémber of lines and samples.

The luminance and chrominance samples are positioned as shown in Figure 6-1.The two variations in the vertical
and temporal positioning of the samplgs;for interlaced VOPs are shown in Figure 6-2 and Figure 6-3.

fFigure 6-4 shows the vertical and‘temporal positioning of the samples in a progressive frame.

8 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

X X1 X Xi1X XiX X
® e e e
X X1 X Xi1X XiX X

AV4 ! AV4 ! AV4 ! AV4 AV4
O e e e
X XX XiX XiX X
-------- r—-———---r—-—-—=-=-=---p—-—-=----
X XX XiX XiX X
O ! O ! O ! O
X X 1 X X 1 X X 1 X X
X Represent luminance samples
O Represent chrominance samples

Figure 6-1 — The position of luminance and chrominahce samples in 4:2:0 data

Top Bottom
Field Field
X
O
X
X
O
X
X
O
X
X
O
—_—
time

Figure 6-2 — Vertical and temporal positions of samples in an interlaced frame with top_field_first=1

© ISO/IEC 2002 — All rights reserved 9

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Bottom Top
Field Field
X
O
X
X
O
X
X
O
X
X
O
_—
time

Figure 6-3 — Vertical and temporal position of samples in an interlaced frame with top_field_first=0

Frame

XOX XOX

X O X

X
©)

10

X

—_——
time

Figure 6-4 — Vertical and temporal positions of samples in a progressive frame

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The binary alpha plane for each VOP is represented by means of a bounding rectangle as described in clause F.2,
and it has always the same number of lines and pixels per line as the luminance plane of the VOP bounding
rectangle. The positions between the luminance and chrominance pixels of the bounding rectangle are defined in
this clause according to the 4:2:0 format. For the progressive case, each 2x2 block of luminance pixels in the
bounding rectangle associates to one chrominance pixel. For the interlaced case, each 2x2 block of luminance
pixels of the same field in the bounding rectangle associates to one chrominance pixel of that field.

In order to perform the padding process on the two chrominance planes, it is necessary to generate a binary alpha

plane which has the same number of lines and pixels per line as the chrominance planes. Therefore, when nen
scalable shape coding is used, this binary alpha plane associated with the chrominance planes is created from'thée
binary alpha plane associated with the luminance plane by the subsampling process defined below:

For each 2x2 block of the binary alpha plane associated with the luminance plane of the bounding rectangle (of th¢
same frame for the progressive and of the same field for the interlaced case), the associated pixél value of the
binary alpha plane associated with the chrominance planes is set to 255 if any pixel of said 2x2 block of the binar
alpha plane associated with the luminance plane equals 255.

O—

6.1.3.6 Format

6.1.3.6.1 4:2:0 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertica
dimensions. The Y-matrix shall have an even number of linessand samples.

If the matrices represent RGB colour primary matrices, this 4:2:0 format shall not be applied.

NOTE — When interlaced frames are coded as rectangular field VOPs , the VOP reconstructed from each of these field VOP!
shall have a Y-matrix with half the number of lines of the corresponding frame. Thus the total number of lines in the Y-matrix g
an entire frame shall be divisible by four.

oy

=~

The luminance and chrominance samples are positioned as shown in Figure 6-1.The two variations in the verticq|
and temporal positioning of the samples-for interlaced VOPs are shown in Figure 6-2 and Figure 6-3.

Figure 6-4 shows the vertical and temporal positioning of the samples in a progressive frame.
In each field of an interlaced-frame, the chrominance samples do not lie (vertically) mid way between the luminanct

samples of the field. This is so that the spatial location of the chrominance samples in the frame is the sam
whether the frame is represented as a single frame-VOP or two field-VOPs.

oD

© ISO/IEC 2002 — All rights reserved 11

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

X X1 X X1 X XiX X
® e e e
X X1 X X1 X XiX X

AV4 AV4 ! AV4 ! AV4 ! AV4 AV4
O e e e
X XX XX XiX X
-------- r———=----"r--—--=-=--pFp—-=-----
X XX XX XiX X
O ! O ! O ! O
X X 1 X X 1 X X 1 X X
X Represent luminance samples
@) Represent chrominance samples

Figure 6-1 — The position of luminance and chrominance samples in 4:2:0 data

Top Bottom
Field Field
X
O
X
X
O
X
X
O
X
X
O
S

time

12

Figure 6-2 — Vertical and temporal positions of samples in an interlaced frame with top_field_first=1

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Bottom Top
Field Field
X
O
X
X
O
X
X
O
X
X
O
_—
time

Figure 6-3 — Vertical and temporal position of samples in an interlaced frame with top_field_first=0

Frame

X
O
X

X O X

X O X

X
©)

X

—_——
time

Figure 6-4 — Vertical and temporal positions of samples in a progressive frame

© ISO/IEC 2002 — All rights reserved 13

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The binary alpha plane for each VOP is represented by means of a bounding rectangle as described in clause F.2,
and it always has the same number of lines and pixels per line as the luminance plane of the VOP bounding
rectangle. The positions between the luminance and chrominance pixels of the bounding rectangle are defined in
this clause according to the 4:2:0 format. For the progressive case, each 2x2 block of luminance pixels in the
bounding rectangle associates to one chrominance pixel. For the interlaced case, each 2x2 block of luminance
pixels of the same field in the bounding rectangle associates to one chrominance pixel of that field.

In order to perform the padding process on the two chrominance planes, it is necessary to generate a binary alpha

plane which has the same number of lines and pixels per line as the chrominance planes. Therefore, when non-
gcalable shape coding is used, this binary alpha plane associated with the chrominance planes is created from.the
binary alpha plane associated with the luminance plane by the subsampling process defined below:

For each 2x2 block of the binary alpha plane associated with the luminance plane of the bounding rectangle (of the
same frame for the progressive and of the same field for the interlaced case), the associated pixel value of the

inary alpha plane associated with the chrominance planes is set to 255 if any pixel of said 2x2 block of the binary
Ipha plane associated with the luminance plane equals 255.

6.1.3.6.2 4:2:2 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix.in the horizontal dimension and the
game size as the Y-matrix in the vertical dimension. The Y-matrix shall have/an-eéven number of samples.

If the matrices represent RGB colour primar matrices, this 4:2:2 format shall'not be applied.

INOTE — When interlaced frames are coded as rectangular field VOPs, the \WOP reconstructed from each of these field VOPs
ghall have a Y-matrix with half the number of lines of the correspondingtframe. Thus the total number of lines in the Y-matrix of
an entire frame shall be divisible by two.

The luminance and chrominance samples are positioned as‘shown in Figure AMD1-1.

In order to clarify the organisation, Figure AMD1-2 shows the (vertical) positioning of the samples when the frame
ip separated into two fields.

B OX® X ® X' X
-------- Fr---~-~-~--F~-~-~-=-=-=--p-=-=---
BoX 1 ® X1 ® Xi1® X
-------- Fr---~-~-~--F~-~-~-=-=-=--p-=-=---
B X1 ® X1 ® Xi1® X
-------- Fr---~-~-~--F~-~-~-=-=-=--p-=-=---
B X1 ® X1 ® Xi1® X
-------- Fr---~-~-~--F~-~-~-=-=-=--p-=-=---
B X1 ® X1 ® Xi1® X
-------- Fr---~-~-~--F~-~-~-=-=-=--p-=-=---
b.v.d AV4 ! b.v.d AV4 ! XX AV4 ! XX AV4
Ly /N 1 Ly /N 1 X /N 1 X N\
X Represent luminance samples
O Represent chrominance samples

Figure AMD1-1 — The position of luminance and chrominance samples. 4:2:2 data.

14 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Frame Fild el
® 5
= =
® 5
® ®
® 5
® ®
®)
® ®

Figure AMD1-2 — Vertical positions of samples with 4:2:2 and 4:4:4 data

6.1.3.6.3 4:4:4 Format

In this format the Cb and Cr matrices shall‘be the same size as the Y-matrix in the horizontal and the vertical

dimensions.

If the matrices are treated as RGB-colour primary matrices, the matrices shall follow this format.

NOTE — When interlaced frames*are coded as field rectangular VOPs, the VOP reconstructed from each of these field VOP
shall have a Y-matrix with halfithe number of lines of the corresponding frame. Thus the total number of lines in the Y-matrix g

an entire frame shall be divisible by two.

The luminance and chrominance samples are positioned as shown in Figures AMD1-2 and AMD1-3.

oY

B

© ISO/IEC 2002 — All rights reserved

15

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

B B B & & BB B K
B B B & & BB B ¥
B B B B & B B X
B B B B & B B X
B B B B & B B X
X Represent luminance samples
@) Represent chrominance samples

Figure AMD1-3 — The position of luminance and chrominance samples. 4:4:4 data.

20) Replace the following text in subclause 6.1.3.8,

A macroblock contains a section of the luminanee component and the spatially corresponding chrominance
¢omponents. The term macroblock can either réfer to source and decoded data or to the corresponding coded
data elements. A skipped macroblock is one for' which no information is transmitted. Presently there is only one
¢hrominance format for a macroblock, namely, 4:2:0 format. The orders of blocks in a macroblock is illustrated
below:

A 4:2:0 Macroblock consists of 6 blacks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is
depicted in Figure 6-5.

o1
213
Y Cb Cr

4 5

Figure 6-5 — 4:2:0 Macroblock structure

The organisation of VOPs into macroblocks is as follows.

fFor'the case of a progressive VOP, the interlaced flag (in the VOP header) is set to “0” and the organisation of

lines of Tuminance VOP into macroblocks is called frame organization and is illusirated in Figure 6-6. In this case,
frame DCT coding is employed.

For the case of interlaced VOP, the interlaced flag is set to “1” and the organisation of lines of luminance VOP into

macroblocks can be either frame organization or field organization and thus both frame and field DCT coding may
be used in the VOP.

16 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

¢ In the case of frame DCT coding, each luminance block shall be composed of lines from two fields alternately.
This is illustrated in Figure 6-6.

e In the case of field DCT coding, each luminance block shall be composed of lines from only one of the two
fields. This is illustrated in Figure 6-7.

Only frame DCT coding is applied to the chrominance blocks. It should be noted that field based predictions may
be applied for these chrominance blocks which will require predictions of 8x4 regions (after half-sample filtering)

==
==

Figure 6-6 — Luminance macroblock structure in frame DCT coding

Figure 6-7 — Luminance macroblock structure in field DCT coding

with

Afmacroblock contains a section of the luminance component and the spatially corresponding chrominance
components. The term macroblock can either refer to source and decoded data or to the corresponding coded

data elements. A skipped macroblock is one for which no information is transmitted. I'here are three chrominance
formats for a macroblock, namely, 4:2:0, 4:2:2 and 4:4:4 formats. The order of blocks in a macroblock shall be
different for each different chrominance format and are illustrated below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is
depicted in Figure 6-5.

© ISO/IEC 2002 — All rights reserved 17

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

o1
213
Y Cb Cr

4 5

Figure 6-5 — 4:2:0 Macroblock structure

A 4:2:2 Macroblock consists of 8 blocks. This structure holds 4 Y, 2 Cb and 2 Cr Blocks and the block ordercis
depicted in Figure AMD1-4.

0! 4 5
213 6 7
Y Cb Cr

Figure AMD1-4 — 4:2:2 Macroblock structure

A\ 4:4:4 Macroblock consists of 12 blocks. This structure holds 4 Y, 4 Cb and 4 Cr)or4 G, 4 B and 4 R) Blocks and
the block order is depicted in Figure AMD1-5.

0] 1 418 50 9
213 6110 7111
Y/G Cb/B Cr/R

Figure AMD1-5 — 4{4:4 Macroblock structure

In frame VOPs, where both frame and fieldcDCT coding may be used, the internal organisation within the
macroblock is different in each case.

¢ In the case of frame DCT coding, each block shall be composed of lines from two fields alternately. This is
illustrated in Figure 6-6.

¢ In the case of field DCT coding, each block shall be composed of lines from only one of the two fields. This is
illustrated in Figure 6-7.

In the case of chrominance blocks the structure depends upon the chrominance format that is being used. In the

¢ase of 4:2:2 and 4:4:4 formats (where there are two blocks in the vertical dimension of the macroblock) the

¢hrominance blocks)are treated in exactly the same manner as the luminance blocks. However, in the 4:2:0 format

the chrominanee blocks shall always be organised in frame structure for the purposes of DCT coding. It should
owever be ngted that field based predictions may be made for these blocks which will, in the general case, require
at predictions for 8x4 regions (after half-sample filtering) must be made.

In field{pictures, each picture only contains lines from one of the fields. In this case each block consists of lines
ken from successive lines in the picture as illustrated by Figure 6-6.

18 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

==

__

Figure 6-6 — Luminance macroblock structure in frame DCT coding

Figure 6-7 — Luminance*macroblock structure in field DCT coding

21) Add the following subclause'6:1.3.10 after subclause 6.1.3.9:

6.1.3.10 Field
A field consists of.every other line of samples in the three rectangular matrices of integers representing a frame.

A frame isthe-union of a top field and a bottom field. The top field is the field that contains the top-most line of
each of the~three matrices. The bottom field is the other one.

Only,when profile_and_level_indication indicates the studio profile, a coded VOP may be a frame VOP or a field
VOP. A reconstructed VOP is either a reconstructed frame (when decoding a frame VOP), or one field of
reconstructed frame (when decoding a field VOP).

v

6.1.3.10.1 Field VOPs
If field VOPs are used then they shall occur in pairs (one top field followed by one bottom field, or one bottom field

followed by one top field) and together constitute a coded frame. The two field VOPs that comprise a coded frame
shall be encoded in the bitstream in the order in which they shall occur at the output of the decoding process.

© ISO/IEC 2002 — All rights reserved 19

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

When the first VOP of the coded frame is a P-field VOP, then the second VOP of the coded frame shall also be a
P- field VOP. Similarly when the first VOP of the coded frame is a B-field VOP the second VOP of the coded frame
shall also be a B-field VOP.

When the first VOP of the coded frame is a I-field VOP, then the second VOP of the frame shall be either an |-field
VOP or a P-field VOP. If the second VOP is a P-field VOP then certain restrictions apply,.

6.1.3.10.2 Frame VOPs

Vhen coding interlaced sequences using frame VOPs, the two fields of the frame shall be interleaved with one
another and then the entire frame is coded as a single frame-VOP.

22) Add the following subclauses 6.1.3.11 after subclause 6.1.3.10:

.1.3.11 Slice

slice is a series of an arbitrary number of consecutive macroblocks. (The first and last macroblocks of a slice
hall not be skipped macroblocks. Every slice shall contain at least oné-macroblock. Slices shall not overlap. The
osition of slices may change from picture to picture.

The first and last macroblock of a slice shall be in the same horizontal row of macroblocks.
$lices shall occur in the bitstream in the order in which they.are encountered, starting at the upper-left of the picture

nd proceeding by raster-scan order from left to right and-top to bottom (illustrated in the Figures of this clause as
Iphabetical order).

6.1.3.11.1 The general slice structure

In the most general case it is not pecessary for the slices to cover the entire picture. Figure AMD1-6 shows this
¢ase. Those areas that are not enclosed in a slice are not encoded and no information is encoded for such areas
in the specific picture).

If the slices do not cover the entire picture then it is a requirement that if the picture is subsequently used to form
redictions then predictions shall only be made from those regions of the picture that were enclosed in slices. It is
the responsibility of theyeéncoder to ensure this.

This specification does not define what action a decoder shall take in the regions between the slices.

20 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

]
\

—
|

Ry

Figure AMD1-6 — The most general slice strum‘\&‘e

6.1.3.11.2 Restricted slice structure O\\Q/

In certain defined levels of defined profiles a restricted slice struc
this case every macroblock in the picture shall be enclosed in a s

Y
<&
?\
SN

%here a defined level of a defined profile requires that the slice structure obeys the restrictions detailed in thig

_&-—
, ////////%W///////

i

s
o ////////////%V/////////////
e

Figure AMD1-7 — Restricted slice structure.

’&é&%strated in Figure AMD1-7 shall be used. In

clause, the term “restricted slice structure™ may be used.

© ISO/IEC 2002 — All rights rese

rved

21

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

23) Add the following text in subclause 6.2.1 before paragraph 5 (after Table 6-2):

Only when profile_and_level_indication indicates a studio profile, byte alignment shall be achieved by inserting bits
with the value zero before the start code prefix such that the first bit of the start code prefix is the first (most

significant) bit of a byte.

l

24) Replace Table 6-3 in subclause 6.2.1 with the following:

Table 6-3 — Start code values

name

start code value
(hexadecimal)

video_object_start_code

00 throughF

video_object_layer_start_code

20 through 2F

reserved

30'through AF

visual_object_sequence__start code

BO

visual_object_sequence_end_code

B1

user_data_start code

B2

group_of vop_start_code

B3

video_session_error_code

B4

visual_object_start_code

B5

vop_start_code

B6

slice_start_code

B7

extension_start_code

B8

reserved

B9

fba_object_start_cade

BA

fba_object _plané-start_code

BB

mesh_objeet start_code

BC

mesh_object plane_start_code

BD

still_téxture_object_start_code

BE

texture_spatial_layer_start_code

BF

texture_snr_layer_start_code

CO

texture_tile_start_code

C1

texture_shape_layer_start_code

C2

reserved

C3-C5

System start codes (see Note)

C6 through FF

NOTE — System start codes are defined in ISO/IEC 14496-1:1999.

22

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

25) Replace VisualObjectSequence() in subclause 6.2.2 with the following:

VisualObjectSequence() {

No. of bits

Mnemonic

do {

visual object sequence start code

32

bslbf

profile_and_level_indication

uimsbf

if (profile_and_level_indication ==
11100001-11101000) {

next_start code_studio()

extension_and_user_data(0)

StudioVisualObject()

}else {

while (next_bits() == user_data_start_code) {

user_data()

}

VisualObject()

}

} while (nextbits() =
visual_object_sequence_end_code)

visual_object_sequence_end_code

32

bslbf

26) Add the following subclause 6.2.13 after subclause 6.2.12:

6.2.13 Studio Video Object

6.2.13.1 Studio Visual Object

StudioVisualObject() {

No. of bits

Mnemonic

visual_object:start_code

32

bslbf

visual_object_verid

4

uimsbf

visual_object_type

4

uimsbf

next_start_code_studio()

éxtension_and_user_data(1)

if (visual_object_type == “video ID“) {

video_object_start_code

32

bslbf

StudioVideoObjectLayer()

}else {

[* Other visual object types are not supported in

StudioVisualObject() */

© ISO/IEC 2002 — All rights reserved

23

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.2 Extension and user data

extension_and_user_data(i) { No. of bits | Mnemonic

while ((next_bits() == extension_start_code) ||
(next_bits() == user_data_start_code)) {
if ((i==2]]i==4) &&
(next_bits() == extension start code))

extension_data(i)
if (next_bits() == user_data_start_code)
user_data_studio()

24 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.2.1 Extension data

extension_data(i) {

No. of bits

Mnemonic

while (next_bits()== extension_start_code) {

extension_start_code

32

bslbf

/* NOTE - i never takes the value 0
because extension_data() is never called in

a VisualObjectSequence() */

/* NOTE - i never takes the value 1
because extension_data() is never called in
a StudioVisualObject() */

if (i == 2) {/* Called in StudioVideoObjectLayer() */

if (next_bits()== “Sequence Display Extension ID”)

sequence_display_extension()

else if (next_bits() == “Quant Matrix Extension ID”)

quant_matrix_extension()

else if (nextbits() == “VLC Code Extension ID”)

vlc_code_extension()

}

/* NOTE - i never takes the value 3
because extension_data() is never called
in a Group_of_StudioVideoObjectPlane()\/

if (i ==4) {/* Called in VideoObjectPlane() */

if (nextbits() == “Quant Matrix Extension\D”)

quant_matrix_extension()

else if (nextbits() == “Copyright .Extension ID”)

copyright_extension()

else if (nextbits() == “Picture Display Extension ID”)

picture_display_extension()

else if(nextbits() ==¥Camera Prameters Extension
ID!Y)

camera_parameters_extension()

else if (nextbits() == “ITU-T Extension ID”)

ITU-T_extension()

elsenif-(nextbits() == “VLC Code Extension ID”)

vlc_code_extension()

6.2.13.2.2'User data Studio

user_data_studio() {

No. of bits

Mnemonic

laYa)

[y | 4

ser—data—start o
o _ n_Louc

(o r4

|925719))

while(next_bits() != ‘0000 0000 0000 0000 0000 0001) {

user_data

uimsbf

}

next_start code_studio()

© ISO/IEC 2002 — All rights reserved

25

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.2.3 Sequence display extension

sequence_display_extension() { No. of bits | Mnemonic
extension_start_code_identifier 4 uimsbf
video_format 3 uimsbf
video_range 1 bslbf
colour description 1 uimsbf
if (colour_description) {
colour_primaries 8 uimsbf
transfer_characteristics 8 uimsbf
matrix_coefficients 8 uimsbf
}
display_horizontal_size 14 uimsbf
marker_bit 1 bslbf
display_vertical_size 14 timsbf
next_start code_studio()
}
6.2.13.2.4 Quant matrix extension
quant_matrix_extension() { No. of bits | Mnemonic
extension_start_code_identifier 4 uimsbf
load_intra_quantiser_matrix 1 uimsbf
if (load_intra_quantiser_matrix)
intra_quantiser_matrix[64] 8*64 uimsbf
load_non_intra_quantiser_matrix 1 uimsbf
if (load_non_intra_quantiser_matrix)
non_intra_quantiser_matrix[64] 8*64 uimsbf
load_chroma_intra_quantiser-matrix 1 uimsbf
if (load_chroma_intra_quantiser _matrix)
chroma_intra_quantiser_matrix[64] 8*64 uimsbf
load_chroma_non_intra_quantiser_matrix 1 uimsbf
if (load_chroma_non: intra_quantiser_matrix)
chroma_non*intra_quantiser_matrix[64] 8*64 uimsbf
if (video_object layer shape == ‘grayscale’) {
for(i=0;.i<aux_comp_count; i++) {
load_intra_quantiser_matrix_grayscale][i] 1 uimsbf
if (load_intra_quantiser_matrix_grayscale][i])
intra_quantiser_matrix_grayscale [i][64] 8*64 uimsbf
load_non_intra_quantiser_matrix_grayscale[i] 1 uimsbf
if (load_non_intra_quantiser_matrix_grayscalel[i])
non_intra_quantiser_matrix_grayscale [i][64] 8*64 uimsbf
J
}
next_start code_studio()
}

26 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

6.2.13.2.5 Picture display extension

ISO/IEC 14496-2:2001/Amd.1:2002(E)

picture_display_extension() { No. of bits | Mnemonic
extension_start_code_identifier 4 uimsbf
for (i=0; i<number_of frame_centre_offsets; i++) {
frame_centre_horizontal_offset 16 simsbf
marker_bit 1 bslbf
frame_centre_vertical_offset 16 simsbf
marker_bit 1 bslbf
}
next_start code_studio()
}
6.2.13.2.6 Copyright extension
copyright_extension() { No. of-bits | Mnemonic
extension_start_code_identifier 4 uimsbf
copyright_flag 1 uimsbf
copyright_identifier 8 uimsbf
original_or_copy 1 uimsbf
reserved 7 bslbf
marker_bit 1 bslbf
copyright_number_1 20 uimsbf
marker_bit 1 bslbf
copyright_number_2 22 uimsbf
marker_bit 1 bslbf
copyright_number_3 22 uimsbf

next_start code_studio()

© ISO/IEC 2002 — All rights reserved

27

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.2.7 Camera Parameters extension

camera_parameters_extension() { No. of bits | Mhemonic
extension_start_code_identifier 4 uimsbf
reserved 1 uimsbf
camera_id 7 simsbf
marker—bit ! bsibt
height_of_image_device 22 uimsbf
marker_bit 1 bslbf
focal_length 22 uimsbf
marker_bit 1 bslbf
f_number 22 uimsbf
marker_bit 1 bslIbf
vertical_angle_of_view 22 uimsbf
marker_bit 1 bslbf
camera_position_x_upper 16 simsbf
marker_bit 1 bslbf
camera_position_x_lower 16
marker_bit 1 bslbf
camera_position_y_upper 16 simsbf
marker_bit 1 bslbf
camera_position_y_lower 16
marker_bit 1 bslbf
camera_position_z_upper 16 simsbf
marker_bit 1 bslbf
camera_position_z_lower 16
marker_bit 1 bslbf
camera_direction_x 22 simsbf
marker_bit 1 bslbf
camera_direction_y 22 simsbf
marker_bit 1 bslbf
camera_direction_z 22 simsbf
marker_bit 1 bslbf
image_plane_vertical_x 22 simsbf
marker)bit 1 bslbf
image_plane_vertical_y 22 simsbf
marker_bit 1 bslbf
image_plane_vertical_z 22 simsbf
marker_bit 1 bslbf
reserved 32 bslbf
next_start_code_studio()

28

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

6.2.13.2.8 ITU-T extension

ISO/IEC 14496-2:2001/Amd.1:2002(E)

ITU-T extension () { No. of bits | Mnemonic
extension_start_code_identifier 4 uimsbf
while (nextbits() !="0000 0000 0000 0000 0000 0001") {

ITU-T_data 1 bslbf
}
next_start code_studio()

}

NOTE - The construct with the while-statement prevents start code emulation.

6.2.13.2.9 VLC code extension

vlc_code_extension() { No. of bits ([|Mnemonic
extension_start_code_identifier 4 uimsbf
load_vic_code 4 uimsbf
if (load_intra_vic_code == 1) {

for (j=0; j< 12; j++) {
for (i=0; i< 22; i++) {
Intra_vic_length[j][i] 4 uimsbf
Intra_vic_codel[j][i] 16 uimsbf
}
}
!
if (load_inter_vlc_code == 1) {
for (j=0; j< 12; j++) {
for (i=0; i< 22; i++) {
inter_vlc_length[jifi] 4 uimsbf
inter_vlc_code[j][i] 16 uimsbf
}
}
!
next_start_code_studio()
}
6.2.13.3 Studio-Video Object Layer
StudioVideoObjectLayer() { No. of bits | Mhemonic
video_object_layer_start_code 32 bslbf
random_accessible_vol 1 bslbf
video_object_type_indication 8 uimsbf
Vvideo_object_layer_verid Z aimsof
video_object_layer_shape 2 uimsbf
video_object_layer_shape_extension 4 uimsbf
progressive_sequence 1 bslbf
if (video_object_layer _shape != “binary only”) {
rgb_components 1 uimsbf
chroma_format 2 uimsbf

© ISO/IEC 2002 — All rights reserved

29

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

30

bits_per_pixel 4 uimsbf
}
if (video_object_layer_shape == “rectangular”) {
marker_bit 1 bslbf
video_object_layer_width 14 uimsbf
marker_bit 1 bslbf
videt::obj'ectjay'er:h'eight T4 timrsbf
marker_bit 1 bslbf
}
aspect_ratio_info 4 uimsbf
if (aspect_ratio_info == “extended_PAR”) {
par_width 8 uimsbf
par_height 8 uimsbt
}
frame_rate_code 4 uimsbf
first_half_bit_rate 15 uimsbf
marker_bit 1 bslbf
latter_half_bit_rate 15 uimsbf
marker_bit 1 bslbf
first_half_vbv_buffer_size 15 uimsbf
marker_bit 1 bslbf
latter_half_vbv_buffer_size 3 uimsbf
first_half_vbv_occupancy 11 uimsbf
marker_bit 1 blsbf
latter_half_vbv_occupancy 15 uimsbf
marker_bit 1 blsbf
low_delay 1 uimsbf
mpeg2_stream 1 uimsbf
if (video_object_layer_shape =="grayscale”) {
for(i=0; i<aux_comp_count; i++) {
alpha_bits_per.pixel[i] 4 uimsbf
minimum_alpha_level[i] 12 uimsbf
maximum_alpha_level[i] 12 uimsbf
}
composition_method 1 bslbf
linear_composition 1 bslbf
}
if (video_object_layer_shape != “binary only”) {
sprite_enable 1 bslbf
if (sprite_enable) {
sprite_width 20 uimsbf
marker_bit 1 bslbf
SPFi-tO:h-Oi-gh"' 20 wimshf
marker_bit 1 bslbf
sprite_left_coordinate 20 uimsbf
marker_bit 1 bslbf
sprite_top_coordinate 20 uimsbf
marker_bit 1 bslbf
no_of_sprite_warping_points 6 uimsbf

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

sprite_warping_accuracy 2 uimsbf
sprite_brightness_change 1 bslbf
sprite_defocusing 1 bslbf
sprite_lens_distortion 1 bslbf
}
}
ITAL_Sldlil_LUUCT__StUUIUY)
extension_and_user_data(2)
if (sprite_enable)
StudioVideoObjectPlane()
do {
if (next_bits() == group_of vop_start_code)
Group_of StudioVideoObjectPlane()
StudioVideoObjectPlane()
} while ((next_bits()== group_of_vop_start_code)
|| (next_bits() == vop_start_code))
}
6.2.13.4 Group of Studio Video Object Plane
Group_of_StudioVideoObjectPlane() { No. of bits | Mnemonic
group_vop_start_codes 32 bslbf
time_code_smpte12m 64
closed_gov 1 bslbf
broken_link 1 bslbf
next_start code_studio()
extension_and_user_data(3)
}
6.2.13.5 Studio Video Object Plahe
StudioVideoObje¢tPlane() { No. of bits | Mnemonic
vop_start_code 32 bslbf
time_code_smpte12m 64
temporal_reference 10 bslbf
vop_structure 2 uimsbf
vop_coding_type 2 uimsbf
vop_coded 1 bslbf
if (vop_coded =="0") {
next_start_code_studio()
extension_and_user_data(4)
return()
}
if (video_object_layer_shape != “rectangular”) {
if (!(sprite_enable && vop_coding_type == “I)) {
vop_width 14 uimsbf
marker_bit 1 bslbf
vop_height 14 uimsbf

© ISO/IEC 2002 — All rights reserved

31

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

marker_bit 1 bslbf
vop_horizontal_mc_spatial_ref 14 simsbf
marker_bit 1 bslbf
vop_vertical_mc_spatial_ref 14 simsbf
}
}
top—fietd—first 4 bstbf
repeat_first_field 1 bslbf
progressive_frame 1 bslbf
if (vop_coding_type =="I")
intra_predictors_reset 1 bslbf
}
if (video_object layer _shape != “binary only”) {
alternate_scan 1 bslbf
frame_pred_frame_dct 1 bslbf
dct_precision 2 uimsbf
intra_dc_precision 2 uimsbf
g_scale_type 1 bslbf
if ((vop_coding_type !="I")
&& !(sprite_enable && vop_coding_type =="S")) {
vop_fcode[0][0] 4 uimsbf
vop_fcode[0][1] 4 uimsbf
vop_fcode[1][0] 4 uimsbf
vop_fcode[1][1] 4 uimsbf
dead_zone_disable 1 bslbf
}
}
if (video_object_layer_shape == “grayscale”) {
for(i=0; i<aux_comp_count\N#+) {
alpha_dct_precision[i] 2 uimsbf
alpha_intra_dc.'precision[i] 2 uimsbf
alpha_q_scale_typeli] 1 bslbf
}
}
if (sprite_ehable && vop_coding_type == “S”) {
if (Mo sprite_points > 0)
sprite_trajectory()
if (sprite_brightness_change)
vop_sprite_brightness_change 1 bslbf
if (vop_sprite_brightness_change)
brightness_change_factor()
if (sprite_defocusing)
defocusing r~nn+rnl()
if (sprite_lens_distortion)
lens_distortion_parameter()
next_start code_studio()
return()
}
composite_display_flag 1 bslbf

32

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

if (composite_display_flag) {

ISO/IEC 14496-2:2001/Amd.1:2002(E)

v_axis 1 bslbf
field_sequence 3 uimsbf
sub_carrier 1 bslbf
burst_amplitude 7 uimsbf
sub_carrier_phase 8 uimsbf
T
while (nextbits() == 1") {
extra_bit_picture /* with the value ‘1" */ 1 uimsbf
extra_information_picture 8 uimsbf
}
extra_bit_picture /* with the value ‘0’ */ 1 uimsbf,
next_start code_studio()
extension_and_user_data(4)
do {
StudioSlice()
} while (nextbits() == slice_start_code)
}
6.2.13.6 Studio sprite coding
sprite_trajectory() { No. of bits | Mnemonic
for (i=0; i < no_of sprite_warping_points; i++) {
warping_mv_code(duli])
warping_mv_code(dv][i])
}
}
warping_mv_code(d) { No. of bits | Mnemonic
dmv_length 2-19 uimsbf
if (dmv_length !="00’)
dmv_code 1-21 uimsbf
marker_bit 1 bslbf
}
brightfiess_change_factor() { No. of bits | Mnemonic
brightness_change_factor_size 1-4 uimsbf
brightness_change_factor_code 5-10 uimsbf
}
defocusing_control() { No. of bits | Mnemonic
defocusing_control_parameter 9-12 uimsbf
marker_bit 1 bslbf

© ISO/IEC 2002 — All rights reserved

33

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

lens_distortion_parameter() { No. of bits | Mnemonic
lens_distortion_parameter_1 16 bslbf
marker_bit 1 bslbf
lens_distortion_parameter_2 16 bslbf
marker_bit 1 bslbf
lens_center_horizontal 14 bslbf
marker—bit 4 bstbf
lens_center_vertical 14 bslbf
marker_bit 1 bslbf
}
6.2.13.7 Studio Slice
StudioSlice() { No. of bits {,Mnemonic
slice_start_code 32 uimsbf
macroblock_number 1-14 viclbf
if (video_object_layer _shape != “binary only”)
quantiser_scale_code 5 uimsbf
if(video_object_layer_shape=="grayscale”)
for(i=0; i<aux_comp_count; i++)
alpha_quantiser_scale_codeJi] 5 uimsbf
if (nextbits() == 1) {
slice_extension_flag 1 bslbf
intra_slice 1 uimsbf
slice_VOP_id_enable 1 uimsbf
slice_VOP_id 6 uimsbf
while (nextbits() == 1) {
extra_bit_slice 1 uimsbf
extra_information_slice 8 uimsbf
}
}
extra_bit_slice 1 uimsbf
do {
StudioMacroblock()

} whiléOnext_bits() != ‘000 0000 0000 0000 0000 0000’)

next start_code_studio()

34

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.8 Studio Macroblock

StudioMacroblock() { No. of bits | Mnemonic
if (vop_coding_type !=“B”) {
if (video_object_layer_shape != “rectangular”)
Studio_mb_binary_shape_coding ()

i (vidao - obiect lavaer cshana l= “hinarvy anh/” \ [
HHEE80—8pjeet—rayer—SHape— o St

'''' P4 PAAL
if (transparent_mb()) {
if (vop_coding_type != “I")
not_coded 1 bslbf
if (vop_coding_type == “I" || Inot_coded) {
compression_mode 1 bslbf

if (compression_mode == "DCT") { /* DCT
*/

StudioMacroblock _modes()
if (macroblock _quant)
quantiser_scale_code 5 uimsbf
if (macroblock _motion_forward)
motion_vectors(0)
if (macroblock_pattern)
coded_block_pattern()
for (i = 0; i < block_count; i++)
if('transparent_block(i))
StudioBlock(i)
}/* -end- DCT */
else {/* DPCM */
dpcm_scan_order 1 bslbf
StudioDPCMBIock() // Y or G
StudioDPCMBlock() // U or B
StudioDPCMBIock() // V or R
} /¥ -end-"DPCM */

}
if(video,_object_layer_shape=="grayscale”
&& ltransparent_mb()) {
for (j=0 ; j<aux_comp_count ; j++) {
if(macroblock_intra ||
compression_mode == "DPCM") {

coda_i[j] 1 bslbf
if(coda_i[j]J=="coded”) {
alpha_compression_mode[j] 1 bslbf
if(alpha_compression_mode[jl== "DCT") {
alpha_macroblock_quant[j] 1 bslbf
if (alpha_macroblock_quant[j])
alpha_quantiser_scale_code][j] 5 uimsbf

for(i=0;i<alpha_block _count;i++)
if(transparent_block(i))
StudioAlphaBlock(j,i)

© ISO/IEC 2002 — All rights reserved 35

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

} I* -end- DCT */

else {/* DPCM */

alpha_dpcm_scan_orderf[j]

bslbf

StudioDPCMBIock() // alpha block

} /* -end- DPCM */

}

hY 1 Lok ot ol 1 L
S I /7 TMCT TTaCblODIUCUR 7

coda_pblj]

1-2

viclbf

if(coda_pblj]=="coded”){

alpha_compression_mode([j]

bslbf

if(alpha_compression_mode[j]== "DCT")

{

cbpalij]

1-6

viclbf

if (cbpa[j] '= ‘no DCT coeff’) {

alpha_macroblock_quant[j]

bslbf

if (alpha_macroblock quant[j])

alpha_quantiser_scale_code[j]

uimsbf

}

for(i=0 ;i<alpha_block count ;i++)

if(!transparent_block(i))

StudioAlphaBlock(j,i)

} else {

alpha_dpcm_scan_order]j]

bslbf

StudioDPCMBIlock(j) // Alpha

}

} /* -end- inter */

} I* -roop- aux_comp_count */

} I* -end- grayscale */

}

NOTE The value of block_countis 6 in the 4:2:0 format. The value of alpha_block_count is 4.

6.2.13.8.1 Studio MB Binary-Shape Coding

36

Studio_mb_binary_shape_coding () { No. of bits | Mhemonic
bab type 1-6 viclbf
if.(vop_coding_type =="'P'{

if (bab_type == 1){
mvs_Xx 1-18 viclbf
mvs_y 1-18 viclbf
}
!
if (bab_type ==4) {
inferior_symbol_macroblock 1 bslbf
cbbp 3-7 viclbf
for (i=0: i<4; i++){
if (coded_binary_block_pattern[i]=="1")}

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

inferior_symbol_block 1 bslbf
scan_direction 1 bslbf
backward_load_flag 1 bslbf
clp 3-24 viclbf
for (j=0; j<8; j++){
if (coded_line_pattern[j]=="1")
thp 4+=23 victbf
}
}
}
}
}
6.2.13.8.2 Studio Macroblock modes
StudioMacroblock_modes() { No. of bits | Mnemonic
macroblock_type 1:9 viclbf
if (macroblock_motion_forward) {
if (vop_structure == frame’) {
if (frame_pred_frame_dct==0)
frame_motion_type 2 uimsbf
} else {
field_motion_type 2 uimsbf
}
}
if ((vop_structure == “Frame picture’-) &&
(frame_pred_frame_dct == 09 &&
(macroblock_intra || macoblock_pattern)){
dct_type 1 uimsbf
}
}
6.2.13.8.3 Motion vectors
motion_vectors (s) { No. of bits | Mnemonic
if (motion_vector_count == 1) {
if (mv_format == field)
motion_vertical_field_select[0][s] 1 uimsbf
motion_vector(0, s)
} else {
motion_vertical_field_select[0][s] 1 uimsbf
motion_vector(0, s)
motion_vertical_ftield_select[T][S] T aimsDbr

motion_vector(1, s)

© ISO/IEC 2002 — All rights reserved

37

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.8.4 Motion vector

38

motion_vector (r, s) { No. of bits | Mnemonic
motion_code[r][s][0] 1-11 viclbf
if ((vop_fcode[s][0] = 1) && (motion_code]r][s][0] '=0))
motion_residual[r][s][0] 1-8 uimsbf
motion_code[r][s][1] 1-11 viclbf
if ((vop_fcode[s][1] = 1) && (motion_code]r][s][1] =0))
motion_residual[r][s][1] 1-8 uimsbf
}
6.2.13.8.5 Coded block pattern
coded_block_pattern () { No. of bits | Mnemonic
coded_block_pattern_420 3-9 viclbf
if (chroma_format == 4:2:2))
coded_block_pattern_1 2 uimsbf
if (chroma_format == 4:4:4)
coded_block_pattern_2 6 uimsbf
}
6.2.13.9 Studio Block
The detailed syntax for the term “DCT coefficient” is fully’described in clause 7.
StudioBlock(i) { No. of bits | Mnemonic
if (pattern_code[i]) {
if (macroblock_intra) {
if (i<4){
dct_dc_size_luminance 2-14 viclbf
if(dct_dc_size: luminance != 0)
dct(dc_differential 1-15 viclbf
if (det_dc_size_luminance > 8)
marker_bit 1 bslbf
} else’{
dct_dc_size_chrominance 2-15 viclbf
if(dct_dc_size_chrominance !=0)
dct_dc_differential 1-15 viclbf
if (dct_dc_size_chrominance > 8)
marker_bit 1 bslbf
}
}else {
First DCT coefficient 224 VICTOT
}
while (next_bits() !'= End of block)
Subsequent DCT coefficients 3-24 viclbf
End of block 3-15 vicfbf

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.2.13.9.1 Studio Alpha Block

The syntax for DCT coefficient decoding is the same as for block(i) in 6.2.13.9.

StudioAlphaBlock(j, i) { No. of bits | Mnemonic
last =0
if (alpha_pattern_code[j]fil) {

if (macroblock _intra ||
compression_mode == "DPCM") {

dct_dc_size_alpha 2-14 viclbf
if(dct_dc_size alpha !=0)
dct_dc_differential 1-15 viclbf
if (dct_dc_size_alpha > 8)
marker_bit 1 bslibf
}else {
First DCT coefficient 2-24 vicfbf
}
while (next_bits() != End of block)
Subsequent DCT coefficients 3-24 viclbf
End of block 3-15 vicfbf

6.2.13.10 Studio DPCM Block

StudioDPCMBIlock() { No. of bits | Mnemonic
block_mean 8-12 uimsbf
rice_parameter 4 uimsbf

for(i=0 ;i<8 or 16 ; i++) {
for(j=0 ;j<8 or 16;j++){

rice_prefix_code 1-12 viclbf
if (rice_prefix_code == ‘0000 0000 0001’)

dpcm_residual 4-12 uimsbf
else

rice_suffix_code 0-12 uimsbf

27) Add the following text at the end of subclause 6.3.1:

Only when profile_and_level_indication indicates a studio profile, extension layers can be inserted in the bitstream.
At each point where extensions are allowed in the bitstream any number of the extensions from the defined
allowable set may be included. However each type of extension shall not occur more than once.

© ISO/IEC 2002 — All rights reserved 39

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

In the case that a decoder encounters an extension with an extension identification that is described as “reserved”
in this specification the decoder shall discard all subsequent data until the next start code. This requirement allows
future definition of compatible extensions to this specification.

Table AMD1-1 — extension_start_code_identifier codes.

extension_start_code_identifier | Name

0000 [Teserved
0001 | reserved
0010 | Sequence Display Extension ID
0011 | Quant Matrix Extension ID
0100 | Copyright Extension ID
0101 | VLC code Extension ID
0110 | reserved
0111 | Picture Display Extension ID
1000 - 1010 | reserved
1011 | Camera Parameters ExtensioniD
1100 | ITU-T extension ID
1101 | reserved

1111 | reserved

28) Add the following subclause 6.3.13 after subclause 6.3.12:

6.3.13 Studio Video Object

6.3.13.1 Studio Visual Object

visual_object_start_code: The visual object'start code is the bit string ‘000001B5’ in hexadecimal. It identifies
the beginning of a visual object header.

visual_object_verid: This is a 4-bit code which identifies the version number of the visual object. Its meaning is
defined in Table AMD1-2.

Table AMD1-2 -- Meaning of visual_object_verid

visual“object_verid Meaning

0000 reserved

0001 object type listed in Table 9-1

0010 object type listed in Table V2-39
0011 reserved

0100 object type listed in Table AMD1-48
0101 — 1111 reserved

visual_object_type: The visual_object_type is a 4-bit code given in Table AMD1-3 which identifies the type of the
visual object.

40 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-3 -- Meaning of visual object type

code visual object type
0000 reserved

0001 video ID

0010 still texture ID
0011 mesh ID

0100 face ID

0101 reserved

1111 reserved

A4

video_object_start_code: The video_object_start code is a string of 32 bits. The first 27 bits are ‘0000 000
0000 0000 0000 0001 000° in binary and the last 5-bits represent one of the values'in the range of ‘00000’ t¢
‘11111’ in binary. The video_object_start_code identifies the beginning of a video objecbheader.

6.3.13.2 Extension and user data Studio

6.3.13.2.1 Extension data

D

extension_start_code: The extension_start_code is the bhit\string ‘000001B8’ in hexadecimal. It identifies the
beginning of extensions.

6.3.13.2.2 User data Studio

N7

user_data_start_code: The user_data_start_code is the bit string ‘000001B2’ in hexadecimal. It identifies th¢
beginning of user data. The user data continues until receipt of another start code.

user_data: This is an 8 bit integer, an arbitrary number of which may follow one another. User data is defined b
users for their specific applications. In the series of consecutive user_data bytes there shall not be a string of 23 o
more consecutive zero bits.

=<

6.3.13.2.3 Sequence display extension

1”2

This specification does not define the display process. The information in this extension does not affect th
decoding process andymay be ignored by decoders that conform to this specification.

extension_start~code_identifier: This is a 4-bit integer which identifies the extension. See Table AMD1-1.
video_format: This is a three bit integer indicating the representation of the pictures before being coded in

accordance with this specification. Its meaning is defined in Table AMD1-4. If the sequence_display_extension() i$
not present in the bitstream then the video format may be assumed to be “Unspecified video format”.

© ISO/IEC 2002 — All rights reserved 41

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-4 -- Meaning of video_format

video_format | Meaning
000 component
001 PAL
010 NTSC
011 SECAM
100 MAC
101 Unspecified video format
110 reserved
111 reserved

video_range: This one-bit flag indicates the black level and range of the luminance and chrorhinance signals. In
the case that sequence_display_extension() is not present in the bitstream, video_range isc@ssumed to have the
alue 0 (arange of Y from 16 to 235 for 8-bit video).

¢olour_description: A flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics
and matrix_coefficients in the bitstream.

¢olour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined
ih Table AMD1-5.

42 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-5 -- Colour Primaries

Value Primaries
0 (forbidden)
1 Recommendation ITU-R BT.709
primary X y
green 0,300 0,600
blue 0,750 0,060
red 0,640 0,330
white D65 0,3127 0,3290
2 Unspecified Video
Image characteristics are unknown.
3 reserved
4 Recommendation ITU-R BT.470-2 System M
primary X y
green 0,21 0,71
blue 0,14 0,08
red 0,67 0,33
white C 0,310 0,316
5 Recommendation ITU-R BT.470-2 System B, G
primary X y
green 0,29 0,60
blue 0,15 0,06
red 0,64, ‘0,33
white D65 0,313+ 0,329
6 SMPTE 170M
primary X y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3290
7 SMPTE 240M (1987)
primary X y
green 0,310 0,595
blue 0,155 0,070
red 0,630 0,340
white D65 0,3127 0,3291
8 Generic film (colour filters using llluminant C)
primary X y
green 0,243 0,692 (Wratten 58)
blue 0,145 0,049 (Wratten 47)
red 0,681 0,319 (Wratten 25)
9-255 reserved

In the case that sequence_display_extension() 1S not present In the biistream or colour_description IS zero ihe
chromaticity is assumed to be that corresponding to colour_primaries having the value 1.

© ISO/IEC 2002 — All rights reserved 43

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source
picture, and is defined in Table AMD1-6.

Table AMD1-6 -- Transfer Characteristics

Value Transfer Characteristic
0 (forbidden)
1 Recommendation ITU-R BT 709

V = 1,009 L:0:45 - 0,099
for1>L,>0,018

V =4,500 L.
for 0,018> L >0
2 Unspecified Video
Image characteristics are unknown.
3 reserved
4 Recommendation ITU-R BT.470-2 System M
Assumed display gamma 2,2
5 Recommendation ITU-R BT.470-2 System'B, G
Assumed display gamma 2,8
6 SMPTE 170M

V = 1,099 L.0:45 - 0,099
for1>L,>0,018
V=4,500 L.
for 0,018> k¢ =0
7 SMPTE 240M (1987)
V=1,1115L£045_0,1115
for L; > 0,0228
V=401,
for 0,0228> L
8 Linear transfer characteristics
i.e.V=L¢
9 Logarithmic transfer characteristic (100:1
range)
V =1.0-Log1(Lc)/2
for 1= L, = 0.01
V=10.0
for 0.01> L

10 Logarithmic transfer characteristic (316.22777:1
range)
V =1.0-Log1g(Lc)/2.5

for 1= L, = 0.0031622777

V=0.0
for 0.0031622777> L

11-255 reserved

44 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

In the case that sequence_display_extension() is not present in the bitstream or colour_description is zero the

transfer characteristics are assumed to be those corresponding to transfer_characteristics having the value 1.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and

chrominance signals from the green, blue, and red primaries, and is defined in Table AMD1-7.

In this table:

NOTE -

E’y is analogue with values between 0 and 1

E’pB and E’pR are analogue between the values -0,5 and 0,5

E'R, E'G and E'g are analogue with values between 0 and 1

White is defined as E'y=1, E'pg=0, E'PR=0; E'R =E'G =E'B=1.

Y, Cb and Cr are related to E’y, E'pB and E’pR by the following formulae:
if video_range=0:

Y =(219* 2" *E'y) + 2™

Cb=(224*2"*EpR)+2""

Cr=(224*2"%*EpR)+ 2"
if video_range=1:

Y=(2"-1)*EY)

Cb=(2"-1)*E'pg) + 2"

Cr=((2"-1)*E'pRr) +2""

for n bit video.

For example, for 8 bit video,

video_range=0 gives a range of Yfrom 16 to 235, Cb and Cr from 16 to 240;

video_range=1 gives a range-of Y from 0 to 255, Cb and Cr from 0 to 255.

The decoding_process given by this specification limits output sample values for Y, Cr and Cb to th
range [0:255]. Thus sample values outside the range implied by the above equations may occasionally occur 3
the output of the decading process. In particular the sample values 0 and 255 may occur.

Y%

—

© ISO/IEC 2002 — All rights reserved

45

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-7 -- Matrix Coefficients

Value Matrix
0 (forbidden)
1 Recommendation ITU-R BT.709

E'y = 0,7154 E'g + 0,0721 E'g + 0,2125 E'R
E'pg = -0,386 E', + 0,500 E'g -0,115 E'R

E'pR = -0,454 E'g - 0,046 E'g + 0,500 E'R

2 Unspecified Video

Image characteristics are unknown.
3 reserved

4 FCC

Ey=059Eg+0,11E'g+0,30ER

E'pg =-0,331 E'g + 0,500 E'g -0,169 E'R
E'pR = -0,421 E'g - 0,079 E'g + 0,500 E'R

5 Recommendation ITU-R BT.470-2 System. B,
G

E'y = 0,587 E'g + 0,114 E'g + 0,299E'R
E'pg =-0,331 E'g + 0,500 E'g -0;169 E'R
E'pr =-0,419 E'g - 0,081 E'g+-0,500 E'R

6 SMPTE 170M
E'y =0,587 E'g + 0,114 E'g + 0,299 E'R

E'pg = -0,331 E'g# 0,500 E'g -0,169 E'R
E'pR =-0,419 E{g - 0,081 E'g + 0,500 E'R

7 SMPTE 240M (1987)
E'y =0,701 E'g + 0,087 E'g + 0,212 E'R

E'pg'=-0,384 E'g + 0,500 E'g -0,116 E'R
E'pr =-0,445E'g - 0,055 E'g + 0,500 E'R
8-255 reserved

In the case that sequence_display_extension() is not present in the bitstream or colour_description is zero the
matrix coefficients are assumed to be those corresponding to matrix_coefficients having the value 1.

display_horizontal_size: See display_vertical_size.

isplay_vertical-Size: display_horizontal_size and display_vertical_size together define a rectangle which may be
onsidered as’the “intended display’s” active region. If this rectangle is smaller than the encoded frame size then
e display_process may be expected to display only a portion of the encoded frame. Conversely if the display
ectanglelig larger than the encoded frame size then the display process may be expected to display the

econstructed frames on a portion of the display device rather than on the whole display device.

isplay horizontal size shall be in the same units as horizontal size (samples of the encoded frames).

display_vertical_size shall be in the same units as vertical_size (lines of the encoded frames).

display_horizontal_size and display_vertical_size do not affect the decoding process but may be used by the
display process that is not standardised in this specification.

46 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.2.4 Quant matrix extension

Each quantisation matrix has a default set of values. When a video_object_start_code is decoded all matrices shall
be reset to their default values. User defined matrices may be downloaded and this can occur in a
quant_matrix_extension().

With 4:2:0 data only two matrices are used, one for intra blocks the other for non-intra blocks.

With 4:2:2 or 4:4:4 data four matrices are used. Both an intra and a non-intra matrix are provided for hath
luminance blocks and for chrominance blocks. Note however that it is possible to download the same user defined
matrix into both the luminance and chrominance matrix at the same time.

The default matrix for intra blocks (both luminance and chrominance) is:

8 17 18 19 21 23 25 27
17 18 19 21 23 25 27 28
20 21 22 23 24 26 28 30
21 22 23 24 26 28 30 32
22 23 24 26 28 30 32 35
23 24 26 28 30 32 35 38
25 26 28 30 32 35 38 4
27 28 30 32 35 38 41 {45

The default matrix for non-intra blocks (both luminance and chrominance) is:

16 17 18 19 20-<21 22 23
17 18 19 20 @1V 22 23 24
18 19 20 210022 23 24 25
19 20 21 227 23 24 26 27
20 21 22323 25 26 27 28
21 22 23 24 26 27 28 30
22 23724 26 27 28 30 31
23,24 25 27 28 30 31 33

load_intra_quantiser_matrix: Thisis a one-bit flag which is set to ‘1’ if intra_quantiser_matrix follows. If it is set tp
‘0’ then there is no change in the values that shall be used.

intra_quantiser_matrix:\This is a list of sixty-four 8-bit unsigned integers. The new values, encoded in the default
zigzag scanning order ‘as described in 7.16.4.2.1, replace the previous values. The first value shall always be 8
(values 1 to 7 and-9.to 255 are reserved). For all of the 8-bit unsigned integers, the value zero is forbidden. With
4:2:2 and 4:4:4 data the new values shall be used for both the luminance intra matrix and the chrominance intra
matrix. However the chrominance intra matrix may subsequently be loaded with a different matrix except when
rgb_component is set to "1".

load_non_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if non_intra_quantiser_matrix follows. If
it istset to ‘0’ then there is no change in the values that shall be used.

ld C X d Q XLV-10UI ©-D Al) dlu J

default zigzag scanning order as described in 7.16.3.2.1, replace the previous values. For all the 8-bit unsigned
integers, the value zero is forbidden. With 4:2:2 and 4:4:4 data the new values shall be used for both the
luminance non-intra matrix and the chrominance non-intra matrix. However the chrominance non-intra matrix may
subsequently be loaded with a different matrix.

load_chroma_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1’ if chroma_intra_quantiser_matrix
follows. If it is set to ‘0’ then there is no change in the values that shall be used. If chroma_format is “4:2:0” or
rgb_components is set to '1', this flag shall take the value ‘0’.

© ISO/IEC 2002 — All rights reserved 47

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

chroma_intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded in
the default zigzag scanning order as described in 7.16.4.2.1, replace the previous values. The first value shall
always be 8 (values 1 to 7 and 9 to 255 are reserved). For all of the 8-bit unsigned integers, the value zero is
forbidden.

load_chroma_non_intra_quantiser_matrix: This is a one-bit flag which is set to ‘1" |if
chroma_non_intra_quantiser_matrix follows. If it is set to ‘0’ then there is no change in the values that shall be
used. If chroma format is “4:2:0” or rgb_components is set to '1' this flag shall take the value ‘0’.

¢hroma_non_intra_quantiser_matrix: This is a list of sixty-four 8-bit unsigned integers. The new values, encoded
in the default zigzag scanning order as described in 7.16.4.2.1, replace the previous values. For all the"8-bit
yinsigned integers, the value zero is forbidden.

load_intra_quantiser_matrix_grayscale[i]: This is a one-bit flag which is set_de" ‘1" |if
intra_quantiser_matrix_grayscale][i] follows. If it is set to ‘0’ then there is no change in the values that 'shall be used.

intra_quantiser_matrix_grayscaleli]: This is a list of sixty-four 8-bit unsigned integers defining.the grayscale intra
Ipha quantisation matrix to be used. The semantics and the default quantisation matrix @re‘identical to those of
intra_quantiser_matrix.

load_non_intra_quantiser_matrix_grayscale[i]: This is a one-bit flag \\which is set to ‘1" if
on_intra_quantiser_matrix_grayscale][i] follows. If it is set to ‘0’ then there is no change in the values that shall be
sed.

on_intra_quantiser_matrix_grayscale[i]: This is a list of sixty-four) 8-bit unsigned integers defining the
rayscale nonintra alpha quantisation matrix to be used. The semantics and the default quantisation matrix are
identical to those of nonintra_quantiser_matrix.

.3.13.2.5 Picture display extension

This specification does not define the display process:JThe information in this extension does not affect the
decoding process and may be ignored by decoders that,conform to this specification.

The picture display extension allows the position of the display rectangle whose size is specified in
gequence_display extension() to be moved.on a picture-by-picture basis. One application for this is the
implementation of pan-scan.

rame_centre_horizontal_offset: This|is a 16-bit signed integer giving the horizontal offset in units of 1/16th
ample. A positive value shall indicate that the centre of the reconstructed frame lies to the right of the centre of
e display rectangle.

rame_centre_vertical_offset: This is a 16-bit signed integer giving the vertical offset in units of 1/16th sample. A
ositive value shall indicate-that the centre of the reconstructed frame lies below the centre of the display rectangle.

The dimensions of the display rectangular region are defined in the sequence display extension(). The
¢oordinates of the fegion within the coded picture are defined in the picture_display_extension().

The centre ‘of-the reconstructed frame is the centre of the rectangle defined by video object layer width and
ideo_object layer_height.

$ince_ (in the case of an interlaced sequence) a coded VOP may relate to one, two or three decoded fields the
picture_display extension() may contain up to three offsets.

48 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The number of frame centre offsets in the picture_display_extension() shall be defined as follows:
if (progressive_sequence == 1) {
if (repeat_first_field ==‘1") {

if (top_field_first == “1")

number_of frame_centre_offsets = 3
else
number_of frame_centre offsets = 2
}else {
number_of frame_centre_offsets = 1
}
} else {
if (vop_structure == “field”) {
number_of frame_centre offsets = 1
}else {
if (repeat_first_field ==‘1")
number_of frame_centre_offsets;= 3

else

number_of frame_centr&Joffsets = 2

1

A picture_display_extension() shall not occur unless a sequence display extension() followed the
StudioVideoObject().

In the case that @ given picture does not have a picture_display_extension() then the most recently decoded fram¢
centre offsetishall be used. Note that each of the missing frame centre offsets have the same value (even if two o
three frame centre offsets would have been contained in the picture_display_extension() had been present).
Following a StudioVisualObject() the value zero shall be used for all frame centre offsets until a
picture_display_extension() defines non-zero values.

D

© ISO/IEC 2002 — All rights reserved 49

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Figure AMD1-8 illustrates the picture display parameters. As shown the frame centre offsets contained in the
picture_display_extension() shall specify the position of the centre of the reconstructed frame from the centre of the
display rectangle.

NOTES -

1 The display rectangle may also be larger than the reconstructed frame.

2 Even in a field VOP the frame_centre_vertical_offset still represents the offset of the centre of the frame in
1/16ths of a frame line (not a line in the field).

3 In the example of Figure AMD1-8 both frame_centre_horizontal_offset and frame_centre_vertical_offset have
negative values.

frame centre -
horizontal offset

frame centre - :
vertical offset display -
vertical size

Reconstructed Frame

display horizontal size

Figure AMD1-8 -- Frame centre offset parameters

Pan-scan

The frame centre offsets may be used-to implement pan-scan in which a rectangular region is defined which may
e panned around the entire reconstructed frame.

By way of example only; this facility may be used to identify a 3/4 aspect ratio window in a 9/16 coded VOP format.
his would allow a decoderto produce usable VOPs for a conventional definition television set from an encoded
format intended for enhanced definition. The 3/4 aspect ratio region is intended to contain the “most interesting”
egion of the VOP.

he 3/4 region is defined by display_horizontal_size and display_vertical_size. The 9/16 frame size is defined by
ideo_object_laten width and video_object_layer_height.

6.3.13.2.6,Copyright extension

¢opyright_flag: This is a one bit flag. When copyright_flag is set to ‘1’, it indicates that the source video material
ncoded in all the coded plctures following the copyrlght extension, in codlng order up to the next copyrlght

copyrlghted work. When copyright_1 flag is set to ‘0, |t does not indicate whether the source video materlal encoded
in all the coded pictures following the copyright extension, in coding order, is copyrighted or not.

copyright_identifier: This is a 8-bit integer given by a Registration Authority as designated by ISO/IEC
JTC1/SC29. Value zero indicates that this information is not available. The value of copyright_number shall be
zero when copyright_identifier is equal to zero.

50 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

When copyright_flag is set to ‘0’, copyright_identifier has no meaning and shall have the value 0.

original_or_copy: This is a one bit flag. It is set to ‘1’ to indicate that the material is an original, and set to ‘0’ to
indicate that it is a copy.

reserved: This is a 7-bit integer, reserved for future extension. It shall have the value zero.

copyright number 1: This is a 20-bit integer, representing bits 44 to 63 of copyright number.

copyright_number_2: This is a 22-bit integer, representing bits 22 to 43 of copyright_number.
copyright_number_3: This is a 22-bit integer. representing bits 0 to 21 of copyright_number.

copyright_number: This is a 64-bit integer, derived from copyright number_1, copyright number 2, and
copyright_number_3 as follows:

copyright_number = (copyright_number_1 << 44) + (copyright_number_2 << 22) + copyright ~number_3.

)

The meaning of copyright number is defined only when copyright_flag is set to ‘1'(~/1n this case, the value o
copyright_number identifies uniquely the copyrighted work marked by the copyrighted extension. The value 0 fo
copyright_number indicates that the identification number of the copyrighted work|is not available.

=

When copyright_flag is set to ‘0’, copyright number has no meaning and shalhave the value 0.

6.3.13.2.7 Camera parameters extension
camera_id — The number in camera_id identifies a camera.

height_of_image_device — This is a 22-bit unsigned integerwhich specifies the height of image device. Its valug
shall be measured to a resolution of 0,001 millimeter and*having a range of zero to 4 194,303 mm.

A1

focal_length — This is a 22-bit unsigned integer which specifies the focal length. Its value shall be measured to a
resolution of 0,001 millimeter and having a range*of zero to 4 194,303 mm.

f_number - This is a 22-bit unsigned\integer which specifies the F-number. F-number is defined b
(focal_length)/(effective aperture of lens)~lts value shall be measured to a resolution of 0,001and having a range g
zero to 4 194,303.

—_

vertical_angle_of_view — This is a 22-bit unsigned integer which specifies the vertical angle of the field of view a
determined between the top,and bottom edges of the image device. Its value shall be measured to a resolution g
0,0001 degree and having.a:range of zero to 180 degrees.

o

==

D

camera_position_x_upper, camera_position_y_upper, camera_position_z_upper — These words constituts
the 16 most signifieant bits of camera_position_x, camera_position_y and camera_position_z respectively.

D

camera_position_x_lower, camera_position_y_lower, camera_position_z_lower — These words constitute thg
16 least significant bits of camera_position_x, camera_position_y and camera_position_z respectively.

© ISO/IEC 2002 — All rights reserved 51

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

camera_position_x, camera_position_y, camera_position_z — A set of these values specifies the position of the
optical principal point of the camera in a user-specified world coordinate system. Each of these values shall be
measured to a resolution of 0,001 millimeter and having a range of +2 147 483,647 mm to —2 147 483,648 mm.
The camera_position_x is a 32-bit signed (two’s complement) integer, the 16 least significant bits are defined in
camera_position_x_lower, the 16 most significant bits are defined in camera_position_x upper. The
camera_position_y is a 32-bit signed (two’s complement) integer, the 16 least significant bits are defined in
camera_position_y lower, the 16 most significant bits are defined in camera_position_y upper. The
camera_position z is_a 32-bit_signed (two’s complement) integer, the 16 least significant bits are defined in

amera_position_z_lower, the 16 most significant bits are defined in camera_position_z_upper.

amera_direction_x, camera_direction_y, camera_direction_z — A set of these values specifies the direction’of
e camera. The direction of the camera is defined by using the vector from optical principal point to a point which
in front of the camera and is on the optical axis of the camera. Each of these values is a 22-bit signed (two’s
omplement) integer and having a range of +2 097 151 to —2 097 152.

age_plane_vertical_x, image_plane_vertical_y, image_plane_vertical_z — A set of these values specifies the
pper direction of the camera. The upper direction of the camera is defined by using the vector.which is parallel to
e side edge of the image device and is from bottom edge to top edge. Each of these valu€s is a 22-bit signed
wo’s complement) integer and is having a range of +2 097 151 to —2 097 152.

fFigure AMD1-9 explains these terms pictorially.
image plane vertical
\ vertical angle of view
ry image plane
camera direction (image device)
optical axis / "\ height of
. devi
effective aperture of lens v Image device
lens optical principal point
(= camera position)
Ya
> X
image plane vertical
T1605290-98/d01
z camera direction ~ €a@mera position
Figure AMD1-9 -- Camera parameters

6.3.13.2.8 ITU-T extension

The use of this extension is defined in Annex A of ITU-T Recommendation H.320.

52 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.2.9 VLC code extension
load_vlc_code: This is a four bit integer indicating the presence of downloadable VLC codes for quantised AC

coefficients. The value of load_intra_vic_code and load_inter_vic_code is derived from this code. Semantics are
defined in the Table AMD1-8.

Table AMD1-8 -- Meaning of load_vlc_code

load_vlc_code Meaning
0000 forbidden
0001 load_intra_vic_code =1
load_inter_vic_code =0
0010 load_intra_vic_code =0
load_inter_vic_code =1
0011 load_intra_vic_code =1
load_inter_vic_code =1
0100 — 1111 reserved

If load_intra_vic_code is set to ‘“1°, the VLC codes defined in Table AMD1-55 to Table AMD1-66 shall be replaced
with the codes indicated by intra_vic_length[j][i] and intra_vic_code[j][i]. If:itds set to ‘0’, there is no change in Tabl¢
AMD1-55 to Table AMD1-66.

174

If load_inter_vic_code is set to ‘1’, the VLC codes defined in Table AMD1-67 to Table AMD1-78 shall be replaced
with the codes indicated by inter_vic_length[j][i] and inter_vic_gode[j][i]. If it is set to ‘0’, there is no change in Tabl¢
AMD1-67 to Table AMD1-78.

14

intra_vic_length[j][i]: This is a four bit unsigned integer.indicating the length of the VLC code of the entry No. i in
the Table No. j, which is defined in Table AMD1-55 to\Fable AMD1-66. The actual length is intra_vic_length[j][i]+1|
The length of each VLC code in each table shall be’limited to less than 17. The length of the VLC code of entry
No.21 in each table shall also be limited less than\14.

intra_vic_code[j][i]: This is a 16 bit unsigned integer indicating the VLC code of the entry No. i in the Table No. |,
which is defined in Table AMD1-55 i@ Table AMD1-66. The most significant bits of the length indicated by
intra_vlc_lengthlj][i] is the actual VLC.code, and the remaining bits shall be filled with ‘1’.

inter_vic_length[j][i]: This is a four bit unsigned integer indicating the length of the VLC code of the entry No. i i
the Table No. j, which is defined in Table AMD1-67 to Table AMD1-78. The actual length is inter_vic_length[j][i]+1|.
The length of each VLC gode in each table shall be limited to less than 17. The length of the VLC code of entry
No.21 in each table shall also be limited less than 14.

inter_vlc_codel[j]fi}.-This is a 16 bit unsigned integer indicating the VLC code of the entry No. i in the Table No. |,

which is definedNin Table AMD1-67 to Table AMD1-78. The most significant bits of the length indicated by
intra_vlc_lendth(j][i] is the actual VLC code, and the remaining bits shall be filled with ‘1’.

6.3.13.3 Studio Video Object Layer

video object_layer_start_code: The video object layer start code is a string of 32 bits. The first 28 bits are
‘6000 0000 0000 0000 0000 0001 0010° in binary and the last 4-bits represent one of the values in the range o

A7

=R

0000 1o 11t bimary—The video_object_fayer_start_tode identiffes the begimnning of a video object fayer hieader.

random_accessible_vol: This flag may be set to “1” to indicate that every VOP in this VOL is individually
decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more conditions are satisfied then
random_accessible_vol may be set to “1”. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0” if any of the
VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

© ISO/IEC 2002 — All rights reserved 53

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

video_object_type_indication: Constrains the following bitstream to use tools from the indicated object type only,
e.g. Simple Object or Core Object, as shown inTable AMD1-9.

Table AMD1-9 -- FLC table for video_object_type indication

Video Object Type Code
Reserved 00000000
Simple Object Type 00000001
Simple Scalable Object Type 00000010
Core Object Type 00000011
Main Object Type 00000100
N-bit Object Type 00000101
Basic Anim. 2D Texture 00000110
Anim. 2D Mesh 00000111
Simple Face 00001000
Still Scalable Texture 00001001
Advanced Real Time Simple 00001010
Core Scalable 00001011
Advanced Coding Efficiency 00001100
Advanced Scalable Texture 00001101
Simple Studio Object Type 00001110
Core Studio Object Type 000014
Reserved 00010000 - 11111111

video_object_layer_verid: This is a 4-bit code which identifies the version number of the video object layer. lts
meaning is defined in Table AMD1-10. If both visual object verid and video_object layer verid exist, the
gemantics of video_object_layer_verid supersedes the other.

Table AMD1-10 -- Meaning of video_object_layer_verid

video_object_layer_verid Meaning

0000 reserved

0001 object type listed in Table 9-1

0010 object type listed in Table V2-39
0011 reserved

0100 object type listed in Table AMD1-48
0101~ 1111 reserved

vyideo_object-layer_shape: This is a 2-bit integer defined in Table AMD1-11. It identifies the shape type of a
ideo objectilayer.

Table AMD1-11 -- Video Object Layer shape type

Qhape_fm;maf Meaning
00 rectangular
01 binary
10 binary only
11 grayscale

54 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

video_object_layer_shape_extension: This is a 4-bit integer defined in Table AMD1-12. It identifies the number
(up to 3) and type of auxiliary components that can be used, including the grayscale shape (ALPHA) component.
Only a limited number of types and combinations are defined in Table AMD1-11. More applications are possible by
selection of the USER DEFINED type. If the video_object_layer_shape does not indicate grayscale shape, this
code shall be set to “1111°.

Table AMD1-12 -- Semantic meaning of video_object_layer_shape_extension

video_object_layer_ | aux_comp_type[0] | aux_comp_type[1] | aux_comp_type[2] | aux_comp_
shape_extension count
0000 ALPHA NO NO 1
0001 DISPARITY NO NO 1
0010 ALPHA DISPARITY NO 2
0011 DISPARITY DISPARITY NO 2
0100 ALPHA DISPARITY DISPARITY 3
0101 DEPTH NO NO 1
0110 ALPHA DEPTH NO 2
0111 TEXTURE NO NO 1
1000 USER DEFINED NO NO 1
1001 USER DEFINED USER DEFINED NO 2
1010 USER DEFINED USER DEFINED USER DEFINED 3
1011 ALPHA USER DEFINED NO 2
1100 ALPHA USER DEFINED USER DEFINED 3
1101-1110 t.b.d. t.bid. t.b.d. t.b.d.
1111 NO NO NO

progressive_sequence: When set to ‘1’ the codedWideo sequence contains only progressive frame-VOPs. When
progressive_sequence is set to ‘0’ the coded video sequence may contain both frame-VOPs and field-VOPs, and
frame-VOP may be progressive or interlaced frames.

rgb_components: this is a one bit flag indicating if the components of the sequence are the RGB format or not. If
is set to '1', the components are RGB_and the component representing green color is coded in the same way as th
luminance component and the blde and red components are coded in the same way as the chrominancs
components. That is, the green{component shall be treated as the Y component, the blue component shall be a
the Cb component, and the red. component shall be as the Cr component. This flag does not affect the decodin
process except the restrictionion the value of chroma_format and parameters related to the quantiser matrices.

O—0r——0—=

chroma_format: This is a two bit integer indicating the chrominance format as defined in the Table AMD1-13. If
rgb_components is:set to '1', this shall be set to '11".

Table AMD1-13 -- Meaning of chroma_format

chroma_format | Meaning
00 reserved
01 4:2:0
1Y} 17272
1 4:4:4

© ISO/IEC 2002 — All rights reserved 55

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

bits_per_pixel: This field specifies the video data precision in bits per pixel. It may take different values for
different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel.
This field may take values between 4 and 12. The same number of bits per pixel is used in the luminance and two
chrominance planes.

video_object_layer_width: The video object layer width is a 14-bit unsigned integer representing the width of

the displayable part of the luminance component of VOPs in pixel units. The width of the encoded luminance

component of VOPs in macroblocks is (video object layer width+15)/16. The displayable part is left-aligned in the
ncoded VOPs.

ideo_object_layer_height: The video_object_layer_height is a 14-bit unsigned integer representing the height'of
e displayable part of the luminance component of the frame in lines.

In the case that progressive sequence is ‘1’ the height of the encoded luminance component_ef frames in
acroblocks, mb_height, is (video_object_layer height+15)/16.

In the case that progressive_sequence is ‘0’ the height of the encoded luminance componentiof frame VOPs in
macroblocks, mb_height, is 2*((video_object_layer_height + 31)/32). The height of the .€ncoded Iluminance
¢omponent of field VOPs in macroblocks, mb_height, is ((video_object_layer_height + 31)/(32).

The displayable part is top-aligned in the encoded VOPs.

e meaning of the code. If aspect ratio_info indicates extended PAR;“pixel_aspect_ratio is represented by

spect_ratio_info: This is a four-bit integer which defines the value of pixel aspect ratio. Table AMD1-14 shows
i-‘ar_width and par_height. The par_width and par_height shall be relatively prime.

Table AMD1-14 -- Meaning of pixelaspect ratio

aspect_ratio_info pixel-aspect ratios
0000 Forbidden
0001 1:1 (Square)
0010 12:11 (625-type for 4:3 picture)
0011 10:11 (525-type for 4:3 picture)
0100 16:11 (625-type stretched for 16:9 picture)
0101 40:33 (525-type stretched for 16:9 picture)
0110-1110 Reserved
1141 extended PAR

par_width: This is an 8-bit,unsigned integer which indicates the horizontal size of pixel aspect ratio. A zero value
ig forbidden.

ar_height: Thisds,an 8-bit unsigned integer which indicates the vertical size of pixel aspect ratio. A zero value is
rbidden.

rame_rate\ code: This is a four-bit integer used to define frame_rate as shown in Table AMD1-15.

If progressive_sequence is ‘1’ the period between two successive frames at the output of the decoding process is
ereciprocal of the frame_rate. If progressive_sequence is ‘0’ the period between two successive fields at the

56 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-15 -- frame_rate

frame_rate_code frame_rate

0000 forbidden

0001 24 000+1001 (23,976...)
0010 24

0011 25

0100 30 000+1001 (29,97...)
0101 30

0110 50

0111 60 000+1001 (59,94...)
1000 60

. reserved

1111 reserved

The VBV constraint is defined in annex D.

first_half_bit_rate, latter_half_bit_rate: The bit rate is a 30-bit unsigned integer which specifies the bitrate of thg
bitstream measured in units of 400 bits/second, rounded upwards. The value zero is forbidden. This value i
divided to two parts. The most significant bits are in first_half_bit_rate (15bits) and the least significant bits are i
latter_half_bit_rate (15 bits). The marker_bit is inserted between the first\ half_bit_rate and the latter_half bit_rats
in order to avoid the start code emulation. The instantaneous video, object layer channel bit rate seen by th¢
encoder is denoted by R, (t) in bits per second. If the bit_rate (i.e. first_half_bit_rate and latter_half_bit_rate) fiel
in the VOL header is present, it defines a peak rate (in units of 400 bits per second; a value of 0 is forbidden) suc
that R (t) <= 400 x bit_rate Note that R, (t) counts only visual syntax for the current elementary stream (also ses
annex D).

PO—=C— 00— =0

first_half_vbv_buffer_size, latter_half_vbv_buffer*size: vbv_buffer_size is an 18-bit unsigned integer. Thi
value is divided into two parts. The most significant bits are in first_half_vbv_buffer_size (15 bits) and the leas
significant bits are in latter_half_vbv_buffer_size (3'bits), The VBV buffer size is specified in units of 16384 bits. Th
value O for vbv_buffer_size is forbidden. Defige.B = 16384 x vbv_buffer_size to be the VBV buffer size in bits.

W 7

first_half_vbv_occupancy, latter_half(vbv_occupancy: The vbv_occupancy is a 26-bit unsigned integer. Thi
value is divided to two parts. The most significant bits are in first_half_vbv_occupancy (11 bits) and the leas
significant bits are in latter_half’ vbv_occupancy (15 bits). The marker_bit is inserted between the
first_vbv_buffer_size and the latter half_vbv_buffer_size in order to avoid the start code emulation. The value 0
this integer is the VBV occupancy in 64-bit units just before the removal of the first VOP following the VOL header.
The purpose for the quantity:is to provide the initial condition for VBV buffer fullness.

—h O+~

low_delay: This is a-one-bit flag which when set to ‘1’ indicates the VOL contains no B-VOPs.

mpeg2_stream: This is a one bit flag indicating if the decoded bitstream is transcoded from one which conforms t
ISO/IEC 1384852: 1996 according to information specified in ANNEX Q. This flag affects the inverse quantisation
process as‘defined in 7.16.4.3 in order to decode the bitstream accurately.

A\ =4

alpha.bits_per_pixel[i]: This field specifies the video data precision of alpha planes_for grayscale alpha of
atixiliary component i=0,1,2 in bits per pixel. It may take different values for different video object layers within
single video object. A value of 12 in this field would indicate 12 bits per pixel. This field may take values between E

and 12.

minimum_alpha_level[i]: This is a 12-bit unsigned integer which specifies the level for complete transparency of
alpha signals for grayscale alpha or auxiliary component i=0,1,2.

maximum_alpha_level[i]: This is a 12-bit unsigned integer which specifies the level for complete opacity of alpha

signals__for grayscale alpha or auxiliary component i=0,1,2. maximum_alpha_level shall be grater than
minimum_alpha_level.

© ISO/IEC 2002 — All rights reserved 57

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

composition_method: This is a one bit flag which indicates which blending method is to be applied to the video
object in the compositor. When set to ‘0’, cross-fading shall be used. When set to ‘1°, additive mixing shall be used.
See subclause 7.16.6.3.5.

linear_composition: This is a one bit flag which indicates the type of signal used by the compositing process.
When set to ‘0, the video signal in the format from which it was produced by the video decoder is used. When set
to ‘1’, linear signals are used. See subclause 7.16.6.3.5.

4prite_enab|e: This is a one-bit flag which when set to ‘1’ indicates the presence of sprites.
sprite_width: This is a 20-bit unsigned integer which identifies the horizontal dimension of the sprite.
sprite_height: This is a 20-bit unsigned integer which identifies the vertical dimension of the sprite.

gprite_left_coordinate — This is a 20-bit signed integer which defines the left-edge of the sprite.'The value of
gprite_left_coordinate shall be divisible by two.

gprite_top_coordinate: This is a 20-bit signed integer which defines the top edge of the sprite. The value of
gprite_left_coordinate shall be divisible by two.

no_of_sprite_warping_points: This is a 6-bit unsigned integer which represents’the number of points used in
gprite warping. When its value is 0 and when sprite_enable is set to ‘1’, warping-is identity (stationary sprite) and no
¢oordinates need to be coded. When its value is 4, a perspective transform_is-used. When its value is 1,2 or 3, an
affine transform is used. Further, the case of value 1 is separated as a-special case from that of values 2 or 3.
Table AMD1-16 shows the various choices.

Table AMD1-16 -- Number of point andimplied warping function

Number of points | warping function
0 Stationary

1 Translation

2,3 Affine

4 Perspective

gprite_warping_accuracy — This is a 2tbit code which indicates the quantisation accuracy of motion vectors used
in the warping process for sprites. Table AMD1-17 shows the meaning of various codewords

Table AMD1-17 -- Meaning of sprite warping accuracy codewords

code | sprite_warping_accuracy
00 Y2 pixel

01 Ya pixel

10 1/8 pixel

11 1/16 pixel

prite {brightness_change: This is a one-bit flag which when set to ‘1’ indicates a change in brightness during
Iprite warping ; alternatively, a value of ‘0’ means no change in brightness.

sprite_defocusing: This is a one-bit flag which when set to "1° indicates a change in defocusing during sprite
warping; alternatively, a value of ‘0" means no change in defocusing.

sprite_lens_distortion: This is a one-bit flag which when set to 1" indicates that the lens distortion exists during
sprite warping; alternatively, a value of 0" means there is no lens distortion.

58 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.4 Group of Studio Video Object Plane

group_vop_start_code: The group vop_start _code is the bit string ‘000001B3’ in hexadecimal. It identifies the
beginning of a Group of Studio VOP header.

time_code_smpte12m: See annex P.

closed_gov: This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-
VOPs (if any) immediately following the first coded I-VOP after the group of studio VOP header .The closed_gov, i$

set to ‘1’ to indicate that these B-VOPs have been encoded using only backward prediction or intra coding. This b
is provided for use during any editing which occurs after encoding. If the previous VOPs have been removed b
editing, broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following/the first |
VOP following the group of studio VOP header. However if the closed_gov bit is set to ‘1, then the\editor may
choose not to set the broken_link bit as these B-VOPs can be correctly decoded.

—

—

broken_link: This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to(indicate that the firs
consecutive B-VOPs (if any) immediately following the first coded I-frame following the group.of studio VOP heade
may not be correctly decoded because the reference frame which is used for prediction is not available (because g
the action of editing). A decoder may use this flag to avoid displaying frames that cannot‘be correctly decoded.

==

6.3.13.5 Studio Video Object Plane

vop_start_code: This is the bit string ‘000001B6’ in hexadecimal. It marks’the' start of a video object plane.
temporal_reference: The temporal_reference is a 10-bit unsigned integer associated with each coded VOP.

The following simple specification applies only when low_delay is(@qual to zero.

When a coded frame is in the form of two field VOPs, the-temporal_reference associated with each VOP shall be
the same (it is called the temporal_reference of the coded*frame). The temporal_reference of each coded fram
shall increment by one modulo 1024 when examined in. display order at the output of the decoding process, excep

when a group of studio VOP header occurs. Among the frames coded after a group of studio VOP header, thg
temporal_reference of the coded frame that is displayed first shall be set to zero.

= D—D

The following more general specification applies when low_delay is equal to zero or one.

A1

If VOP A is not a big VOP, i.e., the VBV \buffer is only examined once before the coded VOP A is removed from th
VBV buffer, and if N is the temporal: reference of VOP A, then the temporal_reference of VOP B immediatel
following VOP A in display order(is,;equal to :

e Qif there is a group of studio VOP header present between VOP A and VOP B (in coded order).
o (N+1) % 1024 if VOP B is a frame VOP or is the first of a pair of field VOPs.
e N if VOP B-is\the second field of a pair of field VOPs.

When low _delay is equal to one, there may be situations where the VBV buffer shall be re-examined several time$
before removing a coded VOP (referred to as a big VOP) from the VBV buffer.

If VOP A is a big VOP and if K is the number of times that the VBV buffer is re-examined as defined in Annex D)
(K>0), if N is the temporal_reference of VOP A, then the temporal_reference of VOP B immediately following VOR

Alin displav order is equal to -
Ll J hl

o

o K% 1024 if there is a group of studio VOP header present between VOP A and VOP B (in coded order).
o (N+K+1) % 1024 if VOP B is a frame VOP or is the first field of a pair of field VOPs.

o (N+K) % 1024 if VOP B is the second field of a pair of field VOPs.

© ISO/IEC 2002 — All rights reserved 59

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

NOTE - If the big VOP is the first field of a frame coded with field VOPs, then the temporal_reference of the
two field VOPs of that coded frame are not identical.

vop_structure: This is a 2-bit integer defined in the Table AMD1-18.

Table AMD1-18 -- Meaning of vop_structure

vop_structure Meaning
00 reserved
01 Top Field
10 Bottom Field
11 Frame picture

[Vhen a frame is encoded in the form of two field VOPs both fields must be of the same vop_ceding_type, except
where the first encoded field is an I-VOP in which case the second may be either an I-VOP or a P-VOP.

The first encoded field of a frame may be a top-field or a bottom field, and the next field mustbe of opposite parity.

[Vhen a frame is encoded in the form of two field VOPs the following syntax elements’may be set independently in
e¢ach field VOP:

. vop_fcode[0][0], vop_fcode[0][1]

. vop_fcode[1][0], vop_fcode[1][1]

. dct_precision, alpha_dct_precision([i]

. intra_dc_precision, q_scale_type, alphacintra_dc_precision[i], alpha_q_scale_typeli]
. alternate_scan

. temporal_reference

yop_coding_type: The vop_coding:type identifies whether a VOP is an intra-coded VOP (), predictive-coded
OP (P), bidirectionally predictive-coded VOP (B) or sprite VOP (S). The meaning of vop_coding_type is defined in
Table AMD1-19.

Table AMD1-19 -- Meaning of vop_coding_type

vop_coding_type |coding method

00 intra-coded (1)

01 predictive-coded (P)

10 bidirectionally-predictive-coded (B)
11 sprite (S)

vop_coded: This is a 1-bit flag which when set to ‘0’ indicates that no subsequent data exists for the VOP. In this
case, the following decoding rule applies: For an arbitrarily shaped VO (i.e. when the shape type of the VO is either
‘binary’ or ‘binary only’), the alpha plane of the reconstructed VOP shall be completely transparent. For a
rectangular VO (i.e. when the shape type of the VO is ‘rectangular’), the corresponding rectangular alpha plane of
the VOP, having the same size as its luminance component, shall be completely transparent. If there is no alpha
plane being used in the decoding and composition process of a rectangular VO, the reconstructed VOP is filled with
the respective content of the immediately preceding VOP for which vop_coded!=0.

60 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

vop_width: This is a 14-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle that
includes the VOP. The width of the encoded luminance component of VOP in macroblocks is (vop_width+15)/16.
The rectangle part is left-aligned in the encoded VOP. A zero value is forbidden.

vop_height: This is a 14-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that
includes the VOP. The height of the encoded luminance component of VOP in macroblocks is (vop_height+15)/16.
The rectangle part is top-aligned in the encoded VOP. A zero value is forbidden.

vop_horizontal_mc_spatial_ref: This is a 14-bit signed integer which specifies, in pixel units, the horizontdl
position of the top left of the rectangle defined by horizontal size of vop_width. The valuge)'g
vop_horizontal_mc_spatial_ref shall be divisible by two. This is used for decoding and for picture composition:

el

vop_vertical_mc_spatial_ref: This is a 14-bit signed integer which specifies, in pixel units, the vertical,position o
the top left of the rectangle defined by vertical size of vop_height. The value of vop_vertical_mc_spatial _ref shall be
divisible by two for progressive and divisible by four for interlaced motion compensation. This is used for decodin
and for picture composition.

C—0—==

top_field_first: The meaning of this element depends upon vop_structure, progréssive_sequence and
repeat_first_field.

If progressive_sequence is equal to ‘0’ this flag indicates what field of a reconstructed frame is output first by the
decoding process:

A1

In a field VOP top_field_first shall have the value ‘0’, and the only field. output by the decoding process is th¢
decoded field VOP.

In a frame VOP top_field_first being set to ‘1’ indicates that the tep-field of the reconstructed frame is the first field
output by the decoding process. top_field first being set to ‘@ indicates that the bottom field of the reconstructed
frame is the first field output by decoding process

If progressive_sequence is equal to ‘1, this flag, combined with repeat _first_field, indicates how many times (one,
two or three) the reconstructed frame is output by the decoding process.

If repeat_first_field is set to 0, top_field first shall be set to ‘0’. In this case the output of the decoding proces
corresponding to this reconstructed frame consists of one progressive frame.

o

If top_field_first is set to 0 and repeat “first_field is set to ‘1’, the output of the decoding process corresponding t
this reconstructed frame consists of fwe identical progressive frames.

©

If top_field_first is set to 1 and repeat_first_field is set to ‘1’, the output of the decoding process corresponding t
this reconstructed frame consists of three identical progressive frames.

©

repeat_first_field: This flag is applicable only in a frame VOP, in a field VOP it shall be set to zero and does nqgt
affect the decoding process.

If progressive_seguence is equal to 0 and progressive_frame is equal to 0, repeat_first_field shall be zero, and the
output of theydecoding process corresponding to this reconstructed frame consists of two fields.

N

If progressive_sequence is equal to 0 and progressive frame is equal to 1:

Ifthis flag is set to 0, the output of the decoding process corresponding to this reconstructed frame consists of tw
fields. The first field (top or bottom field as identified by top_field_first) is followed by the other field.

If it is set to 1, the output of the decoding process corresponding to this reconstructed frame consists of three fields.
The first field (top or bottom field as identified by top_field_first) is followed by the other field, then the first field is
repeated.

If progressive_sequence is equal to 1:

© ISO/IEC 2002 — All rights reserved 61

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)
If this flag is set to 0, the output of the decoding process corresponding to this reconstructed frame consists of one
frame.

If it is set to 1, the output of the decoding process corresponding to this reconstructed frame consists of two or
three frames, depending on the value of top_field_first.

progressive_frame: If progressive_frame is set to 0 it indicates that the two fields of the frame are interlaced fields
in_ which an interval of time of the field period exists between (corresponding spatial samples) of the two fields. In

this case the following restriction applies:
L repeat_first_field shall be zero (two field duration).

1 progressive_frame is set to 1 it indicates that the two fields (of the frame) are actually from the same time instant
s one another. In this case a number of restrictions to other parameters and flags in the bitstream apply:

1 vop_structure shall be “Frame”

s if progressive_sequence is equal to one, frame_pred_frame_dct shall be 1

intra_predictors_reset: This flag indicates whether the macroblock to be decoded shalllbe decoded independently
of any parameters of the previous macroblocks of the current VOP even if the macrablock is not located at the start
of a slice. If this flag is set to 1, each predictor, such as for intra dc coefficient, js reset in the same way as done at
the start of a sliece. Otherwise, predictions are used between neighbouring macreblocks in the same slice.
alternate_scan: This flag affects the decoding of transform coefficient data.as described in 7.16.4.2.
frame_pred_frame_dct: If this flag is set to ‘1’ then only frame-DCTand frame prediction are used. In a field VOP
it shall be ‘0’. frame_pred_frame_dct shall be ‘1’ if progressive <sequence is ‘1’. This flag affects the syntax of the

bitstream.

ct_precision: This is a 2-bit integer defining the value of ‘base quantiser according to Table AMD1-20. This flag
ffects the inverse quantisation process as defined in 7:16.4.3.

Table AMD1-20 — DCT precision

dct_precision base_quantiser
00 1.000
01 0.500
10 0.250
11 0.125

In case of mpeg2_stream = 1, dct_precision shall be set to ‘00’
intra_dc_precision; This is a 2-bit integer defined in the Table AMD1-21.

Table AMD1-21 -- Intra DC precision

intra_dc_precision Precision (bits)
00 bits_per_pixel
01 bits_per pixel+1
10 bits_per_pixel+2
11 bits_per_pixel+3

The inverse quantisation process for the Intra DC coefficients is modified by this parameter as explained in
7.16.3.3.1.

62 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

g_scale_type: This flag affects the inverse quantisation process as described in 7.16.4.3.2.2.

vop_fcode[s][t]: A 4 bit unsigned integer taking values 1 through 9, or 15. The value zero is forbidden and the
values 10 through 14 are reserved. It is used in the decoding of motion vectors, see 7.16.7.4.1.

In an I-VOP vop_fcode[s][t] is not used (since motion vectors are not used) and shall take the value 15 (all ones).
Similarly, in an I-VOP or a P-VOP vop_fcode[1][t] is not used in the decoding process (since it refers to backwards

motiorr vectors)and-shatttake thevatue—t5(attomes):

See Table AMD1-42 for the meaning of the indices; s and t.

dead_zone_disable: This is a one bit flag which affect the inverse quantisation process as described in.7.16.4.2.3
alpha_dct_precision[i]: This is a 2-bit integer defined in the Table AMD1-22. This flag affects the inverss

quantisation process of the alpha macroblock in the same way as dct_precision does for that,of the luminanc
macroblock.

O

Table AMD1-22 - alpha base quantiser

alpha_dct_precision alpha_base_quantiser
00 1.000
01 0.500
10 0.250
11 0425

alpha_intra_dc_precision[i]: This is a 2-bit integer defined,inthe Table AMD1-23.

Table AMD1-23 — Alpha Intra DC precision

alpha_intra_dc_precision Precision (bits)
00 bits_per_pixel
01 bits_per_pixel+1
10 bits_per_pixel+2
11 bits_per_pixel+3

The inverse quantisation process for the Intra DC coefficients of alpha channel is modified by this parameter in the
same way as the luminance.component.

N

alpha_q_scale_type[i]:i-This flag affects the inverse quantisation process for alpha channel in the same way as thg
luminance components.

174

vop_sprite_brightness_change: This is a one-bit flag which when set to ‘1’ indicates a change in brightnes
during spritéwarping, alternatively, a value of ‘0’ means no change in brightness.

o

—

composite_display_flag -- This flag is set to 1 to indicate that the following fields are of use when the inpy
pictures have been coded as (analogue) composite video prior to encoding into a bitstream that complies with thig
specification. If it is set to 0 then these parameters do not occur in the bitstream.

The information relates to the picture that immediately follows the extension. In the case that this picture is a frame
picture the information relates to the first field of that frame. The equivalent information for the second field may be
derived (there is no way to represent it in the bitstream).

© ISO/IEC 2002 — All rights reserved 63

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

NOTES

1 The various syntactic elements that are included in the bitstream if composite_display_flag is ‘1’ are not used in the
decoding process.

2 repeat_first field will cause a composite video field to be repeated out of the 4-field or 8-field sequence. It is
recommended that repeat_first_field and composite_display_flag are not both set simultaneously.

= =1 vV Whe e D EPTESE gna

Ecording to PAL systems. v_axis is set to 1 on a positive sign, v_axis is set to 0 otherwise.

field_sequence -- A 3-bit integer which defines the number of the field in the eight field sequence used, in PAL
gystems or the four field sequence used in NTSC systems as defined in the Table AMD1-24.

Table AMD1-24 Definition of field_sequence.

field frame field
sequence
000 1 1
001 1 2
010 2 3
011 2 4
100 3 5
101 3 6
110 4 7
111 4 8

sub_carrier -- This is a 1-bit integer. When set to zeroyit means the sub-carrier/line frequency relationship is
¢orrect. When set to 1 the relationship is not correct.

urst_amplitude -- This is a 7-bit integer defining\the burst amplitude (for PAL and NTSC only). The amplitude of
e sub-carrier burst is quantised as a Recommendation ITU-R BT.601 luminance signal, with the MSB omitted.

ub_carrier_phase -- This is an 8-bit ‘integer defining the phase of the reference sub-carrier at the field-
ynchronisation datum with respect, to-field start as defined in Recommendation ITU-R BT.470. See Table AMD1-
5.

AO—LH-

Table AMD1-25 Definition of sub_carrier_phase.

sub_carrier_phase Phase
0 ([3600+256] * 0)
1 ([3600+256] * 1)
255 ([3600+256] * 255)

e¢xtra_bit picture: A bit indicates the presence of the following exira information. If extra bit picture is set to ‘1’,
extra_information_picture will follow it. If it is set to ‘0’, there are no data following it. extra_bit_picture shall be set to
‘0’, the value ‘1’ is reserved for possible future extensions defined by ITU-T|ISO/IEC.

extra_information_picture: Reserved. A decoder conforming to this specification that encounters
extra_information_picture in a bitstream shall ignore it (i.e. remove from the bitstream and discard). A bitstream
conforming to this specification shall not contain this syntax element.

64 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.6 Studio Sprite coding

warping_mv_code(dmv) : The codeword for each differential motion vector consists of a VLC indicating the length
of the dmv code (dmv_length) and a FLC, dmv_code-, with dmv_length bits. The codewords are listed in Table
AMD1-93.

brightness_change_factor (): The codeword for brightness change factor consists of a variable length code

rlnnnﬁng hrighfnncc r\hangn factor _size and P fixed Inngfh r\ndn, hrighfnncc r\hangn fnr\fnr, f

brightness_change_factor_size bits (sign bit included). The codewords are listed in Table AMD1-94.

174

defocusing_control_parameter: This specifies the defocusing control parameter for luminance and chrominancé
sprite images by the following defocusing process.

The defocusing is performed by a filtering process. The applied filter P,(x, y) is shown in Figure AMD1-10.

1/4a” |x|£a,|y|£a

0 else

Ps(x,y)={

The value "a" is used as the defocusing control parameter.

The defocusing control parameter "a" for chrominance signals is divided&y-two in vertical direction or horizontd|
direction according to the chroma format.

-4:4:4 format "a"is not divided.

-4:2:2 format "a" is divided by two in horizontal diregtion.

-4:2:0 format "a"is divided by two both in horizontal direction and in vertical direction.
In case the filter taps lie outside the image, outer pixels shall be obtained by the padding process as defined in

subclause 7.16.5.9.1.

y
A

Figure AMD1-10 — Defocusing filter

© ISO/IEC 2002 — All rights reserved 65

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The length of this value varies according to the sprite warping accuracy. Table AMD1-26 shows the length of the
defocusing control parameter.

Table AMD1-26 -- Length of defocusing control parameter

sprite warping accuracy | length of defocusing control | defocusing control parameter
parameter

% pixel 9 bits 0-511

Y4 pixel 10 bits 0-1023

1/8 pixel 11 bits 0-2047

1/16 pixel 12 bits 0-4095

lens_distortion_parameter(): The codeword for lens_distortion_parameter consists -0f)the following 4 syntax
¢lements. lens_distortion_parameter_1 and lens_distortion_parameter_2 are 16-bif-signed (two's complement)
integer and lens_center_horizontal and lens_center_vertical are 14-bit unsigned integer. These parameters
flepresent camera lens distortion of the following equation.

x'=u(X—-c)+c,

with

u=1+R(k, 55+ Rk, 5%)
R=(X-c,)’ +sz()7—cy)2

where
(X,y) is the position of a distorted‘point
(x',y") is the position of noradial lens distortion point
(¢,,c,) is the lens center position in the image coordinates
(lens_center. horizontal, lens_center_vertical)
k, is the firSt tens distortion coefficient
lens’ distortion_parameter_1

ky 1s the second lens distortion coefficient

lens_distortion_parameter_2
W is the maximum image size

the larger one of
StudioVideoObjectLayer()

video_object_layer_width or video_object_layer_height in

66 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

s is the aspect ratio of each pixel
aspect_ratio_info in StudioVideoObjectLayer()

Note: These syntax elements provide no normative decoding procedure.

6.3.13.7 Studio Slice

slice_start_code: This is the bit string ‘000001B7’ in hexadecimal. It marks the start of a slice.

macroblock_number: This is a variable length code with length between 1 and 14 bits. It identifies thg
macroblock number within a VOP. The number of the top-left macroblock in a VOP shall be zero. Thesmacrobloc
number increases from left to right and from top to bottom. The actual length of the code depends.on the totd|
number of macroblocks in the VOP calculated according to Table AMD1-27, the code itself isUsimply a binary
representation of the macroblock number.

D

Table AMD1-27 -- Length of macroblock_number code

length of macroblock_number code | ((vop_width+15)/16) * ((vop-height+15)/16)
1 1-2

2 3-4

3 5-8

4 9-16

5 17-32

6 33-64

7 65-128

8 129256

9 257-512

10 513-1024
11 1025-2048
12 2049-4096
13 4097-8192
14 8193-16384

quantiser_scale_code: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this value unt|l
another quantiser_scale _code is encountered either in StudioSlice() or StudioMacroblock(). The value zero i$
forbidden.

alpha_quantiser_scale_codeli]: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this valug
until another alpha,quantiser_scale_code[i] is encountered either in StudioSlice() or StudioMacroblock(). The valug
zero is forbidden-

O

slice_extension_flag: This flag shall be set to ‘1’ to indicate the presence of intra_slice, slice_ VOP_enable and
slice .VOP_id in the bitstream.

intra_slice: This flag shall be set to ‘0’ if any of the macroblocks in the slice are non-intra macroblocks. If all of th¢
macroblocks are intra macroblocks then intra slice may be setto ‘1 __intra slice may be omitted from the bitstream

N7

(by setting intra_slice_flag to ‘0’) in which case it shall be assumed to have the value zero.

intra_slice is not used by the decoding process. intra_slice is intended to aid a DSM application in performing
FF/FR .

slice_VOP_id_enable: This flag controls the semantics of slice_ VOP_id. If slice_ VOP_id_enable is set to "0",
slice_ VOP_id is not used by this specification and shall have the value zero. If slice_ VOP_id_enable is set to "1",
slice_VOP_id may have a value different from zero.

© ISO/IEC 2002 — All rights reserved 67

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

slice_ VOP_id_enable must have the same value in all the slices of a VOP. slice VOP_id_enable may be omitted
from the bitstream (by setting slice_extension_flag to '0") in which case it shall be assumed to have the value zero.

slice_VOP_id_enable is not used by the decoding process.
slice_VOP_id: This is a 6 bit integer. If slice_ VOP_id_enable is set to "0", slice VOP_id is not used by this

specification and shall have the value zero. If slice_VOP_id_enable is set to "1", slice_VOP_id is application
defined and may have any value, with the constraint that slice VOP _id shall have the same value in all the slices of

a VOP.

slice_VOP_id is not used by the decoding process. slice VOP_id is intended to aid recovery on severe bursts-of
grrors for certain types of applications. For example the application may increment slice VOP_id with €ach
transmitted VOP, so that in case of severe burst error, when several slices are lost, the decoder can knew if the
glice following the burst error belongs to the current VOP or to another VOP, which may be the case(if ‘at least a
OP header has been lost.

xtra_bit_slice: This flag indicates the presence of the following extra information. If extra bit) slice is set to ‘1’,
xtra_information_slice will follow it. If it is set to ‘0’, there are no data following it. extra_bityslice shall be set to ‘0,
e value ‘1’ is reserved for possible future extensions defined by ITU-T|ISO/IEC.

xtra_information_slice: Reserved. A decoder conforming to this spé&cification that encounters
xtra_information_slice in a bitstream shall ignore it (i.e. remove from the bitstream and discard). A bitstream
onforming to this specification shall not contain this syntax element.

.3.13.8 Studio Macroblock

ot_coded: This is a 1-bit flag which signals if a macroblock is coded or not. When set to’1’ it indicates that a

acroblock is not coded and no further data is included in the bitstream for this macroblock (with the exception of

Ipha data that may be present). The decoder shall treat thissmacroblock as ‘inter’ with motion vector equal to zero

nd no DCT coefficient data for P-VOPs. When set to ‘0'.it indicates that the macroblock is coded and its data is
ihcluded in the bitstream.

¢ompression_mode: This is a flag which is set'fo ‘0’ to indicate that the texture component of a current
macroblock shall be coded following the DPCM block syntax. Otherwise, the macroblock is coded as DCT data.

pcm_scan_order: This is a flag that indicates the scanning order of blocks for DPCM coding. If set to value ‘0’
g\e block is scanned from top line to bottonr' line, and from left to right. If set to value ‘1’ the block is scanned from
ottom line to top line, and from right to-left.

¢oda_i[j]: This is a one-bit flag which is set to “1” to indicate that all the values in the grayscale alpha macroblock
Ire equal to maximum_alphaclevel[j] (AlphaOpaqueValue[j]). When set to “0”, this flag indicates that one or more
x8 blocks are coded according to alpha_pattern_code([j].

I:pha_compression_mode[j]: This is a flag which is set to ‘0’ to indicate that the alpha component j' of a current
acroblock shall be.coded following the DPCM block syntax. Otherwise, the macroblock is coded as DCT data.

Ipha_macroblock_quant[j]: This is set to 1 to indicate that alpha_quantiser_scale_code[j] is present in the
itstream.

ntii"another alpha_quantiser_scale_code[j] is encountered either in StudioSlice() or StudioMacroblock(). The value

Iphacquantiser_scale_code[j]: A 5 bit unsigned integer in the range 1 to 31 . The decoder shall use this value
Iero is forbidden.

alpha_dpcm_scan_order[j]: This is a flag that indicates the scanning order of a alpha block for DPCM coding. If
set to value ‘0’ the block is scanned from top line to bottom line. If set to value ‘1’ the block is scanned from bottom
line to top line.

68 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

coda_pb[j]: This is a VLC indicating the coding status for P alpha macroblocks. The semantics are given in the
table below (Table AMD1-28). When this VLC indicates that the alpha macroblock is all opaque, this means that all
values are set to maximum_alpha_level[j] (AlphaOpaqueValuelj]).

Table AMD1-28-- coda_pbl[j] codes and corresponding values

coda_pblj] Meaning

4 o

alabha racicl: all zar
T UIVI TATOUOTUUGL dIT 0TV
01 alpha macroblock all opaque
00 alpha residue coded

cbpalj]: This is the coded block pattern for an inter macroblock of grayscale alpha texture data» This VLC i$
defined in Table AMD1-88 - Table AMD1-91. cbpa is followed by the alpha block data which is,coded in the samé
way as texture block data. Note that grayscale alpha blocks in an inter macroblock with alphaall' equal to 0 (alpha
residual all zero) are not included in the bitstream.

alpha_pattern_codeli]: The value of this internal flag is set to 1 if the alpha block with.the index value i (i=0,...,3
includes one or more DCT coefficients that are decoded through the same process‘'as the luminance components.
Otherwise, the value of this flag shall be set to 0. For an alpha intra macroblock, alpha_pattern_code][i] shall be se&
to 1, and for an alpha inter macroblock alpha_pattern_code][i] shall be derived.from cbpa[j].

—

6.3.13.8.1 Studio MB Binary Shape Coding

bab_type: This is a variable length code between 1 and 6 bits. [tindicates the coding mode used for the bah.
There are five bab_types as depicted in Table AMD1-29. The VLCytables used depend on the decoding context i.€.
the bab_types of blocks already received. For I-VOPs, the context-switched VLC table of Table AMD1-80 is used.
For P-VOPs, the context-switched table of Table AMD1-81 is\used.

Table AMD1-29 -- List’of bab_types and usage

bab_type | Semantic Used in

0 MVs==0 && No Update P- VOPs
1 MVs!=0 && No Update P- VOPs
2 transparent All VOP types
3 Opaque All VOP types
4 HHC All VOP types

D

The bab_type determines what other information fields will be present for the bab shape. No further shaps
information is present)if the bab_type = 0, 2 or 3. Opaque means that all pixels of the bab are part of the objeci.
Transparent means) that none of the bab pixels belong to the object. HHC means the Hierarchical Huffman
decoding will be“required to reconstruct the pixel of the bab. No_update means that motion compensation is used
to copy the bab’from the previous VOP’s binary alpha map.

mvs_x4 This is a variable-length code between 1 and 18 bits. It represents the horizontal element of the motiof
vector. difference for the bab. The motion vector is in full integer precision. The VLC table is shown in Tablg
AMD1-82.

D

mvs_y: This is a variable-length code between 1 and 18 bits. It represents the vertical element of the motion vector
difference for the bab. The motion vector is in full integer precision. If mvs_x is '0', then the VLC table of Table
AMD1-83, otherwise the VLC table of Table AMD1-82 is used.

inferior_symbol_macroblock: This is a 1-bit flag indicating less frequent pixel between the opaque and

transparent pixel in the macroblock. If this flag is set to “0”, the transparent symbol is inferior and the opaque
symbol is superior. If this flag is set to “1”, the opaque symbol is inferior and the transparent is superior.

© ISO/IEC 2002 — All rights reserved 69

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

inferior_symbol_block: This is a 1-bit flag indicating less frequent pixel between the opaque and transparent
pixel in the block. If this flag is set to “0”, the transparent symbol is inferior and the opaque symbol is superior. If this
flag is set to “1”, the opaque symbol is inferior and the transparent is superior.

cbbp: This is a variable-length code between 3 to 7 bits. It indicates the existence of inferior symbol in each block.
The VLC table is shown in Table AMD1-84.

scan_direction: This is a 1-bit flag indicating whether the block is divided into horizontal rows or vertical columns.

I this flag is set to “0”, the block is divided into horizontal rows. If this flag is set to “1”, the block is divided inte
ertical columns.

backward_load_flag: This is a 1-bit flag indicating whether the order of the line bit pattern is changed. If this flag is
get to “0”, the order of the line bit pattern isn’t changed. If this flag is set to “1”, the order of the line bit(pattern is
turned right side left in scan_direction=="0" or upside down in scan_direction=="1".

¢lp: This is a variable-length code between 2 to 24 bits. It indicates the existence of an inferior symbol in each pixel
[jne. The VLC table is shown in Table AMD1-85.

Ibp: This is a variable-length code between 2 to 23 bits. It indicates the bit pattern of ancinferior symbol in the pixel
ljne. The VLC table is shown in Table AMD1-86.

6.3.13.8.2 Studio Macroblock modes

acroblock_type: Variable length coded indicator which indicates the-method of coding and content of the
acroblock according to the Table AMD1-50 and Table AMD1-51, selected’by vop_coding_type.

macroblock_quant: Derived from macroblock_type according to, the) Table AMD1-50 and Table AMD1-51. This is
get to 1 to indicate that quantiser_scale_code is present in the bitstream.

macroblock_motion_forward: Derived from macroblock type according to the Table AMD1-50 and Table
AMD1-51. This flag affects the bitstream syntax and is used by the decoding process.

macroblock_pattern: Derived from macroblock_typée.according to the Table AMD1-50 and Table AMD1-51. This is
get to 1 to indicate that coded_block_pattern() is present in the bitstream.

acroblock_intra: Derived from macroblock type according to the Table AMD1-50 and Table AMD1-51. This flag
ffects the bitstream syntax and is used by-the decoding process.

!Lrame_motion_type: This is a two(bit\code indicating the macroblock prediction type, defined in Table AMD1-30.

If frame_pred_frame_dct is equal to 1 then frame_motion_type is omitted from the bitstream. In this case motion
ector decoding and prediction formation shall be performed as if frame_motion_type had indicated “Frame-based
prediction”.

Table AMD1-30 -- Meaning of frame_motion_type

code | prediction type | motion_vector | mv_format
_count

00 reserved

01 Field-based 2 field

10 Frame-based 1 frame

11 reserved

field_motion_type: This is a two bit code indicating the macroblock prediction type, defined in Table AMD1-31.

70 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-31 -- Meaning of field_motion_type

code | prediction type | motion_vector | mv_format
_count

00 reserved

01 Field-based 1 field

10 16x8 MC 2 field

11 reserved

dct_type: This is a flag indicating whether the macroblock is frame DCT coded or field DCT coded. If this is set t
‘1’, the macroblock is field DCT coded; otherwise, the macroblock is frame DCT coded. Boundaryblocks arg
always coded in frame-based mode.

=4

A1

In the case that dct_type is not present in the bitstream then the value of dct_type (used incthe remainder of thg
decoding process) shall be derived as shown in Table AMD1-32.

A1

Table AMD1-32 -- Value of dct_type if dct_type is not in the bitstream.

Condition | dct_type

vop_structure == “field” | unused because there is ne frame/field distinction in a
field vop.

frame_pred_frame_dct == 0 (“frame”)
!(macroblock_intra || macroblock_pattern) | unused - macroblock is not coded
macroblock is skipped | unused - macroblock is not coded
compression_mode == "DPCM" | 0("frame’) -‘This is used for alpha macroblock.
vop_structure == "frame" && | O("framiel) - This is used for alpha macroblock.
frame_pred_frame_dct == 0 &&
macroblock pattern == 0 &&
macroblock_intra ==

6.3.13.8.3 Motion vectors

motion_vector_count is derived from field_motion_type or frame_motion_type as indicated in the Table AMD1-30
and Table AMD1-31.

mv_format is derived from figld. motion_type or frame_motion_type as indicated in the Table AMD1-30 and Tabl¢
AMD1-31. mv_format indicates if the motion vector is a field-motion vector or a frame-motion vector. mv_format i
used in the syntax of the motion vectors and in the process of motion vector prediction.

H—

motion_vertical_field _select[r][s] -- This flag indicates which reference field shall be used to form the prediction.
If motion_vertical\field_select[r][s] is zero then the top reference field shall be used, if it is one then the bottom
reference field-shall be used. (See Table AMD1-42 for the meaning of the indices; rand s.)

6.3.13.8:4\Motion vector

motion_code[r][s][t] -- This is a variable length code, as defined in Table AMD1-92, which is used in motiof
vector decoding as described in 7.16.5.4.1. (See Table AMD1-42 for the meaning of the indices; r, s and t.)

motion_residual[r][s][t] -- This is an integer which is used in motion vector decoding as described in 7.16.5.4.1.
(See Table Table AMD1-42 for the meaning of the indices; r, s and t.) The number of bits in the bitstream for
motion_residual[r][s][t], r_size, is derived from vop_fcode[s][t] as follows;

r_size = vop_fcode[s][t] - 1

NOTE - The number of bits for both motion_residual[O][s][t] and motion_residual[1][s][t] is denoted by
vop_fcodel[s][t].

© ISO/IEC 2002 — All rights reserved 71

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.8.5 Coded block pattern

coded_block_pattern_420 -- A variable length code that is used to derive the variable cbp according to
Table AMD1-87.

coded_block_pattern_1 --

coded_block_pattern_2 -- For 4:2:2 and 4:4:4 data the coded block pattern is extended by the addition of either a
two bit or six bit fixed length code, coded_block_pattern_1 or coded_block pattern_2. Then the pattern_code]i] is
derived using the following:
for (i=0; i<12; i++) {
if (macroblock_intra)
pattern_code[i] = 1;
else
pattern_code[i] = 0;
}
if (macroblock_pattern) {
for (i=0; i<6; i++)
if (cbp & (1<<(5-i))) pattern_code[i] = 1;
if (chroma_format == “4:2:2")
for (i=6; i<8; i++)
if (coded_block pattern:1 & (1<<(7-i))) pattern_codeJi] = 1;
if (chroma_format == “4:4:4%)
for (i=6; i<12; i++)
if (coded.block pattern_2 & (1<<(11-i))) pattern_code[i] = 1;
}

If pattern_code(i] is equal(to 1, i=0 to (block_count-1), then the block number i defined in Figures 6-5, AMD1-4 and
AMD1-5 is contained in this macroblock.

The number “bloek ‘count” which determines the number of blocks in the macroblock is derived from the
¢hrominance fermat as shown in Table AMD1-33.

Table AMD1-33 -- block_count as a function of chroma_format

chroma_format | block_count
4:2:.0 6
4:2:2 8
4:4:4 12

If the block number i is transparent, transparent_block(i)=1, the velue of pattern_code[i] does not affect the
decoding process.

72 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

6.3.13.9 Studio Block

dct_dc_size_luminance: This is a variable length code as defined in Table AMD1-52 that is used to derive the
value of the differential dc coefficients of luminance values in blocks in intra macroblocks. This value categorizes
the coefficients according to their size.

dct_dc_differential: This is a variable length code as defined in Table AMD1-54-1 that is used to derive the value
of the differential dc coefficients in blocks in intra macroblocks. After identifying the category of the dc coefficient in

size from dct_dc_size luminance or dct_dc_size_chrominance, this value denotes which actual difference in that
category occurred.

dct_dc_size_chrominance: This is a variable length code as defined in Table AMD1-53 that is used to'derive thg
value of the differential dc coefficients of chrominance values in blocks in intra macroblocks. This value categorize
the coefficients according to their size.

D

6.3.13.9.1 Studio Alpha Block

alpha_pattern_codeli]: The value of this internal flag is set to 1 if the alpha block with‘the index value i indicate$
one or more DCT coefficients that are decoded in the same way as the luminance component. Otherwise the valus
of this flag is set to 0.

174

The other semantics of StudioAlphaBlock() are described in clause 7.

6.3.13.10 Studio DPCM Block

block_mean: This is an unsigned integer that indicates the average value of pixels within a DPCM coded blocK.
This mean value is also used for efficient prediction of the sign,of'‘residuals in DPCM coding.

rice_parameter: This is an unsigned integer that indicates thé length of the rice_suffix_code field. The value 0 i$
forbidden. The value 15 shall be interpreted as 0.

rice_prefix_code: This is a variable length code that represents the most significant bits of a DPCM residual. Thi
code may also represent an escape sequence in‘'which case a DPCM residual is coded by dpem_residual instead
of a combination of rice_prefix_code and rice-suffix_code.

o

dpcm_residual: This is an unsigned integer that indicates the value of a DPCM residual.

rice_suffix_code: This is an unsigned integer that represents the least significant bits of a DPCM residual.

Table AMD1-34 -- Variable length codes for rice_prefix_code

Variable length code rice_prefix_code

1
01

001

0001
0000 1
0000 01
0000 001

0000 0001
0000 0000 1
0000 0000 01
0000 0000 001 10
0000 0000 0001 escape

oI~ [WIN|~|O

©

© ISO/IEC 2002 — All rights reserved 73

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

29) Replace paragraph 2 in clause 7 with the following:

In subclauses 7.1 through 7.9 the VOP decoding process is specified in which shape, motion, texture decoding
processes are the major contents. The video object decoding for the studio profile is specified in subclause 7.16.
The still texture object decoding is described in subclause 7.10. Subclause 7.11 includes the mesh decoding
irocess, and subclause 7.12 features the face object decoding process. The output of the decoding process is
xplained in subclause 7.13.

30) Add the following subclause 7.16 after subclause 7.15:

(.16 Video object decoding for the studio profile

This subclause specifies the video object decoding for the studio profile.

.16.1 Video decoding process

The identical description to clause 7.1)

[.16.2 Higher syntactic structures

The various parameters and flags in the bitstream for StudioVideoObjectLayer(),
Group_of_StudioVideoObjectPlane(), StudioVideoObjectPlang(), StudioSlice(), StudioMacroblock(), StudioBlock()
$nd StudioDPCMBIlock(), as well as other syntactic structures related to them shall be interpreted as discussed

arlier. Many of these parameters and flags affect the decoding process. Once all the macroblocks in a given VOP
ave been processed, the entire VOP will have beengéeconstructed.

Texture data in a macroblock shall have been.encoded by either DCT or DPCM.

If compression_mode == 1, texture data'in the macroblock shall have been encoded by DCT. The decoding
rocess is indicated in subclause 7.16.4

If compression_mode == 0, texture-/data in the macroblock shall have been encoded by DPCM. The decoding
rocess is indicated in subclause 7.16.5

Reconstructed fields shall be associated together in pairs to form reconstructed frames. (See “vop_structure” in
6.3.13.5.)

The sequence of rfeconstructed frames shall be reordered as described in 6.3.13.5.

If progressive‘sequence ==1 the reconstructed frames shall be output from the decoding process at regular
intervals of the frame period as shown in Figure AMD1-26.

If progressive_sequence == 0 the reconstructed frames shall be broken into a sequence of fields which shall be
utput from the decodlng process at regular mtervals of the field perlod as shown in Figure AMD1 27 In the case

(See repeat flrst fleld” in 6.3. 13 5.)

7.16.3 VOP reconstruction

The luminance and chrominance values of a VOP from the decoded texture and motion information are
reconstructed as indicated in this subclause. Figure AMD1-11 represents the process.

74 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Motion
Compensation
(7.16.7) plyllx]

Adding (7.16.3)
N
NUPAE U5

compression_mode==1

Texture Decoding

Upuvl) ®

(7.16.4) MyITx] .
~— ® saturation
(7.16.3) Ay >

Texture Decoding compression_mode==0
(IDPCM)
(7.16.5) dTyllxI = dTylTx]

Figure AMD1-11 — VOP reconstruction from the decoded texutre and motion compensated data

1. In case of INTRA macroblocks of compression_mode==1, the luminance and chrominance values f[y][x] from

the decoded texture data form the luminance and chrominance values:d[y][x] = fly][x]-.

2. In case of INTER macroblocks, first the prediction values p[y]ix] are calculated using the decoded motio
vector information and the texture information of the respective reference VOPs. Then, the decoded textur
data f[y][x] is added to the prediction values, resulting in the luminance and chrominance values: d’[y][X] 3

PLyI[x] + flyl[x]

3. In case of INTRA macroblocks of compression_mode==0, the luminance and chrominance values
the decoded texture data form the luminance and‘€hrominance values: d’[y][x] = d”[y][X].

4. Finally, the calculated Iuminance ,“and chrominance values are saturated
2bitsﬁper7pixel _1, dV[y][x] > 2bitsiper7pixel _1

d[y][x]=1d'[y][x]; 0% d'[y][x] < 20m-rer—risel
0; d'[¥][x]<0

NOTE : The saturation defined above limits output sample values for Y, Cr and Cb to the range [0:2
Therefore, the values which are assigned as the reserved code words for timing reference in ITU-R
BT.709 can occasionally occur.

7.16.4 Texture-decoding from DCT coefficients

This subclause describes the process used to decode the texture information of a VOP

compression_mode==1. The process of video texture decoding from coded DCT coefficients is given in Figurs

=

d”[y][x] from

SO that

bits_per_pixel_,]] .
BT.601 and

in case of

P

AMD1-12.
Variable Inverse Scan Inverse Inverse DCT
— ¥ Length > » Quantisation > —>
Coded Decoding QFS[n] QF[v][u] F[v][u] fly][x]
DCT Data

Figure AMD1-12 — Video Texture Decoding Process from DCT coefficients

© ISO/IEC 2002 — All rights reserved

75

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.4.1 Variable length decoding

This subclause explains the decoding process. Subclause 7.16.4.1.1 specifies the process used for the DC
coefficients (n=0) in an intra coded block. (n is the index of the coefficient in the appropriate zigzag scan order).

Subclause 7.16.4.1.2 specifies the decoding process for all other coefficients; AC coefficients (7 # 0) and DC
coefficients in non-intra coded blocks.

gb_components==0, cc is zero for the Y component, one for the C, component and two for the Cy component. In
¢ase of rgb_components==1, zero for the G component, one for the B component and two for the R component;

Table AMD1-35 -- Definition of cc, colour component index

cc
Block Number 4:2:0 4:2:2 4:4:4
0 0 0 0
1 0 0 0
2 0 0 0
3 0 0 0
4 1 1 1
5 2 2 2
6 1 1
7 2 2
8 1
9 2
10 1
11 2
7.16.4.11 DC coefficients decoding in intra blocks

Differential DC coefficients in blocks in intra- macroblocks are decoded as a variable length code denoting
dct dc_size as defined in Table AMDI1~52 and Table AMD1-53 in annex B, and a fixed length code
dct_dc_differential (Table AMD1-54-1). iThé dct_dc_size categorizes the dc coefficients according to their “size”.
For each category additional bits are:dppended to the dct_dc_size code to uniquely identify which difference in that
¢ategory actually occurred (Table ‘AMD1-54-1). This is done by appending a fixed length code, dct_dc_differential,
of dct_dc_size bits.

In case of rgb_components==0, if cc is zero then Table AMD1-52 shall be used for dct_dc_size. If cc is non-zero
then Table AMD1-53 shall:be used for dct_dc_size.

In case of rgb_compoenents==1, Table AMD1-52 shall be used for dct_dct_size for all of the components, cc.

Three predictors-are maintained, one for each of the colour components, cc. Each time a DC coefficient in a block
in an intra-macroblock is decoded the predictor is added to the differential to recover the actual coefficient. Then
the predictor shall be set to the value of the coefficient just decoded. At various times, as described below, the
?edictors shall be reset. The reset value except when a macroblock is encoded as DPCM residuals is derived

om the combination of the parameters bits_per_pixel , dct_precision and intra_dc_precision as;

2 M (bits_per_pixel+dct_precision+intra_dc_precision-1)

76 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The predictors shall be reset to the above reset value at the following times:

. Whenever a macroblock is decoded if intra_predictors_reset ==
. At the start of a slice.

. Whenever a non-intra macroblock is decoded

. Whenever a macroblock is skipped. i.e. not_coded == 1.

. Whenever a macroblock and a block is transparent.

When a macroblock is encoded as DPCM residuals, the reset value is derived as;
block_mean x (2 * (dct_precision+intra_dc_precision))

Because block_mean is encoded for each component independently, the reset value(for each component can b¢
different.

A1

The predictors are denoted dct_dc_pred]cc].
QFSJ[0] shall be calculated from dct_dc_size and dct_dc_differential*by-any process equivalent to:
if (dct_dc_size==0){
dct_diff = 0;
}else {
half_range =2~ (dct_dc_size - 1);
if (dct_dc_differential >= half _range)
dct_diff = dct_dc_differential;
else
dct_diff =((dct_dc_differential + 1) - (2 * half_range);
}
QFS|[0],=dct_dc_pred|cc] + dct_diff;
dcttde pred[cc] = QFS[0]

NOTE 1- The symbol * denotes power (not XOR).

NOTE 2 - dct_diff and half_range are temporary variables which are not used elsewhere in this specification.

It is a requirement of the bitstream that QFS[0] shall lie in the range:

0 to ((2"\(dct_precision + bits_per_pixel + intra_dc_precision))-1)

© ISO/IEC 2002 — All rights reserved 77

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.4.1.2 Other coefficients

All coefficients with the exception of the DC intra coefficients shall be decoded using a set of 12 VLC tables, T[0] to
T[11] . The default set of the 12 tables is defined in Table AMD1-55 to Table AMD1-66 for intra macroblocks and
Table AMD1-67 to 78 for inter macroblocks. The set of tables can be downloaded using the extension syntax of
vlc_code_extension().

The decision rule to select one table from the 12 tables for decoding a symbol is defined in this subclause.

In all cases a variable length code shall first be decoded using one of the tables. The decoded value of this code
denotes one of three courses of action:

1) End of Block. In this case there are no more coefficients in the block in which case the remainder
of the coefficients in the block (those for which no value has yet been decoded) shall be set to zero.
This is denoted by “End of block” in the syntax specification of 6.2.13.9.

2) A “normal” coefficient. In which a symbol denoting a value of run and/or lével is decoded followed
by a fixed length code of the size indicated by the variable length code'according to Table AMD1-
36. The variable length code categorizes symbols according to the\wvalue of run and/or level as
indicated in Table AMD1-36. For each category a fixed length codé is appended to the variable
length code to uniquely identify which value in that category- actually occurred. The additional
codes are defined in Table AMD1-54-2~AMD1-54-4. For dec0dirig group No.1~6, Table AMD1-54-
2 shall be used. For decoding group No.7~12, Table AMD1-54-3 shall be used. For decoding
group No.13~20, Table AMD1-54-4 shall be used.

3) An “Escape” coded coefficient. In which a value ‘of level is fixed length coded as described in
7.16.4.1.3.

'he VLC table which is used to decode a variable length.code for the current symbol shall be decided from the 12
tables according to the immediately previous symbol-which has already been decoded in a zigzag scanning order.
After decoding the current symbol, it is used to decide the VLC table for decoding the next symbol from the 12
tables.

The relation of the value of the current symbol and the VLC table used for decoding a variable length code for the
mext symbol is indicated in Table AMD1-86.

The relation of the value of the previous symbol and the VLC table for decoding the current symbol is shown in
Table AMD1-36. A variable length code for the current symbol is decoded using one of the 12 tables, and the
ariable length code indicates the group (0~21) that the value of the current symbol belongs to. Depending on the
group, the size of a fixed length code used to identify the value of the current symbol and the VLC table for
decoding the next symbal is decided. For the first non DC coefficient in a block the VLC table T[0] shall be used as
the initial table.

78 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-36 -- Categorizing ac symbol into groups

ISO/IEC 14496-2:2001/Amd.1:2002(E)

group no. | symbols of DCT AC coefficients | the size of an additional code VLC table for
(zigzag scanning order) the next symbol
0 EOB 0 -
1 0*1 0 T[1]
2 0*2 to 0*3 1 T[1]
3 0*4 to 0*7 2 T[1]
4 0*8 to 0*15 3 T[]
5 0*16 to 0*31 4 T[]
6 0*32 to 0*63 5 T[]
7 0*1[1,-1] 1 T[2]
8 0*2[1,-1] to 0*3[1,-1] 2 T[2]
9 0*4[1,-1] to 0*7[1,-1] 3 T[2]
10 0*8[1,-1] to 0*15[1,-1] 4 T[2]
11 0*16[1,-1] to 0*31[1,-1] 5 T[2]
12 0*32[1,-1] to 0*63[1,-1] 6 T[2]
13 -1,0r 1 1 T[3]
14 -3to-2,0r2t03 2 T[4]
15 -7Tto—4,0or4to7 3 T[5]
16 -15t0 -8, or 810 15 4 T[6]
17 -31 to —16;'or 16 to 31 5 T[7]
18 -63 t0-=32, or 32 to 63 6 T[8]
19 =427 to —64, or 64 to 127 7 T[9]
20 =255 to —128, or 128 to 255 8 T[10]
21 -(2 Pits-per_pixeltdetprecision*3_1) t5 _ | bits_per_pixel + dct_precision T[11]
256, +4
or 256 to (2 bits_per_pixel+dct_precision+3_
1)
(escape code)
Note - Table T[ﬂ] shallbe used for the first non DC coefficient in a hlock
The VLC code for group ‘0’ of T[0] for inter macroblocks shall not be assigned
because there shall be at least one non zero DCT coefficient in an inter block which
is indicated as ‘coded’ by pattern_code[].
The VLC code for group ‘0'~’13’ of T[1] shall not be assigned because there shall
be at least one level value , the absolute value of which is more than ‘1’, just after
group ‘1’~'6’ occurred.

© ISO/IEC 2002 — All rights reserved

79

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.4.1.3 Escape coding

Level values, the absolute value of that is more then 255, are encoded by using the escape code. The escape code that is
assigned to group No.21 is followed by a fixed length code of the length ‘bits_per_pixel+dct_precision+4’. The following equation
defines the relation among the fixed length code, the length and /evel to be decoded.

if flc>>(flclen-1) is 1

Tevel = -1~ ((flc™((1<<ficlen)-1)) + 1)
else level = flc

[Vhere, flc and flclen denote the fixed length code and its length. The symbol * denotes XOR in this subclause.

7.16.4.2 Inverse scan

This subclause specifies the way in which the one dimensional data, QFS[n] is converted into a two-dimensional
array of coefficients denoted by QF[v][u] where u and v both lie in the range of 0 to 7.'et the data at the output of
the variable length decoder be denoted by QFS[n] where n is in the range of 0 to 63!

Two scan patterns are defined. The scan that shall be used shall be determined by alternate_scan which is
e¢ncoded in StudioVideoObjectPlane().

fFigure AMD1-13 defines scan[alternate_scan][v][u] for the case thaf-alternate_scan is zero. Figure AMD1-14
defines scanfalternate_scan][v][u] for the case that alternate_scan is-one.

u
2 3 4 5 6 7

1
1 5 6 14 15 27 28
4

0
0o]o
112 7 13 16 26 29 42
213 8 12 17 25 30 41 43
319 11N~ 18 24 31 40 44 53
4 110 .19 23 32 39 45 52 54
5120~ 22 33 38 46 51 55 60
621 34 37 47 50 56 59 61
v. 7135 36 48 49 57 58 62 63
Figure AMD1-13 -- Definition of scan[0][v][u]
u
0 1 2 3 4 5 6 7
010 4 6 20 22 36 38 52
1 11 5 7 21 23 37 39 53
2 12 8 19 24 34 40 50 54
313 9 18 25 35 41 51 55
4 |10 17 26 30 42 46 56 60
5|11 16 27 31 43 47 57 61
6 |12 15 28 32 44 48 58 62
v 7113 14 29 33 45 49 59 63

Figure AMD1-14 -- Definition of scan[1][v][u]

80 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The inverse scan shall be any process equivalent to the following:
for (v=0; v<8; v++)
for (u=0; u<8; u++)

QF[v][u] = QFS[scan]alternate_scan][v][u]]

NOTE - The scan patterns defined here are often referred to as “zigzag scanning order”.

7.16.4.2.1 Inverse scan for matrix download

When the quantisation matrices are downloaded they are encoded in the bitstream in a scan order that is converted
into the two-dimensional matrix used in the inverse quantiser in an identical manner to that usedfor coefficients.

For matrix download the scan defined by Figure AMD1-13 (i.e. scan[0][v][u]) shall always be used.

Let WIw][V][u] denote the weighting matrix in the inverse quantiser (see 7.16.4.3.2'1), and W’[w][n] denote th¢
matrix as it is encoded in the bitstream. The matrix download shall then be equivalent to the following:

174

for (v=0; v<8; v++)
for (u=0; u<8; u++)

WIw]IV][u] = W w][scan[O][V][u]]

7.16.4.3 Inverse quantisation

=1

The two-dimensional array of coefficients, QF[V][u], is inverse quantised to produce the reconstructed DC]
coefficients. This process is essentially a multiplication by the base quantiser and the quantiser step size. Th
quantiser step size is modified by two mechanisms; a weighting matrix is used to modify the step size within a bloc
and a scale factor is used in order that the step size can be modified at the cost of only a few bits (as compared t
encoding an entire new weighting matrix). In case of mpeg2_stream==0, the base quantiser is used to adjust th
dynamic range of the output of the-fnverse quantisation to the range [-2°"S-Pe-Pxel *6 obitsperpixel +6 _ 41 | case g
mpeg2_stream==1, the base quantiser shall not affect the decoding process below.

1”2

— O

QF[V][U] F“[V] [LI] FI[V][U] F[V][U]
Inverse _
i sati : Mismatch
1 sat Saturat
?Aur?{}hlmetli?;n Hration Control

A AjA

| __—base quantiser

I~

N N guantiser_scale code

WIwW][V][u]

Figure AMD1-15 -- Inverse quantisation process

© ISO/IEC 2002 — All rights reserved 81

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Figure AMD1-15 illustrates the overall inverse quantisation process. After the appropriate inverse quantisation
arithmetic the resulting coefficients, F'[v][u], are saturated to yield FTv][u] and then a mismatch control operation is
performed to give the final reconstructed DCT coefficients, F[v][u].

NOTE Attention is drawn to the fact that the method of achieving mismatch control in this part of ISO/IEC 14496 is identical to
that employed by ISO/IEC 13818-2: 1996.

716431 Intra dc coefficient

'he DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other coefficients.

In intra blocks F’T0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier, infra_dc_mult, (constant in
the sense that it is not modified by either the weighting matrix or the scale factor). The multiplier is related to the
parameters base quantiser and intra_dc_precision that are encoded in StudioVideoObjectPlane(). Table AMD1-37
gpecifies the relation between intra_dc_precision, base quantiser and intra_dc_mulf. This relation changes
according to the value of mpeg2 stream. The precision of the intra dc coefficienty is defined as
‘bits_per_pixel+dct_precision+intra_dc_precision’.

Table AMD1-37 (a) In case of mpeg2_stream==0:

Reletion among intra_dc_precision, base_quantiser and intra_dc_mult

intra_dc_precision intra_dc_mult
0 8 x base_quantiser x 8
1 4 x base_quantiser x 8
2 2 x base quantiser x 8
3 1 xbase_quantiser x 8

Table AMD1-37(b) In case of mpeg2_stream==1:

Reletion between intra_dc_precision, intra_dc_mult

intra_dc_precision intra_dc_mult
0 8
1 4
2 2
3 1

The reconstructed DC yalues are computed as follows.

F[0][0] = intra_dcCmiult* QF[O][0]

7.16.4.3:2 Other coefficients

Al coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified in this

subclause.

7.16.4.3.21 Weighting matrices

In the 4:2:0 format, two weighting matrices are used. One shall be used for intra macroblocks and the other for
non-intra macroblocks. In the 4:2:2 or 4:4:4 format, four matrices are used allowing different matrices to be used
for luminance and chrominance data. Each matrix has a default set of values which may be overwritten by down-
loading a user defined matrix as explained in 6.2.13.2.4.

82 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 3 indicating which of the
matrices is being used. Table AMD1-38 summarises the rules governing the selection of w.

Table AMD1-38 -- Selection of w

(macroblock_intra = 0)

4:2:0 4:2:2 and 4:4:4
luminance chrominance luminance chrominance
(cc =0) (cc #0) (cc=0) (cc #0)
intra blocks 0 0 0 2
(macroblock_intra = 1)
non-intra blocks 1 1 1 3

7.16.4.3.2.2

The quantisation scale factor is decoded as a 5 bit fixed length code, quantiser_scale icode. This indicates th¢

Quantiser scale factor

appropriate quantiser_scale to apply in the inverse quantisation arithmetic.

g_scale_type

(encoded in

StudioVideoObjectPlane())
quantiser_scale_code and quantiser_scale shall apply. Table AMD1-39 rshows the two mappings between

quantiser_scale_code and quantiser_scale.

indicates

which. Vof

two

mappings

174

between

© ISO/IEC 2002 — All rights reserved

83

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-39 -- Relation between quantiser_scale and quantiser_scale_code

quantiser_scale[q_scale_type]
quantiser_scale_code q_scale_type =0 | q_scale_type =1
0 (forbidden)
1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
8 16 8
9 18 10
10 20 12
11 22 14
12 24 16
13 26 18
14 28 20
15 30 22
16 32 24
17 34 28
18 36 32
19 38 36
20 40 40
21 42 44
22 44 48
23 46 52
24 48 56
25 50 64
26 52 72
27 54 80
28 56 88
29 58 96
30 60 104
31 62 112
7.16.4.3.2.3 Reconstruction formulae
The following equation specifies the arithmetic to reconstruct F'[v][u] from QF[v][u] (for all coefficients except intra
IPC coefficients) in the case of mpeg2_stream==0.
F"' ' [][u]l= (2 x OF V|[u] + k) x W[w][V][u] x quantiser_scale x base_quantiser x 8) /32
1
3 0 intra blocks / non-intra blocks if dead zone disable==1
a {Sign(QF[v] [u]) non-intra blocks if dead zone disable==0
NOTE - The above equation uses the “/” operator as defined in 4.1.

This equation changes in the case of mpeg2_stream==1 as following:

84 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

F'' [V][u]= (2 x QF [V][u] + k) x W[w][v][u] x quantiser _scale) | 32

where:
B 0 intra blocks
| Sign(OF[v][4]) non-intra blocks
NOTE - The above equation uses the “/” operator as defined in 4.1.

7.16.4.3.3 Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range [-2°"-P¢27 6|

2bitsperpixel *6 _ 4]in the case of mpeg2_stream==0. Thus:

2bitsiper7pixel+6 _1 F"[V] [u] > 2bits7per7pixel+6 _1
F'[V][M] — F”[V][u] _ 2bitSJerJ)ixel+6 < F”[V][u] < 2bitSJ3erJ)ixel+6 _1

_ 2 bits_per_pixel+6 F'] [V] [u] < _2 bits_per_pixel+6

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range [-2°"-P*—Pe' 3|

2bits_perpixel *3 _ 41in the case of mpeg2_stream==1. Thus:

2bitSJ)erJ)ixel+3 _ 1 F”[V] [M] > 2bitSJ)erJ)ixel+3 _ 1
F'[V] [U] — F”[V] [M] _ 2bitsfperjixel+3 < F”[V] [I/l] < 2bits7perjixe1+3 _ 1
_ 2bitsl)crjixcl+3 F”[V] [u] < _2 bits_per_pixel+3

7.16.4.3.4 Mismatch control

Mismatch control shall be performed by any process equivalent to the following. Firstly all of the reconstructed,
saturated coefficients, F'[v][u] in the bleck shall be summed. This value is then tested to determine whether it i
odd or even. If the sum is even then a-correction shall be made to just one coefficient; F[7][7]. Thus:

o

v<8u<8

sum= Y > F'[v][u]
F[v][u] = F'[v][u] for all u, vexcept u=v=7

F'[77] if sumisodd
FL717] = {F'[?][?]—l it F'[7][7] is odd

F' 77 +1 if F'[7][7] iSeven} if sumiseven

NOTE 1 It may be useful to note that the above correction for F[7][7] may simply be implemented by toggling th
least significant bit of the twos complement representation of the coefficient. Also since only the “oddness”
“evenness” of the sum is of interest an exclusive OR (of just the least significant bit) may be used to calculat

=

SunT.

NOTE 2 Warning. Small non-zero inputs to the IDCT may result in zero output for compliant IDCTs. If this
occurs in an encoder, mismatch may occur in some pictures in a decoder that uses a different compliant IDCT.
An encoder should avoid this problem and may do so by checking the output of its own IDCT. It should ensure
that it never inserts any non-zero coefficients into the bitstream when the block in question reconstructs to zero
through its own IDCT function. If this action is not taken by the encoder, situations can arise where large and very
visible mismatches between the state of the encoder and decoder occur.

© ISO/IEC 2002 — All rights reserved 85

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.4.3.5 Summary of quantiser process
In summary, the inverse quantisation process is any process numerically equivalent to:
for (v=0; v<8;v++) {

for (u=0; u<8;u++) {

if ((u==0) && (v==0) && (macroblock_intra)) {
F"[v][u] = intra_dc_mult * QF[v][u];
}else {
if (macroblock_intra) {
F'[v][u] = (QF[vI[u] * W[O][v][u] * quantiser_scale * base_quantiser * 82) / 32;
} else {
F'[vi[u] = (((QF[VI[u] * 2) + Sign(QF[V][u])) * W[1][V][u]

* quantiser_scalé*base_quantiser * 8)/ 32;

}
sum = 0;
for (v=0; v<8;v++) {
for (u=0; u<8;u++) {
if (P V] > 2" - 1) {
F[v][u] =22sper-rrete 1,
} else {
i FV][u] < -2°srerere y (
FvJ[u] = -2

}else {

Fv][u] = F*[v][u];

86 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

sum = sum + F[v][ul;
FIVI[u] = F'[V][u];
}

}

if (sum & 1) == 0) {
if (F[7][7] & 1) 1= 0) {
FI717] = F7107] - 1
}else {

FI7I07] = F[71[7] + 1

7.16.4.4 Inverse DCT

Once the DCT coefficients, F[u][v] are reconstructed, an IDCT\transform that conforms to the specifications 9
Annex A shall be applied to obtain the inverse transformed ¥alues, f[y][x] In the case of mpeg2_stream==0, thg¢
decimal point of F[u][v] is shifted 3bits to the left in the binary scale in order to adjust the decimal point of the IDC]
input. In the case of mpeg2_stream==1, the reconstructed' coefficients are directly input to an IDCT function withou

the shift process. The inverse transformed values shall be saturated so that: -2°"-P-P*' < fy][x] < 2°"s-Pe-Pxe! _ ¢ |
for all x, y.

—_ T =k

7.16.4.4.1 Non-coded blocks and skipped macroblocks

In a macroblock that is not skipped,_if pattern_code]i] is one for a given block in the macroblock, then coefficient
data is included in the bitstream for that block. This is decoded as specified in the preceding clauses.

However, if pattern_code]i] is zero, or if the macroblock is skipped (not_coded==1), then that block contains n¢
coefficient data. The sample-domain coefficients f[y][x] for such a block shall all take the value zero.

7.16.5 Texturedecoding from DPCM redisuals

If the DPCM ™mode is selected each non-transparent block is decoded as follows. First the rice_parameter field i
decodeds It indicates the length of each subsequent rice_suffix_code field. The block is scanned line by line, rov
by rowxand the following process is applied to each pixel. An unsigned residual is retrieved by a combination of th
rice_prefix_code, rice_suffix_code and dpcm_residual fields. If rice_prefix_code indicates the escape mode
the: unsigned residual is given by dpem_residual. Otherwise the unsigned residual is given by

__(rice—prefix—code<<rice_parameter+rice—suffix_code.

O—=—0

Then the unsigned residual is mapped to a signed residual according to the following transformation:
x = x>>1if x is even

X = -x>>1 if x is odd

© ISO/IEC 2002 — All rights reserved 87

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

A prediction is computed based on the pixels that lie directly to the left ‘a’, directly above ‘b’, and directly left above
‘c’. If any of these pixels lies outside of the block boundary it is given the default value of 2°'-Pe—P*eH1 The
prediction ‘p’ is computed as:

p = atb-c

if (p < min(a,b)) p = min(a,b)

if (p > max(a,b)) p = max(a,b)
second prediction p2 is computed as:
2 = (min(a,b,c)*max(a,b,c)) / 2
If p2 is equal to p, p2 is assigned the value of block_mean.
If p2 is larger than p, the sign of the residual is inverted. Otherwise no operation is applied to the résidual.
fFinally the reconstructed pixel value, d”[y][x], is obtained by adding the signed residual”and the prediction p,
modulo 2b|ts_per_p|xell
71.16.6 Shape decoding
Binary shape decoding uses a block-based representation. The primary data structure used is denoted as the
inary alpha block (bab). The bab is a square block of binary valued ‘pixels representing the opacity/transparency
r the pixels in a specified block-shaped spatial region of size 16x16.pels. In fact, each bab is co-located with each
xture macroblock.
71.16.6.1 Higher syntactic structures

71.16.6.1.1 VOL decoding

If video object layer _shape is equal to ‘00’ then.no binary shape decoding is required. Otherwise, binary shape
decoding is carried out.

71.16.6.1.2 VOP decoding

:[video_object_layer_shape is notcequal to ‘00’ then, for each subsequent VOP, the dimensions of the bounding
ectangle of the reconstructed VOP are obtained from:

¢ vop_width

¢ vop_height

If these decoded dimensions are not multiples of 16, then the values of vop_width and vop_height are rounded up
the nearest/integer, which is a multiple of 16. If vop_structure is decoded as field structure, both values are
efinded in.the absolute field coordinates.

dditienally, in order to facilitate motion compensation, the horizontal and spatial position of the VOP are obtained
om:

e vop_horizontal_mc_spatial_ref
e vop_vertical_mc_spatial_ref
These spatial references may be different for each VOP. The absolute frame coordinate system must be used for

all frame VOPs, while the absolute field coordinate system must be used for all field VOPs. Additionally, the
decoded spatial references must have an even value.

88 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Once the above elements have been decoded, the binary shape decoder may be applied to decode the shape of
each macroblock within the bounding rectangle.

7.16.6.2 Macroblock decoding

The shape information for each macroblock residing within the bounding rectangle of the VOP is decoded into the
form of a 16x16 bab.

7.16.6.2.1 Mode decoding

Each bab belongs to one of five types listed in Table AMD1-40. The type information is given by the bab, type field
which influences decoding of further shape information.

Table AMD1-40 -- List of bab types

bab_type | Semantic Used in
0 MVs==0 && No Update P-VOPs
1 MVs!=0 && No Update P-VOPs
2 Transparent All VOP types
3 Opaque All VOP types
4 HHC All YOP types

7.16.6.2.1.1 I-VOPs
In this specification (Studio Profile), only five bab_types are adopted independently of vop_type.

Suppose that f(x,y) is the bab_type of the bab located at (x,y), where x is the BAB column number and y is the BAB
row number. The code word for the bab_type at the position (i,j) is determined as follows. A context C is computed
from a previously decoded bab_type.

C = f(i-1,j)-2

If £(x,y) references a bab outside thé€)current VOP, bab_type is assumed to be transparent for that bab (i.€.
f (x, y)=2). bab_type of the bab outside the current slice is also assumed to be transparent. The VLC used t
decode bab_type for the current bab-is switched according to the value of the context C. This context-switched VL(
table is given in Table AMD1-80/ The context C shall be set to zero for all macroblocks in a VOP in case 9
intra_predictors_reset==1 or{for-a macroblock located at the start of a slice.

— 7O

If the type of the bab is(transparent, then the current bab is filled with zero (transparent) values. A similar procedurs
is carried out if the type is opaque, where the reconstructed bab is filled with values of 255 (opaque). For bot
transparent and opaque types, no further decoding of shape-related data is required for the current bab. Otherwise
further decoding'steps are necessary, which is called HHC. Decoding for HHC is described in subclause 7.16.6.2.5.

O—=®

7.16.6.2.1:2 P-VOPs

The.decoding of the current bab_type is dependent on the bab_type of the co-located bab in the reference VOR.
The'reference VOP is a forward reference VOP. The forward reference VOP is defined as the most recent non
empty (i.e. vop_coded != 0) I- or P-VOP in the past. If the current VOP is a P-VOP, the forward reference VOP i

o

selected as the reference VOP.

If the current VOP is a field VOP of the interlaced sequence, the forward reference VOP is defined as the most
recent non empty |- or P- field VOP of the same position (top or bottom field) in the past. When the second field of
the first frame in GOV is coded as P-VOP, the reference VOP is the first field coded as I-VOP.

© ISO/IEC 2002 — Al rights reserved 89

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

If the sizes of the current and reference VOPs are different, some babs in the current VOP may not have a co-
located equivalent in the reference VOP. Therefore the bab_type matrix of the reference VOP is manipulated to
match the size of the current VOP. Two rules are defined for that purpose, namely a cut rule and a copy rule:

e cut rule. If the number of lines (respectively columns) is smaller in the current VOP than in the reference VOP,
the bottom lines (respectively rightmost columns) are eliminated from the reference VOP such that both VOP

sizes match.
¢ copy rule. If the number of lines (respectively columns) is larger in the current VOP than in the reference VOP,
the bottom line (respectively rightmost column) is replicated as many times as needed in the reference YOP
such that both VOP sizes match.
An example is shown in Figure AMD1-16 where both rules are applied.
(a) (b) (c)
2211122 221112 221112
2210122 221012 2210 K2
. 2110012 211001 211 0071
Previous 2110012H>211001 ':> 21 1001
vor 2100001 210000 2 110700 0
3030003 303000 303000
0000031 000003 000003\
x 000003 oDy
cut | S
(d)
221122
221012
211011
Current 211001
VOP 110000
330000
000000O0
000000
Figure AMD1-16 -- Example of size fitting between current VOP and reference VOP. The numbers represent
the type of each bab
The VLC to decode the current\bab_type is switched according to the bab_type value of the co-located bab in the

eference VOP. These contéxi-switched VLC tables for P-VOPs are given in Table AMD1-81. If the type of the bab
ip transparent, then the current bab is filled with zero (transparent) values. A similar procedure is carried out if the
pe is opaque, where the reconstructed bab is filled with values of 255 (opaque). For both transparent and opaque
pes, no further decading of shape-related data is required for the current bab. Otherwise further decoding steps
re necessary, as‘listed in Table AMD1-41. Decoding for motion compensation is described in subclause 7.16.6.2.4,
nd HHC decoding in subclause 7.16.6.2.5.

Table AMD1-41 -- Decoder components applied for each type of bab

bab_type | Motion compensation HHC
0 yes g[e)

1 yes no

2 no no

3 no no

4 no yes

90 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.6.2.2 Binary alpha block motion compensation

Motion Vector of a shape (MVs) is used for motion compensation (MC) of the shape. The value of MVs is
reconstructed as described in subclause 7.16.6.2.3. Integer pixel motion compensation is carried out on a 16x16
block basis according to subclause 7.16.6.2.4.

If bab_type is MVs==0 && No Update or MVs!=0 && No Update then the motion compensated bab is taken to be
the decoded bab, and no further decoding of the bab is necessary. Otherwise, HHC decoding is required.

7.16.6.2.3 Motion vector decoding

If bab_type indicates that MVs!=0, then mvs_x and mvs_y are VLC decoded. For decoding mvs_x, the VLC give
in Table AMD1-82_is used. The same table is used for decoding mvs_y, unless the decoded value of mvs_x is zerd.
If mvs_x == 0, the VLC given in Table AMD1-83 is used for decoding mvs_y. If bab_type indicates.that MVs==0,
then both mvs_x and mvs_y are set to zero.

=

7.16.6.2.4 Motion compensation

For inter mode babs (bab_type = 0 or 1), motion compensation is carried out by simple-MV displacement according
to the MVs.

Specifically, when bab_type is equal to 0 or 1 i.e. for the no-update modes, a displaced block of 16x16 pixels i$
copied from the binary alpha map of the previously decoded | or P VOP for which vop_coded is not equal to ‘0’. If
the displaced position is outside the bounding rectangle, then these pixels\are assumed to be “transparent”.

If the macroblock is in the field VOP, a displayed block is copied from previously decoded field I-VOP of the sam
position (top or bottom field). When the second field of the firstframe in GOV is coded as P-VOP, a displayed bloc
is copied from the first field coded as I-VOP.

D

7.16.6.2.5 HHC decoding

If an inferior_symbol_macroblock is equal to ‘0’ then'the inferior symbol means transparent and the superior symbg|l
means opaque. Otherwise, the inferior symbol means opaque and the superior symbol means transparent. Afte]
the inferior symbol is decided, the pattern of>inferior symbol in the block is decoded as the following hierarchicg
process.

—

7.16.6.2.5.1 Coded binary block pattern

The index of cbbp is obtained by decoding the variable length code to produce coded_binary_ block_patterni]
(i=0,1,2,3). If coded_binary. block_pattern[i] is one for a given block in the macroblock then the data of the bloc
layer is included in the bitstream for that block. However, if coded_binary block_pattern([i] is zero, then that bloc
contains no inferior symbol for the macroblock. The binary alpha coefficients for such shape blocks shall all tak
the value equal to thie superior symbol for the macroblock.

D

7.16.6.2.5.2 Binary block decoding

For the block whose coded_binary_block_pattern[l] is one, the data of the block layer is decoded. The inferior an
the superior symbol for the block is indicated by inferior_symbol_block. If scan_direction is equal to 0, the block i
divided into horizontal rows. If scan_direction is equal to 1, the block is divided into vertical columns. i

I

e

=

backward_read_flag is set to ‘0’, Ibp corresponds to the pixel pattern from left to right pixel in scan_direction="0’
from upper to lower pixel in scan direction="1". If backward read flag is set to ‘1’, Ibp corresponds to the pix

pattern from right to left pixel in scan_type='0’ or from lower to upper pixel in scan_type="1".

The index of clp is obtained by decoding the variable length code to produce coded_line_pattern[i] (1=0,1,2, ,7). If
coded_line_pattern[i] is one for a given line in the block then Ibp information is included in the bitstream for that line.
However, if coded_line_pattern[i] is zero, then that line contains no inferior symbol for the block. The binary alpha
coefficient for such shape lines shall all take the value equal to the superior symbol for the block.

© ISO/IEC 2002 — All rights reserved 91

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The index of Ibp is obtained by decoding the variable length code to produce line_bit_pattern[i] (1=0,1,2, ,7). If
backward_read flag is set to ‘1’, line_bit_pattern][i] is set to line_bit_pattern[7-i]. Note that line_bit_pattern][i] equal to
‘1’ means the pixel is the inferior symbol for the block. Otherwise, line_bit_pattern[i] is equal to ‘1’ means the pixel
is the superior symbol for the block .

After all pixels are decoded, the inferior symbol and superior symbol are set to either opaque or transparent symbol,
respectively.

[.16.6.3 Grayscale Shape Decoding

Grayscale alpha plane decoding is achieved by the separate decoding of a support region and the values .of, the
Ilpha channel. The support region is transmitted by using the binary shape as described above. The alpha‘values

re transmitted as texture data with arbitrary shape, using almost the same coding method as is used for the
I[uminance texture channel.

Gray-Level
Alpha

T

Support Tex ture

Binary Texture Coder
Shape Coder

Figure AMD1-17 -- Grayscale shape coding

All samples which are indicated to be transpatent by the binary shape data must be set to the value of
inimum_alpha_level[i](transparent) in the decoded grayscale alpha plane i. Within the VOP, alpha samples have
e values produced by the grayscale alpha decoding process. Decoding of binary shape information is not
ependent on the decoding of grayscale alpha. The alpha values are decoded into 16x16 macroblocks in the same
ay as the luminance channel (see subclause 7.16.4, 7.16.5 and 7.16.7). The 16x16 blocks of alpha values are

eferred to as alpha macroblocks~hereafter. The data for each alpha macroblock is present in the bitstream

immediately following the texture data for the corresponding texture macroblock. Any aspect of alpha decoding that
is not covered in this document'should be assumed to be the same as for the decoding of luminance.

71.16.6.3.1 Grayscale-Alpha COD Modes

Vhen decoding grayscale alpha macroblocks, CODA is first encountered and indicates the coding status for alpha.
:ﬁ]is important torunderstand that the macroblock syntax elements for alpha are still present in the bitstream for inter

acroblocks €ven if the texture syntax elements indicate “not-coded” (not_coded="1"). In this respect, the decoding
of the alpha ‘and texture data are independent.

fFor macroblocks which are completely transparent (indicated by the binary shape coding), no alpha syntax
¢lements are present and the grayscale alpha samples must all be set to the value of mlnlmum _alpha_level[i]

then nomore alpha data is present OtherW|se other alpha syntax elements foIIow i.e. alpha texture data encoded
as either DCT coefficients which are coded and non-transparent or DPCM residuals, as is the case for regular
luminance macroblock texture data.

When CODA="all opaque”, the corresponding decoded alpha macroblock is filled with the value of
maximum_alpha_level[i]. This value will be called AlphaOpaqueValueli].

92 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.6.3.2 Intra Macroblocks coded as DPCM residuals

In case of alpha_compression_mode[i]==1(DPCM mode), the grayscale alpha data shall be decoded as DPCM
residuals. DPCM mode can be selected independently of intra/inter mode of the texture data.

7.16.6.3.3 Intra Macroblocks coded as DCT coefficients

(compression_mode==0 && macroblock_intra==1), and if alpha_compr_ession_mode[i ==0, the grayscale alphz
data is encoded as intra DCT residual.

The intra dc value is decoded in the same way as for luminance.

The DC predictor is used in the same way as for luminance. However, when coda_i indicates that-asmacroblock i
all opaque, the predictor shall be reset so that the next intra block to be decoded is correctly decoded. The rese
value is defined as;

o

—

AlphaOpaqueValue[i] * (2*(alpah_dct_precision[i]+alpha_intra_dc_precision[i]))
AlphaOpaqueValugli] is described in subclaused 7.16.6.3.1.

7.16.6.3.4 Inter Macroblocks and Motion Compensation

When the texture data in a P-VOP is encoded as inter (macroblock (compression_mode==0 &&
macroblock_intra==0), and if alpha_compression_model[i]==0, the @lpha macroblock shall be decoded as intef
macroblock.

Motion compensation is carried out for inter macroblocks, using-the 16x16 or 16x8 luminance motion vectors, in the
same way as for luminance data. Where the luminanceé’ motion vectors are not present because the textur
macroblock is skipped, the exact same style of non-coded motion compensation used for luminance is applied t
the alpha data. Note that this does not imply that the-alpha macroblock is skipped, because an error signal t
update the resulting motion compensated alpha magroblock may still be present if indicated by coda_pb.

O—0O—0—®

cbpa is defined in Table AMD1-88 and alpha_pattern_code is derived from cbps.

Alpha inter DCT coefficients are decodedin the same way as the luminance coefficients. The only exception is that
the inverse quantisation process in 7.16.4.2.3 shall perfom as if dead_zone_disable is set to zero independently o
the value of dead_zone_disable.

=R

7.16.6.3.5 Method to be used when blending with greyscale alpha signal

The following explains the blending method to be applied to the video object in the compositor, which is controlled
by the composition_method flag and the linear_composition flag. The linear_composition flag is informative only,
and the decoderCmay ignore it and proceed as if it had the value 0. However, it is normative that th¢
composition_méthod flag be acted upon.

1

The descriptions below show the processing taking place in YUV space; note that the processing can of course b
impleménted in RGB space to obtain equivalent results.

D

saturation

Ine aiphna signails are saturated 1o lie in e range [11, Upl. Thus.

{Op if alpha > Op
alpha = { alpha if Tr <=alpha <=Op
{Tr if alpha < Tr

© ISO/IEC 2002 — All rights reserved 93

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

composition_method=0 (cross-fading)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited Y, U, V
and alpha values are:

Pyuv = ((R - (Nalpha-Tr)) * Myuv + ((Nalpha-Tr) * Nyuv)) / R
Palpha = Op

¢omposition_method=1 (Additive mixing)
If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited) Y, U, V

nd alpha values are:

{Myav. L. Nalpha = Tr
Ryuv ={
{(Myuv - BLACK) - ((Myuv - BLACK) * (Nalpha-Tr)) / R+ Nyuv Nalpha > Tr

[this is equivalent to Pyuv = Myuv*(1-alpha) + Nyuv, taking account of black level*and the fact that the video
decoder does not produce an output in areas where alpha=0)

Palpha = Nalpha + Malpha -Tr - ((Nalpha-Tr)*(Malpha-Tr)) / R
where
BLACK is the common black value of foreground and background’objects.
Tr: level for complete transparency
Op: level for complete opacity
R: = Op - Tr (dynamic range of alpha signal)

NOTE The compositor must convert foreground-and background objects to the same black value and signal
range before composition. The black level(of each video object is specified by the video_range bit in the
video_signal_type field, or by the default value'if the field is not present. (The RGB values of synthetic objects are
specified in a range from 0 to 1, as described in ISO/IEC 14496-1).

¢ linear_composition = 0: The compositing process is carried out using the video signal in the format from which
it is produced by the video decoderythat is, without converting to linear signals. Note that because video
signals are usually non-linear (“gamma-corrected”), the composition will be approximate.

¢ linear_composition = 1: The compositing process is carried out using linear signals, so the output of the video
decoder is converted to linéar if it was originally in a non-linear form, as specified by the video_signal_type field.
Note that the alpha signalys always linear, and therefore requires no conversion.

[.16.6.4 Multiple Auxiliary Component Decoding

Auxiliary components are defined for the VOP on a pixel-by-pixel basis, and contain data related to the video object,
ljke disparity, depth, additional texture. Up to 3 auxiliary components (including the grayscale shape) are possible.
The number;and type of these components is indicated by the video_object_layer_shape_extension given in Table
AMD1-12¢ For example, a value ‘0000’ indicates the grayscale (alpha) shape. The same support region as
describ&d'in 7.16.6.2 is used for all auxiliary components, and the decoding procedure is the same as described in
1.166.8.

7.16.7 Motion compensation decoding

The motion compensation process forms predictions from previously decoded VOPs which are combined with the
coefficient data (from the output of the IDCT) in order to recover the final decoded samples.

In general up to two separate predictions are formed for each block which are combined together to form the final
prediction block p[y][x].

94 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

In the case of intra coded macroblocks no prediction is formed so that p[y][x] will be zero. The saturation shown in
Figure AMD1-11 is still required in order to remove prohibited values from f[y][x].

In the case where a block is not coded, either because the entire macroblock is skipped or the specific block is not
coded there is no coefficient data. In this case fly][x] is zero and the decoded samples are simply the prediction,

PLyl[x]-

A

All the processes except for resetting motion vector predictors in 7.16.7.4.4 are never executed when a macrobloc

is completely transparent.

Prediction Framesiore
Field/Frame [~ Addressing
Selection Framestores
vector [r][d [t]q
From Vector Scaling Hal .f_F.)el
Bitstream Decoding for Colour Prgdlct_lon
Components Filtering
vector '[r][d][t] ¢
Vector Hal fl- :::)I Combine
Predictors ' Predictions

PIVIX]

Decoded
Samples

Saturation

f [V][X] d[vl[x]

Figure AMD1-18 Simplified motion compensation process

7.16.7.1 Motion compensation decoding of arbitrary shaped VOP

In order_to~perform motion compensated prediction on a per VOP basis, a special padding technique, i.e. the
macroblock-based repetitive padding, is applied for the reference VOP. The details of these techniques ar
deseribed in the following subclauses.

O—

14

Sihce a VOP may have arbitrary shape, and this shape can change from one instance to another, conventions arg¢

necessary to ensure the consistency of the motion compensation process.

The absolute (frame or field) coordinate system is used for referencing every VOP. At every given instance, a
bounding rectangle that includes the shape of that VOP, as described in subclause 7.16.4, is defined. The left and
top corner, in the absolute coordinates, of the bounding rectangle is decoded from VOP spatial reference. Thus, the
motion vector for a particular feature inside a VOP, e.g. a macroblock, refers to the displacement of the feature in
absolute coordinates. No alignment of VOP bounding rectangles at different time instances is performed.

© ISO/IEC 2002 — All rights reserved 95

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.711 Padding process

The padding process defines the values of luminance and chrominance samples outside the VOP for prediction of
arbitrarily shaped objects. Figure AMD1-19 shows a simplified diagram of this process.

~
i W
Eramestares

Ny i J
Predictions
fIyl[x]
d’' [yix]
s [yl[x]
s’ [yl[x]
Saturation
Horizontal Vertical

—» Repetitive Extended

Repetitive :
.) Padding
Padding Padding
Ay — | /

v

hor_pad [y][X] hv_pad [y][x]

Figure AMD1-19 -- Simplified padding process

\ decoded macroblock dfy]/x] is padded by\referring to the corresponding decoded shape block s[yj[x]. The
Lminance component is padded per 16 x‘16 samples, while the chrominance components are padded per 8 x 8
amples for 4:2:0 format, 16 x 8 samples-for 4:2:2 format, 16 x 16 samples for 4:4:4 format. A macroblock that lies
n the VOP boundary (hereafter referred to as a boundary macroblock) is padded by replicating the boundary
amples of the VOP towards the ‘exterior. This process is divided into horizontal repetitive padding and vertical
1epetitive padding. The remaining macroblocks that are completely outside the VOP (hereafter referred to as
xterior macroblocks) are filled\by extended padding.

POl

INOTE The padding process: is applied to all macroblocks inside the bounding rectangle of a VOP. The bounding rectangle of
the luminance compongént-is defined by vop_width and vop_height extended to a multiple of 16, while that of the chrominance
¢omponents is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

7.16.7.1.1.1 Horizontal repetitive padding

Each sample at the boundary of a VOP is replicated horizontally to the left and/or right direction in order to fill the
fransparent region outside the VOP of a boundary macroblock. If there are two boundary sample values for filling a
gample outside of a VOP, the two boundary samples are averaged (//2).

hor_pad[y][x] is generated by any process equivalent to the following example. For every line with at least one
shape sample s[yj[x] == 1(inside the VOP) :

96 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

for (x=0; x<N; x++) {
if (s[ylx] == 1) { hor_pad[y][x] = d[yl[x]; s'[yllx] = 1; }
else {

if (slylx]==1&& s[y][x] == 1) {

PN ‘ W)

repaetylbd=fetyibet—ehytbeie:
STyIx] = 1

}else if (slylix]==1) {
hor_padly]i = dlylIX; STyJIX] = 1;

}else if (slylix] == 1) {

hor_pad[y][x] = d[y][x"]; s'ly][x] = 1;

}

where x’ is the location of the nearest valid sample (s[y][x] == 1) at.the VOP boundary to the left of the curren
location x, x”is the location of the nearest boundary sample to the right, and N is the number of samples of a line i
a macroblock. s’fy][x] is initialized to 0.

—

7.16.7.1.1.2 Vertical repetitive padding

The remaining unfilled transparent horizontal samples«where s’[yJ/x] == 0) from subclause 7.16.7.1.1.1 are padded
by a similar process as the horizontal repetitive padding but in the vertical direction. The samples already filled i
subclause 7.16.7.1.1.1 are treated as if they weretinside the VOP for the purpose of this vertical pass.

hv_pad]|y][x] is generated by any process equivalent to the following example. For every column of hor_pad]y][x] :
for (y=0; y<M; y++) {

if (s'ylix] == 1)
hv_pad[ylfx] =hor_pad[y][x];
else {
iNCSTYX] == 1 && S'y"]IX] == 1)
hv_pad(y][x] = (hor_pad[y’][x] + hor_pad[y"][x])//2;
else if (s'y][x]==1)

hv_pad[y][x] = hor_padl[y’][x];

else if (STy"[x]==1)

hv_pad[y][x] = hor_pad[y”][x];

© ISO/IEC 2002 — All rights reserved 97

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

where y’ is the location of the nearest valid sample (s’[y’][x] == 1) above the current location y at the boundary of
hv_pad, y”is the location of the nearest boundary sample below y, and M is the number of samples of a column in
a macroblock.

7.16.7.1.1.3 Extended padding

Exterior macroblocks immediately next to boundary macroblocks are filled by replicating the samples at the border
of the boundary macroblocks. Note that the boundary macroblocks have been completely padded in subclause

1.16.7.1.1.1 and subclause 7.16.7.1.1.2. If an exterior macroblock is next to more than one boundary macroblock;
one of the macroblocks is chosen, according to the following convention, for reference.

The boundary macroblocks surrounding an exterior macroblock are numbered in priority according to\Figure
AMD1-20. The exterior macroblock is then padded by replicating upwards, downwards, leftwards, or rightwards the
flow of samples from the horizontal or vertical border of the boundary macroblock having the largest pridrity number.

The remaining exterior macroblocks (not located next to any boundary macroblocks) are filled with, 2°-P-P*1 "For
8-bit luminance component and associated chrominance this implies filling with 128.

Boundary
macroblock 2

Boundary Exterior Boundary
macroblock 3 macroblock macroblock 1
Boundary

macroblock 0

Figure AMD1-20 -- Priority.of boundary macroblocks surrounding an exterior macroblock

1.16.7.1.1.4 Padding for chrominance components

Chrominance components are padded according to subclauses 7.16.7.1.1.1 through 7.16.7.1.1.3. The padding is
performed by referring to a shape block generated by decimating the shape block of the corresponding luminance
¢omponent. This. decimating of the shape block is performed by the subsampling process described in subclause
6.1.3.6.

71.16.7:1:1.5 Padding of interlaced macroblocks

Macroblocks of an interlaced VOP (progressive sequence = 0) are padded according to 7.16.7.1.1.1 through

7.16.7.1.1.3. The vertical padding of the luminance component, however, is performed for each field independently.
A sample outside of a VOP is therefore filled with the value of the nearest boundary sample of the same field.
Completely transparent blocks are padded with 2°-"**¢"! " Chrominance components of interlaced VOP are
padded according to subclause 7.16.7.1.1.4, however, based on fields. The padding method described in this
subclause is not used outside the bounding rectangle of the VOP.

98 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.7.2 Prediction modes

There are two maijor classifications of the prediction mode:
- field prediction; and

- frame prediction.
In field prediction, predictions are made independently for each field by using data from one or more previously

decoded fields. Erame nrediction forms a nrediction for the frame from one or more nreviously decoded frames. It
Lud Ll = J

must be understood that the fields and frames from which predictions are made may themselves have been
decoded as either field VOPs or frame VOPs.

14

Within a field VOP all predictions are field predictions. However in a frame VOP either field predictions or fram¢
predictions may be used (selected on a macroblock-by macroblock basis).

In addition to the major classification of field or frame prediction a special prediction mode is used:
. 16x8 motion compensation - In which two motion vectors are used for each macroblock. The first motion

vector is used for the upper 16x8 region, the second for the lower 16x8 region. In this specification 16x8 motion
compensation shall only be used with field VOPs.

7.16.7.3 Prediction field and frame selection

The selection of which fields and frames shall be used to form predictions.shall be made as detailed in this clause.

7.16.7.3.1 Field prediction

In P-VOPs, the two reference fields from which predictions shall made are the most recently decoded reference to
field and the most recently decoded reference bottom field{The simplest case illustrated in Figure AMD1-21 shall
be used when predicting the first VOP of a coded frameor when using field prediction within a frame-VOP. In
these cases the two reference fields are part of the same-reconstructed frame.

A4

NOTES -
1 The reference fields may themselves have been reconstructed from two field-VOPs or a single frame-VOP.
2 In the case of predicting a field VOP, the field being predicted may be either the top field or the bottom field.

Top
Reference
Field

Bottom
Reference
Field

Possible
Intervening
B-VOPs
(Not yet decoded)

Figure AMD1-21 -- Prediction of the first field or field prediction in a frame-VOP

The case when predicting the second field VOP of a coded frame is more complicated because the two most
recently decoded reference fields shall be used, and in this case, the most recent reference field was obtained from
decoding the first field VOP of the coded frame. Figure AMD1-22 illustrates the situation when this second VOP is
the bottom field. Figure AMD1-23 illustrates the situation when this second VOP is the top field.

NOTE - The earlier reference field may itself have been reconstructed by decoding a field VOP or a frame VOP.

© ISO/IEC 2002 — Al rights reserved 99

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Top
Reference
Field

Bottom
Reference
Field
Possible N—t
Intervening
B-VOPs
(Not yet decoded)

Figure AMD1-22 -- Prediction of the second field-VOP when it is the bottom field

Top
Reference
Field

Bottom
Reference
Field

Possible
Intervening
B-VOPs
(Not yet'decoded)

Figure AMD1-23 -- Prediction of the second field-VOP when it is the top field

71.16.7.3.2 Frame prediction

In P-VOPs prediction shall be made from the most recently reconstructed reference frame. This is illustrated in
fFigure AMD1-24.

NOTE - The reference frame may itself have been reconstructed from two field VOPs or a single frame VOP.

Frame

Reference | |

Possible
Intervening
B-VOPs
(Not yet decoded)

Figure AMD1-24 -- Frame-prediction for P-VOPs

100 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.7.4 Motion vectors

Motion vectors are coded differentially with respect to previously decoded motion vectors in order to reduce the
number of bits required to represent them. In order to decode the motion vectors the decoder shall maintain two
motion vector predictors (each with a horizontal and vertical component) denoted PMV]r][s][f]. For each prediction,
a motion vector, vector|r][s][f] is first derived. This is then scaled depending on the sampling structure (4:2:0, 4:2:2
or 4:4:4) to give a motion vector, vector{r][s][t], for each colour component. The meanings associated with the
dimensions in this array are defined in Table AMD1-42

Table AMD1-42 -- Meaning of indices in PMV]r][s][f], vectorir][s][f] and vector’[r][s][f]

0 1
r || First motion vector in Macroblock | Second motion vector in Macroblock
S Forward motion Vector unused
t Horizontal Component Vertical Component
7.16.7.4.1 Decoding the motion vectors

Each motion vector component, vector]r][s][t], shall be calculated by any process that is equivalent to the following
one. Note that the motion vector predictors shall also be updated by this process:

© ISO/IEC 2002 — All rights reserved 101

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

r_size =vop_fcode[s][t] - 1
f=1<<r_size
high=(16*f)- 1;

low = ((-16) * f);

range = (32 *f);

if ((f ==1) || (motion_code[r][s][t] == 0))
delta = motion_code]r][s][t] ;

else {

if (motion_code][r][s][t] < 0)

delta = - delta;

prediction = PMV[r][s][t];

prediction = PMVJr][s][t] DIV 2;

vector'[r][s][t]= prediction + delta;
if (vector'[r][s][t] < low)

vector[r][s][t] = yector'[r][s][t] + range;
if (vector'[r][s][t] >-high)

vectorfr}[s][t] = vector’[r][s][] - range;

PMVI[r][s][t] = vector’[r][s][t] * 2;

delta = ((Abs(motion_code]r][s][t]) - 1) * f) + motion_residuallr][s][t] + 1;

if ((mv_format == “field”) && (t==1) && (VOP_structure == “Frame VOP"))

if.C(mv_format == “field”) && (t==1) && (VOP_structure == “Frame VOP"))

else

PMVI[r][s][t] = vector’[r][s][t];

102

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The parameters in the bitstream shall be such that the reconstructed differential motion vector, delta, shall lie in the
range [low:high]. In addition the reconstructed motion vector, vectorTr][s][f], and the updated value of the motion
vector predictor PMV[r[s][t], shall also lie in the range [low : high]. The allowed range [low : high] for the motion
vectors depends on the parameter vop_fcode[s][t].

r_size, f, delta, high , low and range are temporary variables that are not used in the remainder of this specification.

motion code[r][s][t] and motion residuallr][s][t] are fields recovered from the bitstream. mv format is recovered

from the bitstream using Table AMD1-30 and Table AMD1-31.
r, s and t specify the particular motion vector component being processed as identified in Table AMD1-42.

vectorTr][s][f] is the final reconstructed motion vector for the luminance component of the macroblock.
7.16.7.4.2 Motion vector restrictions

In frame VOPs, the vertical component of the field motion vectors shall be restricted so that they only cover half the
range that is supported by the vop_fcode that relates to those motion vectors. This restriction ensures that thg
motion vector predictors will always have values that are appropriate for decoding’ subsequent frame motio
vectors. Table AMD1-43 summarises the size of motion vectors that may be coded’as a function of vop_fcode.

= o—

Table AMD1-43 -- Allowable motion vector range as a function of vop_fcode[s][f]

Vertical components (t==1)
vop_fcode[s] of All other cases
[field vectors in frame
VOPs
0 (forbidden)
1 [-4: +3,5] [-8: +7,5]
2 [-8: +7,5] [-16: +15,5]
3 [-16: +15,5] [-32: +31,5]
4 [-32:°+31,5] [-64: +63,5]
5 [64: +63,5] [-128: +127,5]
6 [-128: +127,5] [-256: +255,5]
7 [-256: +255,5] [-512: +511,5]
8 [-512: +511,5] [-1024: +1023,5]
9 [-1024: +1023,5] [-2048: +2047,5]
10-14 (reserved)
15| (used when a particular vop_fcode[s][f] will not be used)

7.16.7.4.3 Updating motion vector predictors

Once all of«the motion vectors present in the macroblock have been decoded using the process defined in thd
previous~¢lause it is sometimes necessary to update other motion vector predictors. This is because in som
prediction modes fewer than the maximum possible number of motion vectors are used. The remainder of th¢
predictors that might be used in the VOP must retain “sensible” values in case they are subsequently used.

O—0—®

TFhe-motionvectorpredicters—shall-be-updated-as-spesified-inFable-AMB1-44-anrdTFable-AMB1-45—Therules+

updating motion vector predictors in the case of skipped macroblocks are specified in 7.16.5.7.

NOTE - It is possible for an implementation to optimise the updating (and resetting) of motion vector predictors depending
on the VOP type. For example in a P-VOP the predictors for backwards motion vectors are unused and need not be maintained.

© ISO/IEC 2002 — All rights reserved 103

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-44 -- Updating of motion vector predictors in frame VOPs

frame_motion_- | macroblock_motion_- | macroblock_-

type forward intra Predictors to Update
Frame-based+ - 1 PMV[1][0][1:0] = PMV]O][0][1:0]
Frame-based 1 0 PMVI1][0][1:0] = PMV]O][0][1:0]
Frame-based+ 0 0 PMVIA[s]f] = 0 §
Field-based T 0 {none)

NOTE -PMV]r[s][1:0] = PMV[u][v][1:0] means that;
PMVI[s][1] = PMVu][v][1] and PMV]r][s][0] = PMV[u][V][O]

T frame_motion_type is not present in the bitstream but is assumed to be Frame-based
§ (Only occurs in P-VOP) PMV[r[s][{] is set to zero (for all r, s and t). See 7.16.7.4.4.

Table AMD1-45 -- Updating of motion vector predictors in field VOPs

field_motion_- | macroblock_motion_- macroblock_-
type forward intra Predictors to Update
Field-based¥ - 1 PMVI1][0][1:0].= PMV[0][0][1:0]
Field-based 1 0 PMV[1][0]{1%0] = PMVI0][0][1:0]
Field-based? 0 0 PMViislia =08
16x8 MC 1 0 (none)

NOTE - PMV[A[s][1:0] = PMV[u][V][1:0] means that;
PMVIA[s][1] = PMVIU][V][1] and PMVI[s][0] = PMVu][V][O]

T field_motion_type is not present in the bitstream but.is assumed to be Field-based
§ (Only occurs in P-VOP) PMV[r][s][{] is set to zerg (for all r, s and {). See 7.16.7.4 4.
1.16.7.4.4 Resetting motion vector predictors

All motion vector predictors shall be reset to zero in the following cases:

. At the start of each slice.

. Whenever a macrobleck is completely transparent.

. Whenever ansintra macroblock is decoded.

. Whenever-a macroblock is encoded as DPCM residuals.

. InCayP-VOP when a macroblock is skipped (not coded = 1).

7.16.7.4.5 Prediction in P-VOP

In the case.that a P field VOP is used as the second field of a frame in which the first field is an | field VOP a series
¢of semantic restrictions apply. These ensure that prediction is only made from the | field VOP. These restrictions

Tl'e;

. Field prediction in which motion_vertical_field_select indicates the same parity as the field being
predicted shall not be used.

. There shall be no skipped macroblocks (not_coded = 0).

104 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.7.4.6 Motion vectors for chrominance components
The motion vectors calculated in the previous clauses refer to the luminance component where;
vector[r][s][t] = vector’[r][s][t] (forallr, s and t)

For each of the two chrominance components the motion vectors shall be scaled as follows:

4:2:0 Both the horizontal and vertical components of the motion vector are scaled by dividing by two:
vector[r][s][0] = vector'[r][s][0] / 2;

vector[r][s][1] = vector'[r][s][1] / 2;

—

4:2:2 The horizontal component of the motion vector is scaled by dividing by twao, the’'vertical componen
is not altered:

vector[r][s][0] = vector'[r][s][0] / 2;
vector[r][s][1] = vector'[r][s][1];

4:4:4 The motion vector is unmodified:
vector[r][s][0] = vector’[r][s][O];

vector[r][s][1] = vector’[r][s][1];

7.16.7.4.7 Semantic restrictions concerning predictions

It is a restriction on the bitstream that reconstructeddmotion vectors shall not refer to samples outside the decoded
area of a reference VOP. For an arbitrary shape-VOP, the decoded area refers to the area within the bounding
rectangle, padded as described in subclause*7.16.7.1.1. A bounding rectangle is defined by vop_width andg
vop_height extended to multiple of 16.

7.16.7.5 Forming predictions

Predictions are formed by reading prediction samples from the reference fields or frames. A given sample i
predicted by reading the corresponding sample in the reference field or frame offset by the motion vector in thg
absolute coordinate system,

o=

A positive value of the,horizontal component of a motion vector indicates that the prediction is made from sample$
(in the reference field/frame) that lie to the right of the samples being predicted in the absolute coordinate system.

A positive value of the vertical component of a motion vector indicates that the prediction is made from samples (i
the reference field/frame) that lie the below the samples being predicted in the absolute coordinate system.

All motion vectors are specified to an accuracy of one half sample. Thus if a component of the motion vector is odd
the ‘samples will be read from mid-way between the actual samples in the reference field/frame. These half
samples are calculated by simple linear interpolation from the actual samples.

In the case of field-based predictions it is necessary to determine which of the two available fields to use to form
the prediction. In the case of field-based prediction and 16x8 MC an additional bit, motion_vertical_field_select, is
encoded to indicate which field to use.

If motion_vertical_field_select is zero then the prediction is taken from the top reference field.

If motion_vertical_field_select is one then the prediction is taken from the bottom reference field.

© ISO/IEC 2002 — All rights reserved 105

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)
For each prediction block the integer sample motion vectors int_vec]t] and the half sample flags half_flag[t] shall be
formed as follows;
for (=0 ; t<2 ; t++) {
int_vec][t] = vector[r][s][t] DIV 2 ;

if ((vector[r][s][t] — (2 * int_vec][t]) '= 0)

half flag[t]=1;
else

half_flag[t]=0;

Then for each sample in the prediction block the samples are read and the half sample prediction applied as
follows;

if ((! half_flag[0])&& (! half_flag[1]))

pel_pred[y][x] = pel_ref[y + int_vec[1]][x + int_vec[O]] ;

if ((!half_flag[0])&& half_flag[1])
pel_pred[y][x] = (pel_refly + int_vec[1]][xint_vec[0]] +

pel_refly + int_vec[1]+1][x + int_vec[0]]) // 2 ;

if (half_flag[0]&& (! half_flag[2]))
pel_pred[y][x] = (pélyrefly + int_vec[1]][x + int_vec[0]] +

pel_ref[y + int_vec[1]][x + int_vec[0]+1]) // 2 ;

if (half_flag[0]&& half_flag[1])
pel_pred[y][x] = (pel_refly + int_vec[1]][x + int_vec[0]] +
pel_refly + int_vec[1]][x + int_vec[0]+1] +

pel_refly + int_vec[1]+1][x + int_vec[0]] +

pel_ref[y + int_vec[1]+1][x + int_vec[0]+1]) // 4 ;

where pel_pred[y][x] is the prediction sample being formed and pel refly][x] are samples in the reference field or
frame.

106 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

7.16.7.6 Motion vector selection

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-46 shows the prediction modes used in field VOPs and Table AMD1-47 shows the predictions used in
frame VOPs. In each table the motion vectors that are present in the bitstream are listed in the order in which they
appear in the bitstream.

Table AMD1-46 -- Predictions and motion vectors in field VOPs

vector[1][0][1:0]

field_ macro-
motion_ macroblock_motion_- | block_-
type forward intra Motion vector | Prediction formed for
Field-based¥ - 1 vectorT0][0][1:0] None
Field-based 1 0 vector(0][0][1:0] whole field, forward
Field-based¥ 0 0 vector0][0][1:0]'8 | whole field, forward
16x8 MC 1 0 vector[0][0][1:0] upper 16x8-field, forward

lower 16x8 field, forward

NOTE - Motion vectors are listed in the order they appear in the bitstream

T field_motion_type is not present in the bitstream but is assumed to be'Field-based
These motion vectors are not present in the bitstream

§ The motion vector is taken to be (0; 0) as explained in 7.16.7.4.5.

Table AMD1-47 -- Predictions and motion vectors in frame VOPs

vector[1][0][1:0]

frame_- macro-
motion_- macroblock_motion_- block_-
type forward intra Motion vector Prediction formed for
Frame-basedi - 1 vector’[O][O][1 20] None
Frame-based 1 0 vector0][0][1:0] frame, forward
Frame-based+ 0 0 vector[0][0][1:0]'S | frame, forward
Field-based 1 0 vector0][0][1:0] top field, forward

bottom field, forward

NOTE - Motion vectors are listed in the order they appear in the bitstream

1 frame_motion_type is not present in the bitstream but is assumed to be Frame-based
These motion vectors are not present in the bitstream

§ The motion vector-is taken to be (0; 0) as explained in 7.16.7.4.5.

7.16.7.7 Skipped macroblocks

A skipped maecroblock is a macroblock for which no data is encoded, that is part of a coded slice. With the¢
exception of the first non-transparent macroblock in a slice, if not_coded flag in a macroblock is ‘1’, the macrobloc
is to be skipped. The decoder shall form a prediction for skipped macroblocks which shall then be used as the fing|

decoded-sample values.

The\process differs between field VOPs and frame VOPs.

a1l ODa

14

© ISO/IEC 2002 — All rights reserved

acrablacal H
TTHTACTOOUTOCRS T T vV OIT O°

107

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.7.7.1 P field VOP
. The prediction shall be made as if field_motion_type is “Field-based”
. The prediction shall be made from the field of the same parity as the field being predicted.
. Motion vector predictors shall be reset to zero.
. The motion vector shall be zero.

7.16.7.7.2 P frame VOP

. The prediction shall be made as if frame_motion_type is “Frame-based”
. Motion vector predictors shall be reset to zero.
. The motion vector shall be zero.

[.16.7.8 Combining predictions
The final stage is to combine the various predictions together in order to form the final prediction blocks.

It is also necessary to organise the data into blocks that are either field organised or frame organised in order to be
dded directly to the decoded coefficients.

The transform data is either field organised or frame organised as specified by dct_type.

7.16.7.8.1 Simple frame predictions
In the case of simple frame predictions no further processing is required.

The predictions for chrominance components_0f4:2:0, 4:2:2 and 4:4:4 formats shall be of size 8 samples by 8 lines,
8 samples by 16 lines and 16 samples by 16)lines respectively.

7.16.7.8.2 Simple field predictions
In the case of simple field predictions (i.e. not 16 X 8) no further processing is required
In the case of simple field prediction in a frame picture the predictions for chrominance components of 4:2:0, 4:2:2

and 4:4:4 formats for €ach field shall be of size 8 samples by 4 lines, 8 samples by 8 lines and 16 samples by 8
ljnes respectively.

7.16.7.8.3 16x8 Motion compensation

In this prediction mode separate predictions are formed for the upper 16x8 region of the macroblock and the lower
16x8 region of the macroblock.

he prndiﬂﬁnnc for chrominance r\nmpnnnnfe’ for cach 16x8 rnginn, of A-')-ﬂ, A4:2:2 and 4:4:4 formats shall he of

size 8 samples by 4 lines, 8 samples by 8 lines and 16 samples by 8 lines respectively.

108 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

7.16.8 Output of the decoding process

This section describes the output of the theoretical model of the decoding process that decodes bitstreams
conforming to this specification.

The decoding process input is one or more coded video bitstreams (one for each of the layers). The video layers
are generally multiplexed by the means of a system stream that also contains timing information.

The output of the decoding process is a series of fields or frames that are normally the input of a display procéss.
The order in which fields or frames are output by the decoding process is called the display order, and may’ be
different from the coded order (when B-pictures are used). The display process is responsible for the action o
displaying the decoded fields or frames on a display device. If the display device cannot display at the frame rat
indicated in the bitstream, the display process may perform frame rate conversion. This specification does ng
describe a theoretical model of the display process nor the operation of the display process.

— O —h ¥

Since some of the syntax elements, such as progressive_frame, may be needed by the display process, in thi
theoretical model of the decoding process, all the syntactic elements that are decoded by the decoding process ar
output by the decoding process and may be accessed by the display process.

O—

When a progressive sequence is decoded (progressive_sequence is equal to 1), the’/luminance and chrominance
samples of the reconstructed frames are output by decoding process in the form of progressive frames and the
output rate is the frame rate. Figure AMD1-25 illustrates this in the case of chroma_format equals to 4:2:0.

O—

¢ & 8¢ g
TS
¢ L 8 g
¢ @8 88

Figure AMD1-25. progressive_sequence ==

The same reconstructed frame is output one time if repeat_first_field is equal to 0, and two or three consecutive
times if repeat~first_field is equal to 1, depending on the value of top_field_first. Figure AMD1-26 illustrates this i
the case ofichroma_format equals to 4:2:0 and repeat_first_field equals 1.

© ISO/IEC 2002 — All rights reserved 109

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

frame period
=1/frame rate

>

XOX XOX XOAH XOX
XOX XOX XOAH XOX
(_ XOX XOX XOX XOX
XOX XOX XOAH XOX
XOX XOX XOAH XOX

1

(" XOX XOX XOX XOX

1

=< XOX XOX XOX XOX

top field first: 0O 0

Figure AMD1-26. progressive_sequence == 1, repeat_first field = 1

Vhen decoding an interlaced sequence (progressive_sequence is equal\te”0), the luminance samples of the
econstructed frames are output by the decoding process in the form of interlaced fields at a rate that is twice the
ame rate. Figure AMD1-27 illustrates this.

X X X
X X X
X X X
X X X
X X X
X X X
X X X
X X X
field period Fﬁ
frame period
=1/frame rate

Figure AMD1-27. progressive_sequence ==

It is,& requirement on the bitstream that the fields at the output of the decoding process shall always be alternately
p-and bottom (note that the very first field of a sequence may be either top or bottom).

If the reconstructed frame is interlaced (progressive_frame is equal to 0), the luminance samples and chrominance
samples are output by the decoding process in the form of two consecutive fields. The first field output by the
decoding process is the top field or the bottom field of the reconstructed frame, depending on the value of
top_field_first.

Although all the samples of progressive frames represent the same instant in time, all the samples are not output at
the same time by the decoding process when the sequence is interlaced.

110 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

If the reconstructed frame is progressive (progressive frame is equal to 1), the luminance samples are output by
the decoding process in the form of two or three consecutive fields, depending on the value of repeat_first_field.

NOTE - The information that these fields originate from the same progressive frame in the bitstream is conveyed to the
display process.

All of the chrominance samples of the reconstructed progressive frame are output by the decoding process at the
same time as the first field of luminance samples. This is illustrated in Figures AMD1-28 and AMD1-29.

X X X X X
© X © X >C2 X ©
X X X X X
g ° x S S
X X X X X
© X © X >C2 X ©
X X X X X
g © x S S
\ J
R/_/ ~ kv_/
progressive frame: 0 1 1 0

Figure AMD1-28. progressive_sequence ==,0'With 4:2:0 chrominance.

& & X 0O X &
g O =X & &

& & X 0O X &
B .0 X & &

& & X 0O X &
g O X & &

& & X 0O X &
g O X & &

R/_/ N ~ J R/_/ R/_/
progressive frame: 0 1 1 0

Figure AMD1-29. progressive_sequence == 0 with 4:2:2 or 4:4:4 chrominance.

7.16.9-Sprite decoding

© ISO/IEC 2002 — All rights reserved 111

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

1I-vOP Shape/Texture Sprite Buffer
Bitstream | Decoding
|
|
|
S-VOP | Shape/Texture |
Bitstream Decoding [~~~ 7°
Warping Vector Warping Reconstructed
— Decoding Samples

Figure AMD1-30 -- The sprite decoding process

[.16.9.1 Higher syntactic structures
The various parameters in the VOL and VOP bitstreams shall be interpreted as described in clause 6. When
gprite_enable == ‘1’, vop_coding_type shall be “I” only for the initial VOP in ayVMOL for basic sprites (i.e.
Ipw_latency_sprite_enable == ‘0’), and all the other VOPs shall be S-VOPs (i.e. Wop_coding_type == “S”). The
econstructed |-VOP in a VOL for basic sprites is not displayed but stored in arsprite memory, and will be used by
Il the remaining S-VOPs in the same VOL. An S-VOP is reconstructed by applying warping to the VOP stored in
e sprite memory, using the warping parameters (i.e. a set of motion vectors) embedded in the VOP bitstream.
lternatively, in a VOL for low-latency sprites (i.e. low_latency_sprite_enable == “1’), these S-VOPs can update the
information stored in the sprite memory before applying warping.

.16.9.2 Sprite Reconstruction

he luminance, chrominance and grayscale alpha data of.a sprite are stored in two-dimensional arrays. The width
nd height of the luminance array are specified by sprite< width and sprite_height respectively. The samples in the

gprite luminance, chrominance and grayscale alpha arrays are addressed by two-dimensional integer pairs (i,)
and (i;’, j.) as defined in the following:
¢ Top left luminance and grayscale alpha sample
@)= (sprite_left_coordinate, sprite"top_coordinate)
¢ Bottom right luminance and grayscale alpha sample
@ p= (sprite_left_coordinate + sprite_width - 1,
sprite_top_coordinate + sprite_height — 1)
¢ Top left chrominance sample
For 4:2:0 VOPs,
i) = (spritexleft_coordinate / 2, sprite_top_coordinate / 2)
For 4:2:2 VOPs,
i, i) = (sprite_left_coordinate / 2, sprite_top_coordinate)
For 4:4:4 VOPs,
(P (sprite_left_coordinate, sprite_top_coordinate)
¢ Battem right chrominance sample
For 4:2:0 VOPs,
b= {spritedeft—coordinate 4 2 + Sprite—widthi/ 2 1
sprite_top_coordinate / 2 + sprite_height// 2 - 1).
For 4:2:2 VOPs,
i, i) = (sprite_left_coordinate / 2 + sprite_width// 2 - 1,
sprite_top_coordinate + sprite_height - 1).
For 4:4:4 VOPs,
(N (sprite_left_coordinate + sprite_width - 1,
sprite_top_coordinate + sprite_height — 1).
112 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

o Likewise, the addresses of the luminance, chrominance and grayscale alpha samples of the VOP currently

being decoded are defined in the following:

e Top left sample of luminance and grayscale alpha
@i,)) = (0, 0) for rectangular VOPs, and
@i,j)= (vop_horizontal_mc_spatial_ref, vop_vertical_mc_spatial_ref) for non-rectangular VOPs

s Bottom righf camplp of luminance and graycr‘nln Allnhq
@i,p= (video_object_layer width - 1, video object layer_height - 1) for rectangular VOPs, ang
@i,j)= (vop_horizontal_mc_spatial_ref + vop_width - il

vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular VOPs

e Top left sample of chrominance
(,j)= (0, 0) for rectangular VOPs, andg
(,j)= (vop_horizontal_mc_spatial_ref / 2, vop_vertical_mc_spatial_ref / 2) for non-rectangular 4:2:0
VOPs
(i) = (vop_horizontal_mc_spatial_ref / 2, vop_vertical_mc_spatial_ref) for noné{rectangular 4:2:2 VOP$
(i) = (vop_horizontal_mc_spatial_ref, vop_vertical_mc_spatial_ref) for non-rectangular 4:4:4 VOPs

e Bottom right sample of chrominance
(,j)= (video_object_layer _width / 2 - 1, video_object_layer_height /p2/* 1) for rectangular 4:2:0 VOPS,
and
(i,j)= (vop_horizontal_mc_spatial_ref / 2 + vop_width// 2 - 1

vop_vertical_mc_spatial_ref / 2 + vop_height/ 2 -,1)- for non-rectangular 4:2.0 VOP$
(i) = (video_object_layer_width / 2 - 1, video_object_layer_height - 1) for rectangular 4:2:2 VOPs, and
(,j)= (vop_horizontal_mc_spatial_ref / 2 + vop_width// 2 - 1,
vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular 4:2:2 VOP$
(,j)= (video_object_layer width - 1, video_objectilayer _height - 1) for rectangular 4:4:4 VOPs, and
(i) = (vop_horizontal_mc_spatial_ref + vop_width- 1

vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular 4:4:4 VOPs

7.16.9.3 Sprite reference point decoding

The syntactic elements in sprite_trajectory () and below shall be interpreted as specified in clause 6. du[i] and dv[

(0 =<i < no_sprite_point) specifies the mapping between indexes of some reference points in the VOP and

corresponding reference points inithe sprite. These points are referred to as VOP reference points and sprit

reference points respectively in the rest of the specification.
The index values for the VQRreference points are defined as:

(ios Jo) = (0, 0) wheh_video_object_layer_shape == ‘rectangle’, and
(vop_horizontal_mc_spatial_ref, vop_vetical_mc_spatial_ref) otherwise,

(i1, 1) = (io*W5TJo),

(i21 12) = (io, j0 + H)!

(i3, j3) Zio*W, jo+H)

where W) '= video_object _layer width and H = video_object layer height when video_object layer_shape

‘rectangle’ or W = vop_width and H = vop_height otherwise. Only the index values with subscripts less than

no_sprite_point shall be used for the rest of the decoding process.

the

O——=

‘The index values tor the sprite reterence points shall be calculated as tollows:

© ISO/IEC 2002 — All rights reserved

113

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

(i, Jy) = (s/2) (21, + du[0], 2], + dv[0])
(i,,],)=(s/2) (2, +du[l] +du[0], 2 j, + dv[1] + dv[0])
(i,,1,) = (s/2) (21, + du[2] + du[0], 2], + dv[2] + dv[0])

(i, ;) =(s/2) (21, + du[3] + du[2] + du[1] + du[0], 2 j, + dV[3] + dv[2] + dv[1] + dv[O])

where iy’ jo', etc are integers in ! pel accuracy, where s is specified by sprite_warping_accuracy. Only the index
N

alues with substcripts less than no_sprite_point need to be calculated.

Vhen no_of sprite_warping_points == 2 or 3, the index values for the virtual sprite points are additionally
¢alculated as follows:

(i, ") = (16 (i, + W) + (W = W’) (riy — 16/i)) + W' (ri,) = 16i,)) // W,
16 jo + (W =W (r; =16 jo) + W' (r," — 16],)) /I W)

(i,", ;) = (160, + (H=H) (ri; - 16i) + H' (ri, — 16 i,)) // H,
16 (o + H) + (H-H) (' — 16 o) + H'(r ;) =16) // H)

HEe b b HE 2 b H H l ¢l J H
where i;”, j;”, i»”, and j,” are integers in — pel accuracy, and r = 16/s. W’@nd H’ are defined as the smallest
16

ihtegers that satisfy the following condition:

W =2%H =2, W>W,H >H, a>0,p>0,both a and p are integers:

The calculation of i,”, and j,”is not necessary when no_of sprite, warping_points == 2.

7.16.9.4 Warping

fFor any pixel (i, j) inside the VOP boundary, (F(i, j),&¢ j)) and (F.(i, j.), Gci., jo)) are computed as described as
follows. These quantities are then used for sample reconstruction as specified in subclause 7.16.9.5. The following

motations are used to simplify the description:

[=i-ip,
J =] - Jo,

For 4:2:0 VOPs,
ls=4i, -2 jp+,
Je=4jcy2jot 1,
For 4:2:2 V/OPs,
I,=4i, -2iy+1, for calculating F.(ig, j.),

I. =2, -ip, for calculating G.(i, jc),

Je =2, -2 j, + 1, for calculating F(i, j),

Je = jo - Jo, for calculating G(ig, ji),

For 4:4:4 VOPs,
Ic = ic = iO 3

JC=jC -jO!

114 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

When no_of sprite_warping_point == 0,

(K, J), G(i, /)
(Folic, je), Gelic, Jc))

(si, sj),
(Sic, Sje).

When no_of sprite_warping_point == 1,

(F(, j), G(i. /)
(Felic: je), Gelic, Jc))

(Folic: je), Gelics Jc))

(FC(iCJ jC)! GC(iC! jC))

(i’ + sl jo + sJ),
(o’ 1112 + s (iy —ig! 2), jo'lll 2+ s (js —jo! 2)), for 4:2:0 VOPs.

(o’ 1112 + s (iy —io] 2), jo' + sJo), for 4:2:2 VOPs.

(i’ + sl jo' + sJ.), for 4:4:4 VOPs.

When no_of_sprite_warping_points == 2,

(F(,), G(0,) (io"+ ((=rio’+ i1") I +(rjo’ = j1")) 1 (W’r),
Jo'+ ((=rjo’ *ji") I + (=rio’+iz”) J) [l (W’r)),

(Flics Jo)s Gelie, Jo)) = (((=rio’+ i3 ") Ic +(rjo’—Jj17) Jo +2 W’rig’— 16W)UL(4 W’r),
((=rjo’*+ji") lc + (=rig’+ i) Jec +2 W’rjo’ = 16W) I/ (4 W’r)),

for 4:2:0 VOPs,

(Felics jo)» Gelle, Jio)) ((=rig’+ iy ")l +(rjo’—ji7) Je + 2 WAFRiy’— 16 W) /1] (4 W'),

Jo' ¥ ((=rjo’ * ji") lc + (=rip’ + iy”) JOI(W’T)),

for 4:2:2 VOPs,

(Felics je), Gelics Jc)) Cio"+ ((=rio"+ i1") Ie * (rjo"= j1") Je) I (W'),

Jo' ¥ ((=rjo’ *+ ji") I ¥ rio’ + is7”) Jo) 111 (W’ r)),

for 4:4:4 VOPs.

According to the definition of W’ and H’ (i.e. W’ = 2% and H' = 2"), the divisions by “///” in these functions can be
replaced by binary shift operations. By this replacement, the above equations can be rewritten as:

(F(i,), GG, /) 2 (g + ((-rip + i) 1+ (rjo’' = ji") J + 2777) >> (a+p)),
Jo'+ ((—rfo +j") 1+ (=rig’ + i) J + 2777) >> (a+p)),

(Felios Jo), Gelighel) = ((—rig’+ is ") Io + (rjo = ") Jo + 2 W'rig' = 16W’ + 2477 >> (a+p+2),
((rjo’*+jr") o + (—rig’+ i) Jo + 2 W'rjo’ = 16W’ + 2°7"7) >> (o p+2)),

for 4:2:0 VOPs,

(Fbics jo), Gelios Jo)) = (((~rig’+ iy ™) s + (rjo’—j1") Jo + 2 W riy’— 16W’ + 2%°7*7) >> (q+p+2),

P (it PN (it i |y 90tprTyy
77T\ 1Y 79T 773

JU \\\ JU

for 4:2:2 VOPs,

(Felles Je) Gelles Je)) = Clo” + (((=r " + i1”) Ie + (rjo" = j17) Je + 2:“:”) >> (a+p)),
Jo'* (((=rjo’+ j17) o + (=rig’ + i1”) Jo + 2%777) >> (a+p)),

for 4:4:4 VOPs.
where 2°=r.

© ISO/IEC 2002 — All rights reserved 115

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

When no_of_sprite_warping_points == 3,

(F(i, j), G(, j)) = (i’ + ((~rip’+ iy”) H' 1 + (=r ig™* i, YW’ J) 1l (W'H’P),
Jo' + ((=rjo’ + ji)y H I + (=r jo™+ j2)W’ J) Il (W’HT)),

(Flic, o), Gelic, jo)) = (((=rip’ +is”) H Iy + (=rig* i,)W’ J, +2 WH'riy’ = 16WH’) Il (AW’H'r),
(=rjo’+j1") H I + (-rjo™*)W’ Je + 2 WHr jo' = 16W'H’) Il (AW'HY)),

for 4:2:0 VOPs,

Folic, o), Golis, jo)) = ((=ri’+ i) H' I + (=rig™* iYW’ J, +2 WHr iy’ — 16W'H)) [l (AW'H’Y),
Jo' * ((=rjo’ + ji) H I + (=rjo+ j2 YW’ Jg) 11l (W’HT))

for 4:2:2 VOPs,

Folic, jo), Goli, jo)) = (i’ + ((—=rig’+ is”) H' I + (=r ig™ i)W’ Jo) 1l (WH'Y),
Jo + ((=rjo"+ ji") H'le + (=1 jo™ j2")W’ Je) /Il (W'HT)),

for 4:4:4 VOPs.

According to the definition of W’ and H’, the computation of these functions canbe simplified by dividing the
denominator and numerator of the division beforehand by W’ (when W’ < H’) . er H’ (when W’ > H’). As in the case of
mo_of sprite_warping_points == 2, the divisions by “///” in these functions can'be replaced by binary shift
operations. For example, when W’> H’ (i.e. a>) the above equations €an’be rewritten as:

FG,), GG,) = (o’ +(((~rio’+ i) I + (=rig™ ip”) 2°7 J + 277" >>(a+p)),

Jo' + ((=rjo’ + ji") 1+ (=rjo™+ jo7) 2°7 J + 272 5> (a+p))),

Folics Jo), Gelior Jo)) = (=1 i’ + is™) I + (=1 ig™ iz”) 2% Jg + 2WH iy’ — 16W’ + 2°7*") >> (a+p+2),
(~rjo’+js) o + (=rjo™* j2?) 2°7 Jo + 2WAFJo’ — 16W + 27"T) >> (a+p+2)),

for 4:2:0 VOPs,

Folics jo), Golic, Jo)) = (1 i’ + i1”) lo + (=1 ig™ 3y 27 Jo + 2WT i’ = 16W’ + 2°77) >> (i pt2),
Jo' (=1 o’ + j17) le + (sxfo™ j2") 2°7 Jg + 2°777) >> (o)),

for 4:2:2 VOPs,

Folics Je)s Gelics Jo)) = (io” +(((=rig™+ i17) Ie + (=1 ig™+ i2”) 2¢7 Jo + 2a+p_1) >> (at+p)),
Jo'F (=hjo? + j17) Io + (=1 jo+ j27) 2% Jg + 2°77) >> (atp))),

for4:4:4 VOPs.
When no_of_sprite_warping_point == 4,
F(i,4)\GU, /) =((@l+bJd+c)/ll(gl+hJ+DWH),
(dI+ed+0ll(gl+hd+DWH)),
(Flis T Btz T =t a2 bdrH o=ty t o2 D WHIST (g T+ 6D W-H);

(2dI.+2ed,+4f—(gl.+hd.+2DWH)s)/l/(4gl.+4hdJ.+8D WH)),
for 4:2:0 VOPs,

(Folis, jo), Gelizs jo) =((2al,+2bJ,+4c—(gls+hds+ 2D WH)s) /Il (4g 1, +4 h J, +8 D WH),
(dls+ed, +f) 1l (gl +hJ, + D WH)),

for 4:2:2 VOPs,

116 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

(Felis, o), Glic, Jo)) = ((@le+ b Jg +¢) 1l (g I + h J, + D WH),
(dls+ed,+Nlll (gl +hdJ,+DWH)),

for 4:4:4 VOPs.

where

(o =T =127 70z =) —(z — 13700 —J7 —Jz 1305
(1" =13)) Go’ —J1" —j2" *+J3') —(io’ — iy’ —i2" +1i3") (" =j3)) W,
(i7" —i3) (2" —Jj3") — (i’ —i3") (1" = J3),

D(iy"=i")H+g iy,

b=D (i —iy)) W+h iy,

c=Diy W H,

d=D (i —jo’)H+gJji,

e=D (2" —jo’) W+hj,

f=Dj, W H.

g
h
D
a

A set of parameters that causes the denominator of any of the above equations to be zefo for any pixel in an
opaque or boundary macroblock is disallowed. The implementor should be aware that'a 32bit register may not be
sufficient for representing the denominator or the numerator in the above transform:functions for affine and
perspective transforms. The usage of a 64 bit floating point representation sheuld*be sufficient in such cases.

7.16.9.5 Sample reconstruction

The reconstructed value Y of the luminance sample (j, j) in the currently decoded VOP shall be defined as
Y =((s-n)((s=h) Yoo+ r; Yo) A rM(s - 1) Yio + 1 Yin)) Il §,

where Yoo, Yo1, Y10, Y11 represent the sprite luminanée~sample at (F(i, j)//l/s, G(i, j)lllIs), (F(i,)ils + 1,G(i, HIlIIs),

(F, piits, G(i, Hiils + 1), and (F(i,)illIs + 1,G(i,))llifs + 1) respectively, and r; =F(i, j) —(F(i, j)/!//s)s and r; =G(j, j) T
(G(i, Hlllls)s. Figure AMD1-30 illustrates this process.

In case any of Yy, Yo1, Y10 @and Yy, lie outside the sprite luminance binary mask, it shall be obtained by the padding
process as defined in subclause 7.16.7,1.1.

When brightness_change_in_sprite’== 1, the final reconstructed luminance sample (i, j) is further computed as Y
Y * (brightness_change_factor *'0:01 + 1), clipped to the range of [0, 2*(bits_per_pixel-1)].

Similarly, the reconstructed value C of the chrominance sample (i;, j;) in the currently decoded VOP shall b
defined as

A1

C =((s-n((s=r) Cop+riCor) +1;((s-1) Cyo+ 1 Cyy)) Il %

where Cyg, ‘Co1, C19, C17 represent the sprite chrominance sample at (F.(i;, j)/Is, Gli, j)s), (Fclic, j)llils + 1
Glic, jHIS), (Fclic, jolllls, Gelic, jolllls + 1), and (F(ic, jo)llls + 1, Gi, j.)/Ills + 1) respectively, and r; = F(ig, j;) -
(FclissgeDllis)s and r; = Gelie, jo) — (Gelie, jo)/llIs)s. In case any of Cyy, Cos, Cyo and Cy lies outside the sprit
chrominance binary mask, it shall be obtained by the padding process as defined in subclause 7.16.7.1.1.

T

Tl tloaal i ol £ 4o & H £ 1 Lol U | H 1 Tl 4 4
TS odITC TITCUTUUT TS UST U TUT U TS TCLUTTIS UL UUTT U yrayosudaicdipTia airmuTaim arn ot sar e s, e TCLUTTIS Ut itu

value A of the grayscale alpha sample (j,) in the currently decoded VOP shall be defined as

A =((s-r)(s-r) A *riAe) + 1 ((s-1) A +1; A)) I &7,
where Ag, Ao, A1o, Agg represent the sprite grayscale alpha sample at (F(i, j)////s, G(i,)IllIs), (F(i,)lllls + 1,G(i,
DIs), (F(, Hils, G,)Hlils + 1), and (F(i, j)lllls + 1,G(i, j)/lls + 1) respectively, and r; =F(i, j) —(F(i, j)////s)s and r;

=G(i, j) — (G(i, jlllIs)s. In case any of Agy, Aps, A1 and Ay, lies outside the sprite luminance binary mask, it shall be
obtained by the padding process as defined in subclause 7.16.7.1.1.

© ISO/IEC 2002 — All rights reserved 117

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

The reconstructed values of luminance binary mask samples BY(ij) shall be computed following the identical
process for the luminance samples. However, corresponding binary mask sample values shall be used in place of
luminance samples Yoo, Y01, Y10, Y11, Assume the binary mask sample opaque is equal to 255 and the binary mask
sample transparent is equal to 0. If the computed value is bigger or equal to 128, BY(i, j) is defined as opaque.
Otherwise, BY (i, j) is defined as transparent. The chrominance binary mask samples shall be reconstructed by
decimating the corresponding 2 x 2 adjacent luminance binary mask samples as specified in subclause
7.16.7.1.1.4.

Figure AMD1-31 -- Pixel value interpolation (it is assumed that sprite samples are located on an integer
grid)

31) Add the following Table in subclause 9.1 after tableVV2-39

Table AMD1-48 — Tools for ISO/IEC 14496-2:2001 Amiendment 1 Visual Object Types

Visual Object Type

Simple Studio | Core Studio
Visual Tools

Basic X X
-Progressive/lnterlaced
-Frame/Field Structure
-Slice Structure

-Studio DPCM Block
-Studio Binary.-Shape
-Studio,Grayscale Shape

I-VOR X X
P«VOP X
Studio Sprite X

INOTE 3 — The,allowed values of ‘chroma_format’ in StudioVideoObjectLayer() are defined in the level definition.

NOTE 4 —-The allowed values of ‘bits_per_pixel’ and ‘alpha_bits_per_pixel’ in StudioVideoObjectLayer() are defined in the level
definition

118 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

32) Add the following Table and text at the end of subclause 9.2:

Table AMD1-49 — ISO/IEC 14496-2:2001 Amendment 1 Visual Profiles

Object Types|Simple Studio| Core Studio

Profiles
AMD1-1 |Simple Studio X
AMD1-2 |Core Studio X X

Note that object types that are not listed in this table are not decordable by decoders complying to the Profilés\isted in this tablg.

Note that the Profiles listed in this table can be grouped into Natural Visual.

33) Add the following subclause A.1.1 in clause A.1:

A.1.1 Discrete cosine transform for the Studio Profile

The NxN two dimensional DCT is defined as:

N-1 N-1
F(u,v) = EC(u)C(v)Z D (%) cos & hur @y+Ljvz
N x=0 y=0 2N 2N

with u,v,x,y=0,1,2,... N1
where X, y are spatial coordinates in the sample domain
u, v are coordinates' in the transform domain
(1

cu.cw={@ =0
-1 otherwise

The inverse DCT (IDCT) is defined as:

2x +ur oS Ry+21)vr

£ y)=—|iz > CU)COF(uv)cos- == -

u=0

If each¢pixel is represented by n bits per pixel, the input to the forward transform and output from the inverss
transform is represented with (n+1) bits. The bit precision of the DCT coefficients changes in accordance with thg
value~of mpeg2_ stream defined in StudioVideoObjectLayer(). In case of mpeg2_ stream = 0, The coefficients are
represented in (n+7) bits including three fractional bits. The dynamic range of the coefficients is [-270: 4201, |

>0

aht3, . Ant3 44

£ oY b 4Tl s n A ra At il e o 1 H O
CaosT UT'TITPTYZ_sucTdalll = 1, TTIC CUTITIVITITS dlt TCPITOSTIIICUITT (1175) DILS. TTIT UyTarmio 1dlTiyT 1o =< 4 =T1].

The N by N inverse discrete transform shall conform to IEEE Standard Specification for the Implementations of 8 by
8 Inverse Discrete Cosine Transform, Std 1180-1990, December 6, 1990.

© ISO/IEC 2002 — All rights reserved 119

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

NOTE 1 Clause 2.3 Std 1180-1990 “Considerations of Specifying IDCT Mismatch Errors” requires the specification of
periodic intra-picture coding in order to control the accumulation of mismatch errors. Every macroblock is required to be
refreshed before it is coded 132 times as predictive macroblocks. Macroblocks in B-pictures (and skipped macroblocks in P-
pictures) are excluded from the counting because they do not lead to the accumulation of mismatch errors. This requirement is
the same as indicated in 1180-1990 for visual telephony according to ITU-T Recommendation H.261.

NOTE 2 Whilst the IEEE IDCT standard mentioned above is a necessary condition for the satisfactory implementation of the
IDCT function it should be understood that this is not sufficient. In particular, attention is drawn to the following sentence from

- ‘“\\Mhere

WL

34) Add the following clause B.3 after clause B.2:

B.3 Variable length codes for the studio profile

B.3.1 Macroblock type
The properties of the macroblock are determined by the macroblock type VLC according to these tables.

Table AMD1-50 -- Variable length codes for macroblock' type in I-VOPs

macroblock_type VLC code

macroblock_quant
macroblock_motion_forward
macroblock_motion_backward
macroblock_pattern

macroblock_intra
Description

1 0| 001 Intra
01 11 0] 0O%0 |1 Intra, Quant

Table AMD1-51 -- Variable length codes for macroblock_type in P-VOPs

macroblock_type VLC code
macroblock_quant

macroblock_motion_forward
macroblock_motion_backward
macroblock_pattern
macroblock_intra
Description
1 o|j1]0(10 MC, Coded
01 ojo0o|joO0|1|0 No MC, Coded
001 0O|1]0]0]|O0 MC, Not Coded
0001 1 oOo|j]0]O0]|O0]|1 Intra
00010 1({1]10([1]0 MC, Coded, Quant
0000 1 110|101 0| NoMC,Coded, Quant
0000 01 1 0] 9] 0] 1 Intra, Quant

120 © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

B.3.2 DCT coefficients

Table AMD1-52 -- Variable length codes for dct_dc_size_luminance

Variable length code dct_dc_size_luminance
001110 0
00110 1
0000 2
0010 3
111 4
101 5
011 6
010 7
100 8
110 9
0001 10
0011110 11
00111110 12
001111110 13
0011111110 14
00111111110 15
001111111110 16
0011111111110 17
0011111111111 18

Table AMD1-53 -- Variable length codes for dct_dc_size_chrominance

Variable length code dct_dc_size_chrominance
0000 0
0010 1
111 2
101 3
014 4
010 5
100 6
110 7
0001 8
00110 9
001110 10
0011110 11
00111110 12
001111110 13
0011111110 14
00111111110 15
001111111110 16
0011111111110 17
0011111111111 18

© ISO/IEC 2002 — All rights reserved 121

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-54-1 — Differential DC additional codes

122

Additional code Differential DC Size
000000000000000000 to -131072 to -262143 18
o11111111111111111 *

00000000000000000 to -65536 to -131071 17
o1111111111111111°*
0000000000000000 10 -32768 10 -65535 19)
0111111111111111 *
000000000000000 to -16384 to -32767 15
011111111111111 *
00000000000000 to -8192 to -16383 14
0111111111111 *
0000000000000 to -4096 to -8191 13

o111111111111 *

000000000000 to 011111111111 * -2048 to -4095 12
00000000000 to 01111111111 * -1024 to -2047 11
0000000000 to 0111111111 * -512 to -1023 10
000000000 to 011111111 * -256 to -511 9
00000000 to 01111111 -255 to -128 8
0000000 to 0111111 -127 to -64 7
000000 to 011111 -63 t0 =32 6
00000 to 01111 -31 to-16 5

0000 to 0111 £5\o -8 4

000 to 011 <7 to -4 3

00 to 01 -3to-2 2

0 -1 1

0 0

1 1 1

10 to 11 2t0 3 2

100 to 111 4t07 3

1000 to 1441 8to 15 4

10000 te' 91111 16 to 31 5
1000000 111111 321063 6
1000000 to 1111111 64 to 127 7
10000000 to 11111111 128 to 255 8
100000000 to 111111111 * 256 to 511 9
1600000000 to 1111111111 * 512 to 1023 10
10000000000 to 11111111111 * 1024 to 2047 11
100000000000 to 111111111111 * 2048 to 4095 12

1000000000000 to 4096 to 8191 13

1111111111111 *

10000000000000 to 8192 to 16383 14

1111111111111 *

100000000000000 to 16384 to 32767 15
111111111111111 *
10060666006600006-t0 32768065535 16
1111111111111111 *
10000000000000000 to 65536 to 131071 17
11111111111111111 *
100000000000000000 to 131072 to 262143 18
111111111111111111

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

In cases where dct_dc_size is greater than 8, marked in Table AMD1-54-1, a marker bit is inserted after the
dct_dc_additional_code to prevent start code emulations.

Table AMD1-54-2 — Additional codes for group No.1~6 (zero run length)

Size Additional code zero run length
8 4
1 Oto1 2t03
2 00 to 11 4t07
3 000 to 111 810 15
4 0000 to 1111 16 to 31
5 00000 to 11111 32 to 63

Table AMD1-54-3 — Additional codes for group No.7~12 (zero run length and+/-1 level)

Size Additional code zero run length level(+1/-1)
6 000000 to 111110 32 t0 63 -1
5 00000 to 11110 16 to 31 -1
4 0000 to 1110 8to A5 -1
3 000 to 110 4 107 -1
2 00to 10 240 3 -1
1 0 1 -1
0 — — —
1 1 1 +1
2 01to 11 2t03 +1
3 001 to 111 4t07 +1
4 0001 to 1111 8to 15 +1
5 00001 to 11111 16 to 31 +1
6 000001 to 4451111 3210 63 +1

Table AMD1-54-4 — Additional codes for group No.13~20 (level value)

Size Additional code level value
8 00000000 to 01111111 -255 to -128
7 0000000 to 0111111 -127 to -64
6 000000 to 011111 -63 to -32
5 00000 to 01111 -31to-16
4 0000 to 0111 -15to -8
3 000 to 011 -7 to -4
2 00 to 01 -3to-2
1 0 -1
0 —_— _—

1 1 1

2 40-to—H 2-t0-3

3 100 to 111 4t07

4 1000 to 1111 8to 15
5 10000 to 11111 16 to 31
6 100000 to 111111 32t0 63
7 1000000 to 1111111 64 to 127
8 10000000 to 11111111 128 to 255

© ISO/IEC 2002 — All rights reserved

123

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

Table AMD1-55 — VLC Table T[0] for intra macroblock

0 0011

1 0010

2 1007110

3 100111101

4 10011110010
5 100111100110
6 1001111001110
7 1000

8 10010

9 011011

10 0110100

11 0110101

12 1001111

13 11

14 000

15 010

16 101

17 0111

18 01100

19 100110

20 1001111000
21 1001111001111

124

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-56 — VLC Table T[1] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0

1

10

11

12

13

14

15

10

16

110

17

1110

18

11110

19

111110

20

1111110

21

1111111

© ISO/IEC 2002 — All rights reserved

125

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-57 — VLC Table T[2] for intra macroblock

symbol group variable length code
0 110
1 01110
P T1T111
3 0111101
4 011110000
5 01111000111110
6 0111100011111111
7 010
8 100
9 0110
10 1110
11 011111
12 011100010
13 00
14 101
15 11110
16 01111001
17 01111000110
18 011110001110
19 011110001111110
20 0111100011111110
21 0111100011110

126

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-58 — VLC Table T[3] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0 10001

1 1001

2 10111

3 1000001

4 1000000000

5 1000000001101111
6 1000000001101110
7 011

8 0100

9 1010

10 10110

11 100000001

12 10000000011010
13 00

14 11

15 0101

16 100001

17 10000001

18 10000000010

19 100000000111

20 100000000110110
21 1000000001100

© ISO/IEC 2002 — All rights reserved

127

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-59 — VLC Table T[4] for intra macroblock

symbol group variable length code
0 1000110
1 1001
P T1T111
3 1111011
4 111101010
5 111101011010110
6 111101011010111
7 110
8 1110
9 100010
10 1000111
11 1111010411
12 11910101101010
13 00
14 01
15 101
16 10000
17 111100
18 11110100
19 11110101100
20 111101011011
21 1111010110100

128

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-60 — VLC Table T[5] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0 0000101001

1 00000

2 0000110

3 0000101010

4 000010100010

5 0000101000111100
6 0000101000111101
7 00010

8 0000100

9 00001011

10 00001010600

11 000010100011100
12 000010100011101
13 11

14 01

15 10

16 001

17 00011

18 0000111

19 0000101011

20 000010100011111
21 0000101000110

© ISO/IEC 2002 — All rights reserved

129

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-61 — VLC Table T[6] for intra macroblock

symbol group variable length code
0 11000011110
1 1101
P 11000001
3 1100001110
4 11000011010
5 1100001111111010
6 1100001111111011
7 110001
8 11000000
9 1100001100
10 110000111140
11 11000014111111
12 110000111111100
13 001
14 000
15 01
16 10
17 111
18 11001
19 11000010
20 11000011011
21 1100001111110

130

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-62 — VLC Table T[7] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0 0011011110

1 00111

2 0011007101

3 00110110

4 00110011

5 00110111111110
6 001101111111111
7 0011010

8 001100100

9 0011011101

10 00110111410

11 001104111110
12 004101111111110
13 0010

14 0000

156 11

16 01

17 10

18 0001

19 0011000

20 0011011100

21 0011011111110

© ISO/IEC 2002 — All rights reserved

131

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-63 — VLC Table T[8] for intra macroblock

symbol group variable length code
0 1100000001
1 110001
2 11000000711
3 11000000100
4 11000010
5 11000000101000
6 110000001010011
7 11000001
8 110000110
9 1100001110
10 1100001111
11 110000001011
12 110000001010010
13 1101
14 111
15 001
16 10
17 01
18 000
19 11001
20 1100000000
21 1100000010101

132

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-64 — VLC Table T[9] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0 001001011111000
1 0010001

2 00710070110

3 0010011

4 00100001

5 001001011110

6 001001011111011
7 00100100

8 001000001

9 001001010

10 00100101410

11 001004011111001
12 004001011111010
13 00101

14 0011

15 110

16 000

17 10

18 01

19 111

20 001000000

21 0010010111111

© ISO/IEC 2002 — All rights reserved

133

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-65 — VLC Table T[10] for intra macroblock

symbol group variable length code
0 000111101101011
1 0001110
2 00011011
3 1101
4 000111101100
5 00011110110100
6 000111101101010
7 0001100
8 00011010
9 000111100
10 0001111010
11 00011110111
12 000111011011
13 00000
14 00001
15 1100
16 111
17 001
18 10
19 01
20 00010
21 00011111

134

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-66 — VLC Table T[11] for intra macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0 010110001111011
1 0101101

2 010110000

3 010110001011

4 0101100011101
5 01011000111100
6 010110001111010
7 010111

8 01011001

9 01011000110

10 010110001010
11 0101100011100
12 0101100011111
13 0100

14 0110

15 01010

16 0111

17 0011

18 0010

19 000

20 1

21 01011000100

© ISO/IEC 2002 — All rights reserved

135

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

Table AMD1-67 — VLC Table T[0] for inter macroblock

0 —
1 11000

2 11001

3 1101011

4 110101000

5 11010100110

6 1101010011110
7 111

8 011

9 0000

10 0101

11 01001

12 110

13 10

14 001

15 0001

16 01000

17 110100

18 11010101

19 1101010010
20 110101001110
21 1101010011111

136

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

Table AMD1-68 — VLC Table T[1] for inter macroblock

ISO/IEC 14496-2:2001/Amd.1:2002(E)

symbol group

variable length code

0

1

10

11

12

13

14

15

10

16

110

17

1110

18

11110

19

111110

20

1111110

21

1111111

© ISO/IEC 2002 — All rights reserved

137

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

ISO/IEC 14496-2:2001/Amd.1:2002(E)

Table AMD1-69 — VLC Table T[2] for inter macroblock

symbol group variable length code
0 000
1 00111
P 107111
3 001101
4 00110001
5 00110000110
6 00110000111110
7 100
8 010
9 011
10 0010
11 10110
12 001100000
13 11
14 1010
15 0011001
16 0011000010
17 001100001110
18 001100001111110
19 0011000011111110
20 0011000011111111
21 0011000011110

138

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=2f8135f6676ef49b2b872422354e5262

