

Reference number
ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006

INTERNATIONAL
STANDARD

ISO/IEC
15938-1

First edition
2002-07-01

AMENDMENT 2
2006-04-01

Information technology — Multimedia
content description interface —
Part 1:
Systems

AMENDMENT 2: Fast access extension

Technologies de l'information — Interface de description du contenu
multimédia —

Partie 1: Systèmes

AMENDEMENT 2: Extension d'accès rapide

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2006 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 2 to ISO/IEC 15938-1:2002 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 1

Information technology — Multimedia content description
interface —

Part 1:
Systems

AMENDMENT 2: Fast access extension

This document preserves the sectioning of ISO/IEC 15938-1. The text and figures given below are additions
and/or modifications to those corresponding sections in ISO/IEC 15938-1. All figures and tables shall be
renumbered due to the addition of several figures and tables.

Add the following definitions to subclause 3.2 (keep alphabetical order), then renumber all definitions in
subclause 3.2:

path index key
value representing the path to the element to be indexed/located, and the relative path to the fields to be
keyed/searched.

value index key
set of encoded field values to be keyed/searched.

index stream
set of Index Access Units which together form the whole of the indexing data,

index decoder init
initialisation data for an index stream.

index access unit
index access unit header and associated structures forming a logical unit of access.

index access unit header
list of structures contained within this Index Access Unit

path index
structure allowing path index key to value index reference lookup.

value index
structure allowing value index key to value sub index reference lookup.

value sub-index
structure allowing value index key to BiM stream reference lookup.

node reference
reference from one node to another within a list or B-Tree structure.

data repository reference
reference to data entry within the binary or string data repository structures.

BiM stream reference
reference to a BiM encoded fragment within a BiM stream.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

2 © ISO/IEC 2006 – All rights reserved

local access unit
default Access Unit associated with a Path Index.

local BiM stream reference
reference to a BiM encoded fragment contained within the local access unit.

remote BiM stream reference
reference to a BiM encoded fragment contained within the BiM stream, where the access unit is specified by
an access unit ID.

value index reference
reference to a value index structure.

value sub-index reference
reference to a sub value index structure.

position codes reference
reference to a position codes entry within a position codes structure.

position code
location of an XML element within its parent element.

position codes
set of position code values for all elements within a context path.

BTree
binary decision tree, where each node can have multiple keys.

BTree order
specifies the maximum number of child nodes of a node in a BTree.

indexed element
XML element to which an index refers.

BiM stream reference format
specifies the format of the BiM stream reference.

value encoding
specifies how data has been encoded in value index key.

Add the following subclause 5.9.1:

5.9.1 General Description

Using the ISO/IEC 15938-1 index encoding, only fragments of the description that are of immediate interest to
the terminal can be selectively acquired and combined with the current description tree. The terminal can
search the index information to determine which fragments contain a node at a given location which has a
related node with a given value within the description. Additionally the terminal may search for fragments
containing nodes which have related node values falling within a given range. STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 15

93
8-1

:20
02

/Amd 2
:20

06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 3

The index information can also be compiled to allow the terminal to search for fragments containing nodes
with multiple given related node locations, and respective values, within the description. This can allow the
terminal to perform searches with multiple conditions, without needing to consolidate multiple result sets. As
the indexing stream is optional a stream may consist of either

A DecoderInit and a description stream

A DecoderInit, an IndexDecoderInit, an index stream, and a description stream.

Before an index stream can be queried both the DecoderInit for the BiM stream to which the index stream
belongs, and the IndexDecoderInit for the index stream must be acquired. However acquiring fragments from
the description stream, without querying the index stream, only requires the DecoderInit to be acquired.

Figure Amd2.1 — Indexing Enabled Terminal Architecture Extension.

All components of Systems Layer(Indexing) section are non-normative
The Terminal Architecture for a BiM enabled terminal may be extended to support indexing, as shown in
Figure Amd2.1. Figure Amd2.1 shows only the extensions to the Terminal Architecture, and not the complete
architecture. The components shown in the Systems Layer(BiM) section of Figure Amd2.1 are the existing
components of the standard Terminal Architecture.

Add the following subclause 5.9.2:

5.9.2 Options for multi criteria query

There are two main methods of querying for fragments when there are multiple criteria, multi-value indexing,
and multi-stage indexing. These different methods are distinct and offer two complementary optimizations.

Multi-value indexing allows the whole data set to be indexed in a very compact manner. The size of the index
stream and the number of comparisons of values is minimized, allowing the index to perform a multi criteria
query using the smallest amount of index data and queries possible. Partitioning of indices with larger data

Application

Systems Layer(Indexing)

Delivery Layer

Systems Layer(BiM)

initialisation
extractor

SU decoder

DecoderInit

SU Decode
Parameters

context path
decoder

Schema

index structure
decoder

IndexAccessUnit decoder

IndexDecoderInit IndexAccessUnit

Index structures

Query

IndexAccessUnitID AccessUnitID

context path

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

4 © ISO/IEC 2006 – All rights reserved

sets allows maximum IndexAccessUnit sizes to be imposed. This is useful when the underlying transport layer
has an imposed, or preferred size for a unit of access, as might be the case with network packets, or transport
layer data buffers. It is usual for several IndexAccessUnits to be required to complete a query, hence the
IndexAccessUnit is not independent.

Multi-stage indexing allows the data set to be sectioned into multiple smaller index stream segments. This
increases both the overall size of the index stream and the number of value comparisons by a moderate
amount. However, multi-stage indexing can facilitate more efficient use of resources in client terminal devices
where caching of stream index data is necessary but the size of the stream index data prohibits caching all of
it. Caching is desirable where either the index stream is not always available or the acquisition time of Index
Access Units from the index stream is significant. In a multi-stage index the data size of each independent
segment of the index stream is reduced, allowing a whole segment of the index to be cached from the index
stream into memory and searched independent of the Index Stream. This is often a better optimisation than
attempting to cache a portion of an index arranged as a single segment.

Multi-value indexing is intended to be used in situations where efficient index size is a priority and there are no
significant restraints imposed by client terminal resources. There are two formats of multi-value indexing,
composite value, and hierarchical single value indexing. In composite value indexing the values are stored as
an N column table, where N is the number of related values. In hierarchical single value indexing the values
are stored as an N level tree, with the tree’s nodes containing 1 column tables (Lists). The composite value
index is intended for use where there is unlikely to be multiple instances of the related node with the same
value, whilst the hierarchical single value indexing is intended for use where there are many instances of the
related node with the same value in the BiM fragments to be indexed. It is important to take care to choose the
order of the related nodes carefully, as the related node with most common values placed at the highest level
of the hierarchy will usually produce the smallest index stream and the minimum number of value compares
when querying.

Multi-stage indexing is intended for use in situations where client terminals with limited resources must access
a very large amount of BiM fragments by index, and for which there are a small number of search criteria
common for most queries. The common criteria can be used to segment the index stream into a collection of
index stream segments, each segment then being accessed and searched independently of other segments.
This allows searches to start on an initial segment stored in a cache and then progress to the relevant follow-
on segment which, if not cached, must be acquired from the index stream. The search is therefore completed
with a minimum number of acquisitions and without requiring the whole multi-stage index to be cached.

Note that the method of caching and cache maintenance is implementation dependent, and not defined in this
specification.

Note - Another situation where multi stage indexing can be used, is when consolidating multiple independent index
streams. This may be the case if there are multiple providers of BiM fragments each with an associated index stream.
Consolidation of the index streams can be achieved easily by modifying each index stream to be a second stage segment.
A first stage index would then be created to associate a provider to a second stage segment within the index stream.

Change the following sentence at the end of subclause 7.1 as indicated:

Several other coding modes are initialised in the DecoderInit related to the features used by the binary
description stream: the insertion of elements, the transmission of schema information, references to fragments
and a fixed length context path.

And add the following sentence at the end of subclause 7.1:

The fixed length context path mechanism provides a simplified addressing of nodes for usage scenarios
where only a limited number of nodes need to be addressed. This is done by a table that uniquely maps fixed
length codes to full context paths.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 5

In subclause 7.2.2, insert grey marked rows at the position indicated:

 If (! NoAdvancedFeatures) {

 AdvancedFeatureFlags_Length 8+ vluimsbf8

 /** FeatureFlags **/

 InsertFlag 1 bslbf

 AdvancedOptimisedDecodersFlag 1 bslbf

 AdditionalSchemaFlag 1 bslbf

 AdditionalSchemaUpdatesOnlyFlag 1 bslbf

 FragmentReferenceFlag 1 bslbf

 MPCOnlyFlag 1 bslbf

 HierarchyBasedSubstitutionCodingFlag 1 bslbf

 ContextPathTableFlag 1 bslbf

 ReservedBitsZero FeatureFlag
s_Length*8-
8

bslbf

 /** FeatureFlags end **/

 If (ContextPathTableFlag) {

 ContextPathTable()

 }

 /** FUUConfig - Advanced optimised decoder framework **/

 If (AdvancedOptimisedDecodersFlag) {

ContextPathTable {

 ContextPathTable_Length 8+ vluimsbf8

 ContextPathCode_Length 8+ vluimsbf8

 NumberOfContextPaths 8+ vluimsbf8

 CompleteContextPathTable 1 bslbf

 for(i=0;i<NumberOfContextPaths;i++){

ContextPath_Length[i] 5+ vluimsbf5

 ContextPath()[i] ContextPat
h_Length[i]

 If(!CompleteContextPathTable){

 ContextPathCode[i] ContextPat
hCode_Len
gth

bslbf

 }

 }

 nextByteBoundary()

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

6 © ISO/IEC 2006 – All rights reserved

In subclause 7.2.3, insert,

ContextPathTableFlag Signals the presence of a context path table in the decoder
init.

ContextPathTable_Length Defines the number of bytes used for the indication of the
ContextPathTable.

Note – This length provides a simple framework to skip the table.

ContextPathCode_Length Signals the length of the context path codes in number of bits.

NumberOfContextPaths Signals the number of ContextPaths contained in the
ContextPathTable.

CompleteContextPathTable Signals if the ContextPathTable is complete and ordered
according to the assignment of ContextPathCodes.

If CompleteContextPathTable is set to ‘1’ the
ContextPathCodes are assigned in the order the ContextPaths
are specified in the ContextPathTable starting from ‘1’. If
CompleteContextPathTable is set to ‘0’ the ContextPathCodes
are assigned explicitly.

The ContextPathCode ‘0’ is reserved.

ContextPath_Length Signals the number of bits used for the following
ContextPath[i]()

ContextPath[i]() Signals the ContextPath as specified in subclause 7.6.2 with
the following restrictions:

- ContextModeCode is set to ‘001’

- PositionCode() is an empty bitfield

ContextPathCode[i] Signals the ContextPathCode of .ContextPath[i]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 7

In subclause 7.6.2, insert grey marked rows at the position indicated:

FragmentUpdateContext () { Number of bits Mnemonic

 SchemaID ceil(log2(
NumberOfSchemas))

uimsbf

 ContextModeCode 3 bslbf

 If (ContextModeCode==’101’){

 ContextPathCode ContextPathCode_Len
gth

bslbf

 for (i=0; i < TBC_Counter(ContextPathCode); i++) {
 PositionCode()
 }
 }

 else {

 ContextPath()

 }

}

In subclause 7.6.4, insert grey marked rows at the position indicated:

Code Context Mode

…

101 Navigate in “Absolute addressing mode” from the
selector node to the node specified by the Context
Path signaled by the ContextPathCode.

110-111 Reserved

Add the following clause 10:

10 Indexing

10.1 Overview

The index is provided to support fast random access into a BiM stream. The index allows access to the FUU’s,
within the BiM stream, containing a desired XML node, either element or attribute, based on the specification
of one or more related node, element or attribute, values. For instance, determining FUU’s which contain
“Car” elements, who’s “Color” attribute is “Red”. The search specification uses the context path of the desired
XML node, and the relative context paths of the related nodes, this specification is termed the PathIndexKey.
This allows a flexible PathIndexKey, which is capable of indexing complex type elements, simple type
elements, and attributes according to one or more criteria.

This section gives a general overview of the structure and functionality of the index, and how it is accessed to
arrive at a resultant set of FUU’s matching a given search criteria.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

8 © ISO/IEC 2006 – All rights reserved

The index is composed of two parts, the Path Index, and the Value Index. The Path Index allows the particular
Value Index relating to the PathIndexKey, specified in the search criteria, to be located. The Value Index
allows the set of BiM stream references which contain the desired XML node, with values for the
PathIndexKey’s related nodes meeting the search criteria. The indexing technologies specified here, allow a
Value Index to be partitioned into smaller Value Sub Index structures. This partitioning allows a Value Index to
contain an unlimited number of entries without increasing the resource requirements, in particular working
memory, of the client.

The data structures in this specification allow for the Value Index to be created with the values for the
PathIndexKey’s related nodes, to be represented as a hierarchical index, or as a consolidated index. The
hierarchical index can offer much smaller index structures, and faster searches, if the PathIndexKey’s related
nodes values contain significant repetition, as this allows repeated values to be grouped together and entered
into the Value Index only once. If there is not significant repetition, then the Value Index can be represented in
a consolidated index, which allows all of the values for the PathIndexKey’s related nodes to be consolidated
and represented within a single index structure. A search on the Value Index will result in a set of zero or more
BiM stream references. The BiM Stream references locate the FUUs which contain the desired XML nodes
with related node values satisfying the search criteria. The BiM Stream references can optionally specify the
position of the desired XML node within each FUU, in addition to the FUU reference itself.

To demonstrate the searching process, consider the example where a simple, single criteria, search is being
made for a “Picture” node, whose related node, “Subject”, has a value of “Winter”

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 9

\Films\Film
.\Title
.\Language

\Album\Song
.\Title

\Pictures\Picture
.\Subject

…

Path Index Structure

Path Index

Value Index

Subject<=
“Landmarks”

…

Value Index Partition List Structure

Subject<= “Winter”

Subject<= “Les
Miserable”

…

Value Sub Index Structure

Subject = “Walking”

Single Value Sub Index

Subject = “Winter”

BiM Stream

Fragment Update Unit 0 …
Access Unit 0

Fragment Update Unit 2 Fragment Update Unit 1

Fragment Update Unit 0 …
Access Unit 1

Fragment Update Unit 2 Fragment Update Unit 1

Value Index Partition

Figure Amd2.2 — Block diagram of the BiM Index structure

The Path Index is first searched to locate the relevant Value Index. This is achieved by scanning the Path
Index structure. Once the Value Index has been determined, its Value Index Partition List structure is used to
determine which of the Value Index partitions will contain the “Subject” being searched for, in this case
“Winter”. Now the Value Sub Index structure can be accessed, which in this case contains a Single Value
Index, for the values of “Subject” in this partition. These values are then searched to determine the BiM
Stream references which match the search criteria.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

10 © ISO/IEC 2006 – All rights reserved

The next example explains how the Compound Value Index can be used to search for the “Film” element with
two related elements “Title” and “Language”

Value Index Partition

Value Index

Title<= “Batman”
Language<= En

…

Value Index Partition List Structure

Title<= “Star Wars”
Language<= En

Title<= “Les Miserable”
Language<= Fr

…

Value Sub Index Structure

Title = “Star Trek”
Language = En

Compound Value Sub Index

Title = “Star Wars”
Language = En

Reference to
BiM Stream

Figure Amd2.3 — Block diagram of the compound value index structure

The process is the same as in the first example, except that the Compound Value Index contains values for
both related nodes.

The final example, is the same as the previous example, except that a hierarchy of Single Value Index entries
has been used rather then the Compound Value Index.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 11

Value Index

Title<= “Batman”
Language<= En

…

Value Index Partition List Structure

Title<= “Star Wars”
Language<= En

Title<= “Les Miserable”
Language<= Fr

…

Value Sub Index Structure (Leaf = ‘0’)

Title = “Star Trek”

Single Value Sub Index

Title = “Star Wars”

Value Sub Index Structure (Leaf = ‘1’)

Language = En

Single Value Sub Index

Language = En …

Reference to
BiM Stream

Value Index Partition

Figure Amd2.4 — Block diagram of the hierarchical single field index structure

This shows that the first related node, “Title” is searched first, but instead returning the BiM stream references,
it returns a range to search in the child Sub Value Index. The child is then searched for the correct value for
the “Language” element to determine the BiM stream references.

10.2 Characteristics of the delivery layer

The delivery layer is an abstraction that includes functionalities for the synchronization, framing and
multiplexing of indexing streams with other data streams. Index streams may be delivered independently or
together with the associated Description Stream. No specific delivery layer is specified or mandated by
ISO/IEC 15938.

A delivery layer (DL) suitable for conveying ISO/IEC 15938 index streams shall have the following properties
in addition to the properties defined for decoding of description streams:

⎯ The DL shall provide a mechanism to communicate an index stream from its producer to the terminal.

⎯ The DL shall provide a mechanism by which a random access point to the index stream can be identified.

⎯ The DL shall provide a suitable random access mechanism allowing access to an IndexAccessUnit by
use of a 16 bit IndexAccessUnit identifier.

⎯ The DL shall provide a default 16 bit IndexAccessUnit identifier for each PathIndex in the index stream.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

12 © ISO/IEC 2006 – All rights reserved

⎯ The DL shall provide a mechanism by which a random access point to the description stream can be
identified.

⎯ The DL shall provide a suitable random access mechanism allowing access to an Access Unit by use of a
16 bit Access Unit identifier.

⎯ The DL shall provide delineation of the index access units within the index stream, i.e., IndexAccessUnit
boundaries shall be preserved end-to-end.

⎯ The DL shall preserve the order of IndexAccessUnits on delivery to the terminal, if the producer of the
index stream has established such an order.

⎯ The DL shall provide either error-free index access units to the terminal or an indication that an error
occurred.

⎯ The DL shall provide a means to deliver the DecoderInit information (see subclauses 6.2 and 7.2) and
the IndexDecoderInit information (see subclause 10.3 to the terminal before any index access unit
decoding occurs.

⎯ The DL shall provide signalling of the association of an index stream to a description stream.

⎯ If an application requires index access units to be of equal or restricted lengths, it shall be the
responsibility of the DL to provide that functionality transparently to the systems layer.

Note - The 16 bit Access Unit ID is independent of the 16 bit Index access Unit ID.

10.3 IndexDecoderInit

10.3.1 Overview

The IndexDecoderInit specified in this subclause is used to configure parameters required for the decoding
of the index access units. There is only one IndexDecoderInit associated with one index stream.

Main components of the IndexDecoderInit are an indication of the profile and level of the associated index
stream.

Both the DecoderInit for the description stream and the IndexDecoderInit for the index stream must be
acquired prior to decoding Index Access Units.

10.3.2 Syntax

IndexDecoderInit () { Number of bits Mnemonic

 SystemsIndexProfileLevelIndication 8+ vluimsbf8

}

10.3.3 Semantics

Name Definition

SystemsIndexProfileLevelIn
dication

Indicates the profile and level as defined in ISO/IEC 15938-1 to which the
description stream conforms. Table Amd2.1 lists the indices and the
corresponding profile and level.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 13

Table Amd2.1 — Index Table for SystemsIndexProfileLevelIndication

Index Systems Profile and Level

0 no profile specified
1 – 127 Reserved for ISO Use

10.4 Index Access Unit

10.4.1 Overview

The Index Access Unit id used to collect multiple structures together into a logical unit. For instance all the
data for structures belonging to a single Index Access Unit, must be contained in the Data Repository
structure within the same Index Access Unit. The grouping of structure into an Index Access Unit would
normally be determined by what is simplest and logical for the encoding process, but may also be limited by
the underlying transport.

It is the responsibility of the transport layer to provide the retrieval of Index Access Units from their 16 bit Index
Access unit id.

Before the Index Access Unit can be interpreted the Decoder Init and the Index Decoder Init must be acquired.

10.4.2 Syntax

IndexAccessUnit () { No. of
Bits

Mnemonic

 IndexAccessUnitHeader(){
 num_structures 8 uimsbf
 for(j = 0; j < num_structures; j++){
 structure_type 8 uimsbf
 structure_id 8 uimsbf
 structrue_ptr 24 uimsbf
 structure_length 24 uimsbf
 }
 }
 for(j = 0; j < num_structures; j++) {
 structure[j]()
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

14 © ISO/IEC 2006 – All rights reserved

10.4.3 Semantics

Name Definition

num_structures number of structures within Index Access Unit.

structure_type identifies type of structure, such as data
repository. See subclause 10.4.4.

structure_id stores index id/sub index id, context dependent on
structure_type. see subclause 10.4.5.

structure_ptr bytes offset from start of Index Access Unit.

structure_length length in bytes of structure

10.4.4 structure_type assignments

Value Description

0x00 Index Configuration Structure (see subclause 10.5)

0x01 Reserved

0x02 Data Repository Structure (see subclause 10.6)

0x03 Path Index Structure (see subclause 10.7)

0x04 Value Index Structure (see subclause 10.8)

0x05 Value Sub-Index Structure (see subclause 10.9)

0x06 BiMStreamReferences Structure (see subclause 10.12)

0x07 Reserved

0x08 Position Codes Structure (see subclause 10.6)

0x09-0xDF Reserved

0xE0-0xFF User Defined

10.4.5 structure_type and their matching valid structure_id

structure_type structure_id Description

0x00 0x00-0xFF Used to identify Path Index Structure to which this
configuration relates.

0x01 0x00-0xFF User Defined

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 15

0x02 0x00 Data Repository Structure of type strings (see
subclause 10.6.3)

0x02 0x01 Data Repository Structure of type binary data (see
subclause 10.6.4)

0x02 0x02-0xFF Reserved

0x03 0x00 Root Index. This is the Path Index to start a search
of a stand alone or hierarchical index (see subclause
10.7)

0x03 0x01-0xFF Used to identify hierarchical child index (see
subclause 10.7)

0x04 0x00-0xFF Used to identify a specific instance of a value index
structure, within an Index Access Unit (see subclause
10.8)

0x05 0x00-0xFF Used to identify a specific instance of a value sub-
index structure, within an Index Access Unit (see
subclause 10.9)

0x06 0x00-0xFF Used to identify a specific instance of a
BiMStreamReference Structure (see subclause 10.12)

0x07 0x00-0xFF Reserved

0x08 0x00-0xFF Reserved

0x09-0xDF 0x00-0xFF Reserved

0xE0-0xFF 0x00-0xFF User Defined

Structure types whose structure_id is 'Reserved' shall set structure_id to 0xFF.

10.5 IndexConfiguration

10.5.1 Overview

This structure contains the configuration parameters associated with the index whose PathIndex structure
resides within the same IndexAccessUnit and has the same structure_id.

If this structure is not present within the IndexAccessUnit, the following default values shall be used,

PathIndexKey_format 0x00

BTree_order 0x00

global_value_index_config_flag '0'

LocalAccessUnitID Defined by underlying transport layer

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

16 © ISO/IEC 2006 – All rights reserved

The remaining fields will not be referenced within the index, as global_value_index_config_flag is zero.

10.5.2 Syntax

IndexConfiguration() { No. of
Bits

Mnemonic

 PathIndexKey_format 8 uimsbf
 BTree_order 8 uimsbf
 overlapping_Partitions 1 bslbf
 CompoundValueSubIndices 1 bslbf

partition_list 1 bslbf
 reserved 4 bslbf
 global_value_index_config_flag 1 bslbf
 BiMStreamReference_format 8 uimsbf

LocalAccessUnitID 16 uimsbf
}

10.5.3 Semantics

Name Definition

PathIndexKey_format Specifies the format used for the PathIndexKey entries. See table below.

BTree_order The order of the BTree, defined as the number of node references per node.
If the order is 1, then the BTree is equivalent to an ordered list, as it only has
a right hand branch. A value of 0x0 signals an unordered list.

overlapping_Partitions Indicates that a range of ValueIndexKeys found within a ValueIndexPartition
may overlap those within another ValueIndexPartition structure.

CompoundValueSubIndices Indicates that the single layer encoding format has been used within the
ValueSubIndex structures. Sublause 10.10

partition_list If 1, indicates that there is a partition list of SubValueIndices,

If 0, There is only one SubValueIndex, which is contained inline within the
ValueIndex structure.

reserved Bits reserved for future use, set to '1'.

global_value_index_config_flag If 1, indicates that the following global overlapping_SubValueIndices,
single_layer_SubValueIndices, and BiMStreamReference_format values
should be used for all value index structures within this index stream.

BiMStreamReference_format Specifies the format of the BiMStreamReference. (see subclause 10.8.3)

LocalAccessUnitID The Access Unit id of the Local Access Unit to which Local
BiMStreamReferences refer.

PathIndexKey_format Format

0x00 PathIndexKey_literal (see subclause 10.7.5)

0x01 PathIndexKey_context_path (see subclause 10.7.7)

0x02-0xFF Reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 17

10.6 Data Repository

10.6.1 Overview

The Data Repository forms the base structure, used to hold string data and binary data. All references to the
data repository are local. i.e. from within the same Index Access Unit. The type of data, which the data
repository carries, is indicated by the structures associated structure_id.

10.6.2 Syntax

DataRepository() { No. of
Bits

Mnemonic

if(structure_id == 0x00) {
string_repository()

}
else if(structure_id == 0x01) {

binary_repository()
}
else {

Reserved
}

}

10.6.3 string_repository

10.6.3.1 Overview

The string repository is used to hold all strings used by structures within the same Index Access Unit.

There shall only ever be one string repository per Index Access Unit. References to this repository are always
local (that is, from the same Index Access Unit). Support is provided for identifying the string encoding system,
to enable the use of non ASCII base character sets. The use of length fields or termination values are
dependent on the string encoding used.

10.6.3.2 Syntax

string_repository() { No. of
Bits

Mnemonic

encoding_type 8 uimsbf
for(i=0; i<strings_count; i++) {

for(j=0; j<string(i).length; j++) {
string_character 8+ bslbf

}
string_terminator 8+ bslbf

}
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

18 © ISO/IEC 2006 – All rights reserved

10.6.3.3 Semantics

Name Definition

encoding_type An 8 bit field used to define the character
encoding system, according to section 10.6.3.4.

10.6.3.4 Character Encoding and their termination values

encoding_type Description Termination
Value

0x00 7 bit ASCII (ISO/IEC 10646-1 [1]) 0x00

0x01 UTF-8 0x00

0x02 UTF-16 0x0000

0x03 GB2312 0x0000

0x04 EUC-KS 0x0000

0x05 EUC-JP 0x0000

0x06 Shift_JIS 0x0000

0x07-0xDF Reserved Undefined

0xE0-0xFF User Defined User Defined

10.6.4 binary_repository

10.6.4.1 Overview

The encoding of data in the binary repository is defined at the point of reference. Each item of data must either
have a length explicitly encoded within it, or a length implicitly understood by the decoder (i.e. fixed length).
No provision is made to define the data length within the binary data repository structure.

All entries shall be byte aligned.

There shall only ever be one binary data repository within a single Index Access Unit.

10.6.4.2 Syntax

binary_repository() { No. of
Bits

Mnemonic

for(i=0; i<value_count; i++) {
for(j=0; j< length; j++) {

value_byte 8 bslbf
}

}
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 19

10.6.4.3 Semantics

Name Definition

value_byte A byte of binary value data

10.7 PathIndex

10.7.1 Overview

A path index structure capable of supporting, unordered lists, ordered lists, and b-trees is desirable, as each is
optimal for different applications. However it is not desirable to implement multiple path index structure
handlers in every decoder, and so a multipurpose structure is defined. This structure can be parsed by the
same structure decoder whether it is list or b-tree, with minimal additional overhead in the decoder.

10.7.2 Syntax

PathIndex() { No. of
Bits

Mnemonic

 for(int j=0; j<num_nodes; j++) {
 PathIndexNode[k]()
 }
}

10.7.3 PathIndexNode

10.7.3.1 Overview

The PathIndexNode represents the encoding of a single node within the PathIndex. Each PathIndexNode may
contain one or more PathIndexKeys, depending on the BTree order.

10.7.3.2 Syntax

PathIndexNode() { No. of
Bits

Mnemonic

 node_reference 8+ vluimsbf8
 if(BTree_order > 1) {
 number_of_entries ceil(log2

BTree_or
der-1)

bslbf

 }
 for(int k=0; k<number_of_entries; k++) {
 PathIndexKey[k] ()
 nextByteBoundary()
 if(BTree_order > 1) {
 node_reference[k] 8+ vluimsbf8
 }
 ValueIndex_reference [k]()
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

20 © ISO/IEC 2006 – All rights reserved

10.7.3.3 Semantics

Name Definition

node_reference A byte offset to the next sibling or child node within the path index. If
the PathIndexKey to be located is less than that of the nodes
PathIndexKey, then the preceding node_reference provides a link to
the next level that should be searched within the B-Tree.
If the index you are trying to locate is greater than the last index_key
within the node then the last node reference provides a link to the
next level that should be searched.
If the node_reference is set to 0x00, then the bottom of the B-Tree
has been reached and so the item can not be found within the index
list.

number_of_entries defines the number of keys within this index node. As the index
node cannot have 0 keys the value is the number of keys -1.

PathIndexKey This is the key to be compared against the PathIndexKey to be
located. Entries will always be in increasing order.

10.7.4 PathIndexKey

10.7.4.1 Overview

The path index key is used by the client to identify and locate a Value Index for a query it wishes to perform.
The path index key identifies the paths of nodes which have been indexed, and the paths of the values used
to index the node.

10.7.4.2 Syntax

PathIndexKey () { No. of
Bits

Mnemonic

 if(PathIndexKey_format == 0x00) {
 PathIndexKey_litteral ()
 } else if (PathIndexKey_format == 0x01) {
 PathIndexKey_context_path ()
 } else {
 undefined
 }
}

10.7.5 PathIndexKey_literal

10.7.5.1 Overview

The use of literals to identify indexed nodes and value nodes allows a value index to be located by the use of
well known literals. This allows low end clients which have only predetermined searching capabilities fixed
within their software to locate index paths via a simple 16 bit number. The PathIndexKey_literal also allows
flexibility for client and server to use an application specific alternative as a key within the path index.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 21

10.7.5.2 Syntax

PathIndexKey_literal () { No. of Bits Mnemonic
 PathIndexKey_literal_value ()
 num_value_nodes 8 uimsbf
 for(k = 0; k < num_value_nodes; k++) {
 PathIndexKey_literal_value ()

value_encoding 16 uimsbf
 }
}

10.7.5.3 Semantics

Name Definition

num_value_nodes The number of value nodes.

value_encoding Signals the method of encoding used for the index key value. (subclause
10.7.5.4)

10.7.5.4 Value_encoding

10.7.5.4.1 Interpretation

value_encoding value encoding interpretation

0x0000 – 0x00FF Field is a 16 bit offset in bytes from the start of the string repository structure.

0x0100 – 0x01FF Field contains an inline 2-byte value.

0x0200 – 0x0201

0x0300

0x0401

Field contains an inline 4-byte value.

0x0204 - 0x0206 Field contains an inline 1-byte value.

0x0202 - 0x0203 Field is a 16 bit offset in bytes from the start of the binary data repository.

0x0302

0x0400

Field contains an inline 8-byte value.

0x0204 – 0x02FF

0x0402 – 0x04FF

Undefined.

0x0500 – 0xFFFF Reserved for future use.

10.7.5.4.2 Respective Sizes

value_encoding Description Encoding Size in bits

0x0000 string type Null-terminated string variable (8+)

0x0001 – 0x00FF Reserved for custom string types

0x0100 signed short two’s complement – Big Endian 16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

22 © ISO/IEC 2006 – All rights reserved

0x0101 unsigned short unsigned binary – Big Endian 16

0x0102 – 0x01FF Reserved for custom 2 byte types 16

0x0200 signed long two’s complement – Big Endian 32

0x0201 unsigned long unsigned binary – Big Endian 32

0x0202 variable length signed integer One bit represents sign (0: positive,
1:negative), followed by abs(value)
using vluimsbf5

variable (6+)

0x0203 variable length unsigned integer vluismbf8 variable (8+)

0x0204 boolean 0:False 1:True 8

0x0205 signed byte Two’s complement 8

0x0206 unsigned byte unsigned binary 8

0x0207 – 0x02FF Reserved for custom integer types

0x0300 signed float IEEE standard 754-1985 – Big
Endian

32

0x0301 reserved

0x0302 signed double IEEE standard 754-1985 – Big
Endian

64

0x0303 – 0x03FF reserved

0x0400 dateTime Modified Julian Date and
Milliseconds (as defined in subclause
10.5.4.4)

64

0x0401 date Modified Julian Date (as defined in
subclause 10.5.4.5)

32

0x0402 – 0x04FF Reserved for custom binary formats.

0x0500 – 0xFFFF Reserved for future use

10.7.5.5 dateTime Codec

The XML Schema primitive is used widely, and so a specific codec has been designed for representing date
time fields.

Times shall be based on GMT, with no provision provided for maintaining the local time offset information. Any
requirements to localise time values shall be performed by the receiving terminal.

The dateTime primitive is represented as an 8-byte unsigned integer number (Big-Endian), Days are
represented using the first 4 bytes using Modified Julian Date. Time is represented using the last 4 bytes
expressed as the number of elapsed milliseconds since 00:00:00 hours.

The origin for the Modified Julian Date shall be Midnight 17th November 1858.

Example dates:

Date Modified Julian Date

1st April 1980 44 330

30th January 2000 51 573

1st March 2001 51 969

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 23

Example dateTimes:

dateTime value Encoded value
1980-04-01T02:00:00Z 0x0000AD2A006DDD00

2000-01-30T12:10:01Z 0x0000C975029C59A8

2001-03-01T00:00:00Z 0x0000CB0100000000

10.7.5.6 date Codec

The XML Schema primitive simple type date describes a date within the Gregorian calendar. Within the XML
the date takes the form of a string as defined by ISO/IEC 8601.

The XML Schema date primitive shall be represented as a 4-byte unsigned integer (Big-Endian). It shall
contain the number of days using the Modified Julian Date format, as described in subclause 10.7.5.5.

10.7.6 PathIndexKey_literal_value

10.7.6.1 Overview

Literal values for the PathIndexKey are used where the encoder and decoder have additional knowledge
about the context paths used within the index.

An example is where indexed nodes are always aligned with fragments, and the fragments use a limited set of
context paths. In this instance the context paths used for the fragments, and hence the indexed node, are
assigned a number which is known to the encoder and the decoder. This number can then be used in place of
the context path.

Another instance where literal keys are useful is where a fragment is to be indexed based on data not
contained in the source instance document. For instance an index of fragments which have been changed in
the last day could be generated.

The literal index key places a requirement for both the encoder and decoder to understand the meaning of the
literal key. Otherwise the decoder will not be able to use the index. Any index based on an unknown literal key
does not prevent the decoder from using other value Indices specified within the same path index.

10.7.6.2 Syntax

PathIndexKey_literal_value () { No. of Bits Mnemonic
 literal_type 16 uimsbf
 if(literal_type < 0x8000) {
 UserDefined_literal (Lower 15 bits of literal_type)
 } else if (literal_type < 0xFF00) {
 UserDefined_inlined 8*(literal_type & 0xFF)
 } else if (literal_type < 0xFFFD) {
 reserved 16 uimsbf
 } else if (literal_type == 0xFFFE) {
 context_path_length 8+ vluimsbf8
 context_path variable uimsbf
 } else if (literal_type == 0xFFFF) {
 indexed_node_xpath_ptr 16 uimsbf
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

24 © ISO/IEC 2006 – All rights reserved

10.7.6.3 Semantics

Name Definition

literal_type The type of literal value encoding

UserDefined_literal 15 bit literal value of user defined significance. Value is lower 15 bits
of literal_type.

UserDefined_inlined variable length inlined used defined data

context_path_length The length of the index root context path in bits.

context_path This is a variable length field, which identifies the index root element
context path. This is encoded as a context path using the Context
Path syntax as defined in subclause 7.6.5 in document ISO/IEC
15938-1:2002, with position codes normalized to 1.

indexed_node_xpath_ptr Pointer to a W3C XPath expression within the string repository

10.7.7 PathIndexKey_context_path

10.7.7.1 Overview

The PathIndexKey_context_path allows a client device to determine and use value indices without prior
knowledge of what the Path Index is likely to contain. This provides a very flexible index to be generated by a
server, and still be decoded by a client.

In contrast with the literal path index key, the context path does not require any external definitions to be
known by the encoder or decoder, other than the XML schema.

10.7.7.2 Syntax

PathIndexKey_context_path () { No. of
Bits

Mnemoni
c

 indexed_node_context_path_length 8+ vluimsbf8
 indexed_node_context_path variable uimsbf
 do {
 valuenode_indicator 1 bslbf

if(valuenode_indicator == ‘1’) {
 valuenode_context_path_length 8+ vluimsbf8
 valuenode_context_path variable uimsbf

value_encoding 16 uimsbf
}

 } while(valuenode_indicator == ‘1’)

if(num_valuenodes() == 0)
{

value_encoding 16 uimsbf
}

}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 25

10.7.7.3 Semantics

Name Definition

indexed_node_context_path_length The length of the index root context path in bits.

indexed_node_context_path This is a variable length field, which identifies the index root element
context path. This is encoded as a context path using the Context
Path syntax as defined in subclause 7.6.5 in document ISO/IEC
15938-1:2002. If position code information is present within the
context path, it shall be ignored.

valuenode_indicator A '1' indicates another value node follows

A ‘0’ indicates no more value nodes follow (End of list)

valuenode_context_path_length The length valuenode_context_path in bits.

valuenode_context_path This is a variable length field, which identifies the context path of the
value node. This is encoded as a relative context path using the
Context Path syntax as defined in subclause 7.6.5 in document
ISO/IEC 15938-1:2002. If position code information is present within
the context path, it shall be ignored.

value_encoding Signals the method of encoding used for the index key value.
(subclause 10.7.5.4)

num_valuenodes() Return the number of value nodes defined in the preceding key list

Note: If no value nodes are defined in the key list, then the indexed node must be an element of a simple type, or an
attribute, and the value of this node is used as the key value. If value nodes are defined in the key list, then the indexed
nodes must be elements of simple type, or attributes, and the values of these nodes are used as the key values, In the
case where value nodes are defined in the key list, the indexed node may be any element or attribute, and the value of the
indexed node is not used within the key.

10.7.8 ValueIndex_reference

10.7.8.1 Overview

The ValueIndex_reference is used to specify the Index Access Unit and structure_id of the referenced
ValueIndex structure.

10.7.8.2 Syntax

ValueIndex_reference () { No. of
Bits

Mnemoni
c

 IndexAccessUnit_identifier 16 uimsbf
 ValueIndex_identifier 8 uimsbf
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

26 © ISO/IEC 2006 – All rights reserved

10.7.8.3 Semantics

Name Definition

IndexAccessUnit_identifier The ID of the Index Access Unit containing the referenced Value Index
structure.

ValueIndex_identifier The ID of the Value Index structure within the Index Access Unit. This is
carried in the structure_id field of the Index Access Unit header.

10.8 ValueIndex

10.8.1 Overview

The ValueIndex structure is the top level of an index. It provides a list of all ValueSubIndexReference fields
and the ranges of ValueIndexKeys that they contain. When considering a classic indexing system it is normal
for there not to be any overlaps in the range of ValueIndexKeys to be found within a given set of sub indexes.
This is to minimise the amount of searching required to find a particular value.

Having overlapping ValueSubIndex structures can lead to sequential searching of ValueSubIndex structures,
introducing an associated decrease in performance. However in some circumstances it may be desirable to
allow this, to simplify index compilation or transmission.

In the case of overlapping ValueSubIndexReferences they shall be declared within the index structure in order
of search priority. Where the first declared ValueSubIndexReferences, which may contain the set of required
ValueIndexKeys, has the highest priority.

10.8.2 Value Ordering

The ordering of index entries within an index is dependent on a field's primitive XML schema simple type. In
the case of strings the order may be dependent on the selected language, and not necessarily in
alphanumeric order.

Table Amd2.2 — Defined index order for primitive simple types

Simple Type Ordering
string All strings shall be ordered in increasing Lexicographical

order. Lexicographical ordering is language dependent, and
may not be alphanumeric.

anyURI Increasing alphanumeric order.

boolean ‘False’ precedes ‘True’

NMTOKEN Increasing binary representation order

gYear Increasing numeric value

integer Increasing numeric value with negative values first

date Increasing date value

nonNegativeInteger Increasing numeric (binary) value

positiveInteger Increasing numeric (binary) value

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 27

dateTime Increasing dateTime (binary) value

duration Increasing duration (binary)

float Increasing numeric value (negative values first)

double Increasing numeric value (negative values first)

Given high_ValueIndexKey, (a1, a2, ..., an) and (b1, b2, ..., bn), of two arbitrary ValueSubIndices among the
ValueSubIndices list, the sorting of ValueSubIndices is determined as follows:

(a1, a2, ..., an) is larger than (b1, b2, ..., bn) if and only if there exists an
integer i (0≤i≤n-1) such that for every j(0≤j≤i-1), aj = bj and ai > bi.

(a1, a2, ..., an) is smaller than (b1, b2, ..., bn) if and only if there exists
an integer i (0≤i≤n-1) such that for every j(0≤j≤i-1), aj = bj and ai < bi.

(a1, a2, ..., an) is equal to (b1, b2, ..., bn) if and only if for every
i(1≤i≤n), ai = bi.

Specifically, within the ValueIndexPartitionList() structure, if there is no
overlapping between ValueSubIndices, for all j between 0 and
ValueSubIndex_count-1 (high_ValueIndexKey[j,0], …, high_ValueIndexKey[j,k]) is
smaller than (high_ValueIndexKey[j+1,0], …, high_ValueIndexKey[j+1,k])

"j" is the ValueSubIndex identifier
"k" is the value node identifier

This function high_ValueIndexKey[j,k] takes its value according to the loop
defined in the ValueIndexPartitionList() table.

10.8.3 Syntax

ValueIndexPartitionList() { No. of Bits Mnemonic
 if (!global_value_index_config_flag){
 overlapping_Partitions 1 bslbf
 CompoundValueSubIndices 1 bslbf

partition_list 1 bslbf
 reserved 5 bslbf
 BiMStreamReference_format 8 uimsbf
 }

if(partition_list == ‘1’) {
 for (j=0; j<ValueSubIndex_count, j++) {
 for(k=0; k<num_valuenodes; k++) {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

28 © ISO/IEC 2006 – All rights reserved

 if (overlapping_Partitions == ‘1’) {
 low_ValueIndexKey[j][k] field encoding

dependent
uimsbf

 }
 high_ValueIndexKey[j][k] field encoding

dependent
uimsbf

 }
 ValueSubIndexReference[j]()

}
} else {

ValueSubIndex()
}

}

10.8.3 Semantics

Name Definition

overlapping_Partitions When set to ‘1’, indicates that one or more of the value sub indices which form
this value index, overlap with respect to the range of values found within the
sub index. Where sub indices overlap, the sub indices are declared in
descending order of search priority. When set to ‘0’, indicates that the sub
indices do not overlap, and the declared sub indices are ordered in ascending
order.

CompoundValueSubIndices indicates the data structures used within the corresponding
ValueSubIndex structures to represent keys with multiple values. When
set to ‘1’ it indicates that all values for a given index entry are declared
together in a single CompoundValueSubIndex structure. When set to ‘0’
it indicates that each value of a key is contained within a separate
SingleValueSubIndex structure.

partition_list If 1, indicates that there is a partition list of SubValueIndices,

If 0, There is only one SubValueIndex, which is contained inline within the
ValueIndex structure.

BiMStreamReference_format Identifies the format and interpretation of the BiMStreamReference field
which is used within the ValueSubIndex (leaf field). See Table Amd2.3
— BiMStreamReference formats

low_ValueIndexKey The lowest value that can be referenced by an entry in a given value
index partition. The lowest value signalled in low_ValueIndexKey may
not be the lowest ValueIndexKey actually present in the given value
index partition, it merely indicates that the referenced value index
partition structure may contain entries with ValueIndexKeys in the given
range. The size and type of encoding used and the interpretation of the
low_ValueIndexKey are defined by the value_encoding within the
PathIndex structure.

high_ValueIndexKey The highest ValueIndexKey that can be referenced by the given value
index partition. The highest value signalled in high_ValueSubIndex may
not be the highest value actually present in the given fragment, it
merely indicates that the referenced value index partition structure may
contain entries with ValueIndexKeys in the given range. The size and
type of encoding used and the interpretation of the high_ValueIndexKey
are defined by value_encoding within the PathIndex structure.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 29

Table Amd2.3 — BiMStreamReference formats

Value Meaning
0x00 local_BiMStreamReference (see subclause 10.14.3)

0x01 remote_BiMStreamReference (see subclause 10.14.2)

0x02 local_BiMStreamReference_with_position
(see subclause 10.14.5)

0x03 remote_BiMStreamReference_with_position
(see subclause 10.14.4)

0x04 PathIndexReference (see subclause 10.14.6)

0x05 – 0x3F reserved

0x40 – 0x7F User Private

0x80 local_BiMStreamReference_vl (see subclause 10.14.8)

0x81 remote_BiMStreamReference_vl (see subclause 10.14.6)

0x82 local_BiMStreamReference_with_position_vl
(see subclause 10.14.10)

0x83 remote_BiMStreamReference_with_position_vl
(see subclause 10.14.9)

0x84 PathIndexReference_vl (see subclause 10.15.5)

0x85 – 0xDF reserved

0xE0 – 0xFF User Private

It should be noted that the high_ValueIndexKey for all but the first value node may be lower than the previous
high_ValueIndexKey sub index entry. This is caused when there is a difference in the value of the parent
value node.

For example if we have an index keyed on channel & event time nodes, we could have a set of sub indexes
with the following ranges:

Sub index 1 – channel high_ValueIndexKey= ‘3’, event time high_ValueIndexKey= ‘12:00’

Sub index 2 – channel high_ValueIndexKey= ‘4’ event time high_ValueIndexKey= ‘09:00’

Where the index uses CompoundValueSubIndeces, the ordering of the high_ValueIndexKey shall match that
defined for the index within the PathIndex structure.

When defining the range of values that a particular value index partition shall cover, sufficient space should be
left to enable the addition of further index entries without impacting other value index partitions. For example if
a ValueSubIndex can hold a maximum of say 64K entries, it is recommended that the range of current entries
should equal around half to two thirds the space. This leaves plenty of room for additional entries without
having to changing the way in which the value index is split into value index partitions.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

30 © ISO/IEC 2006 – All rights reserved

10.8.5 ValueSubIndexReference

10.8.5.1 Overview

The ValueSubIndex_reference is used to specify the Index Access Unit and structure_id of the referenced
ValueSubIndex structure.

10.8.5.2 Syntax

ValueSubIndexReference () { No. of
Bits

Mnemonic

 ValueSubIndex_IndexAccessUnitID 16 uimsbf
 ValueSubIndex_identifier 8 uimsbf
}

10.8.5.3 Semantics

Name Definition

ValueSubIndex_IndexAccessUnitID The id of the Index Access Unit carrying the first ValueSubIndex of the
described value index partition.

ValueSubIndex_identifier This field identifies the ValueSubIndex structure instance containing
the described value sub index. This value is carried within the
structure_id field of the Index Access Unit header.

10.9 ValueSubIndex

10.9.1 Overview

A value sub index provides references to fragments, which contain values within the range specified for this
value sub index. The structure supports indexes with both single and multiple value keys. In the case of
indices with multiple value keys, the syntax provides two methods:

• SingleLayer CompoundValues - All values define together within a single ValueSubIndex.

• MultiLayer SingleValues- Each ValueSubIndex indexes a single value of a key.

10.9.1.1 SingleLayer CompoundValue SubIndex

Single Layer Structures provide a simple mechanism for describing multiple value key indices. As each entry
in the structure can be decoded one by one in a straightforward manner, this structure would be preferred in a
situation where the received index data need to be reorganised in the receiver before its use. Note that the
index data can be restructured inside the receiver according to its own storage method and query processing
policy. For example, a receiver may want to reorganise one of the received indices in its own B-tree index.

In addition, the Single Layer Structure provides an efficient mechanism for representing multiple value indexes,
where there is typically a one to one mapping e.g. <surname, givenname>.

10.9.1.2 Multi Layer SingleValue SubIndex

Multi Layer Structures provide an efficient mechanism for describing multiple value indexes with common
single value indexes. This is achieved with the use of multiple SingleValueSubIndex structures, where each
structure is used to describe one layer of a multiple value index, (layer is equal to a key field of a multi field
index).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 31

Each index entry within the SingleValueSubIndex, point to further SingleValueSubIndex structures (except for
the leaf field), which contain index entries of the next layer.

English French ItalianSingleValueSubIndex with
ValueNode = Language

SingleValueSubIndex with
ValueNode =Title

SingleValueSubIndex with
ValueNode = Genre

Ti
ta

ni
c

th
e

m
ov

ie

St
ar

 W
ar

s
IV

Th
e

G
re

at
 E

sc
ap

e

G
re

at
 E

xp
ec

ta
tio

ns

Ju
ra

ss
ic

 P
ar

k

Movies Sport/Football

Ti
ta

ni
c

le
 fi

lm

L'
Ét

oi
le

 F
ai

t l
a

gu
er

re
 Iv

La
 G

ra
nd

e
Év

as
io

n

G
ra

nd
es

 E
sp

ér
an

ce
s

P
ar

c
Ju

ra
ss

iq
ue

Ti
ta

ni
c

th
e

m
ov

ie

St
ar

 W
ar

s
IV

Th
e

G
re

at
 E

sc
ap

e

A
sp

et
ta

tiv
e

G
ra

nd
i

Ju
ra

ss
ic

 P
ar

k

English

W
or

ld
 C

up

Sp
or

ts
 N

ig
ht

Pr
em

ie
rs

hi
p

Le
ag

ue

French

ta
ss

e
du

 m
on

de

SingleValueSubIndex (structure_id = 101) leaf_ValueSubIndex = '0' ChildSingleValueSubIndex_ref = 102

SingleValueSubIndex (structure_id = 102) leaf_ValueSubIndex = '0' ChildSingleValueSubIndex_ref = 13

 range_end_offset = 2 range_end_offset = 4

range_end_offset = 9 range_end_offset =1 4 range_end_offset = 17 etc

SingleValueSubIndex (structure_id = 13) leaf_ValueSubIndex = '1'

Index Entries Container structures

range_end_offset = 4

Figure Amd2.5 — Example ValueSubIndex structure (using multi layer syntax) for an index with 3 key
fields (Genre, Language, & Title)

The ValueSubIndex structure is formed of two parts:

• ValueSubIndex_header.
• ValueSubIndex_entries.
The ValueSubIndex_header defines how the ValueSubIndex_entries sub structure should be interpreted, and
indirectly defines the size of each index entry.

All entries within the ValueSubIndex_entries sub structure are ordered in ascending order. All entries are also
of a fixed size, which enables the sub structure to be efficiently searched using a binary search algorithm.

The number of entries within the structure is not explicitly defined, but can be inferred as follows:

num_entries = (structure_length - sizeof(ValueSubIndex_header))/sizeof(ValueSubIndex_entry)

It should be noted that the syntax used within SingleValueSubIndex structures is not always common across
all sub indices. Therefore the header of each SingleValueSubIndex should be parsed to infer the syntax used
within a given instance. STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 15

93
8-1

:20
02

/Amd 2
:20

06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

32 © ISO/IEC 2006 – All rights reserved

10.9.2 Syntax

ValueSubIndex() { No. of Bits Mnemonic
 ValueSubIndex_header()
 if(CompoundValueSubIndices == ‘0’) {
 SingleValueSubIndex ()
 } else {
 CompoundValueSubIndex ()
 }
}

10.9.3 Semantics

Name Definition

CompoundValueSubIndices This value is obtained from the value index which referenced this value sub-
index.

10.9.4 ValueSubIndex_header

10.9.4.1 Overview

Given ValueIndexKeys, (a1, a2, ..., an) and (b1, b2, ..., bn), of two CompoundValueIndex_entries, the order
between the two entries is determined as follows:

(a1, a2, ..., an) is larger than (b1, b2, ..., bn) if and only if there exists an integer i (0≤i≤n-1) such that for every
j(0≤j≤i-1), aj = bj and ai > bi.

(a1, a2, ..., an) is smaller than (b1, b2, ..., bn) if and only if there exists an integer i (0≤i≤n-1) such that for
every j(0≤j≤i-1), aj = bj and ai < bi.

(a1, a2, ..., an) is equal to (b1, b2, ..., bn) if and only if for every i(1≤i≤n), ai = bi.

Specifically, within the ValueSubIndex() structure, for all j between 0 and num_entries-1
(ValueIndexKey[j,0], …, ValueIndexKey[j,k]) is smaller than (ValueIndexKey[j+1,0], …,
ValueIndexKey[j+1,k])

10.9.4.2 Syntax

ValueSubIndex_header () { No. of Bits Mnemonic
 leaf_ValueSubIndex 1 bslbf
 multiple_BiMStreamReferences 1 bslbf
 reserved 6 bslbf
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

© ISO/IEC 2006 – All rights reserved 33

10.9.4.3 Semantics

Name Definition

leaf_ValueSubIndex This shall be set to ‘1’ when the ValueSubIndex carries the leaf field of an
index (last indexed field). Which indicates that the structure contains
references to fragments, and not to further ValueSubIndex structures. This
field is only used within multi layer value sub indexes. When a single layer
sub index is being described this flag shall be ignored.

multiple_BiMStreamReferences A flag which when set to ‘1’ indicates that there are potentially
multiple referenced fragments which have the same set of
ValueIndexKeys. This provides a more bandwidth efficient
mechanism, when multiple fragments have the same set of
ValueIndexKeys. The actual BiMStreamReferences are carried in a
separate structure within an Index Access Unit, and an offset is
used to reference the set of relevant BiMStreamReferences within
the structure. When the flag is set to ‘0’ it indicates that
BiMStreamReference are defined inline.

10.10 CompoundValueSubIndex

10.10.1 Overview

The CompoundValueSubIndex allows a set of BiMStreamReferences to be addressed as a set of one or more
ValueIndexKeys. The compound value sub-index groups the values together in a flat index. This is beneficial if
the different data values are uncorrelated.

10.10.2 Syntax

CompoundValueSubIndex () { No. of Bits Mnemonic
 ValueSubIndex_entries {
 for (j=0; j<num_entries; j++) {
 for(f=0; f<num_fields; f++) {
 ValueIndexKey value

encoding
dependent

uimsbf

 }
 if(multiple_BiMStreamReferences == ‘1’) {
 BiMStreamReference_end_offset 16 uimsbf
 }
 else {
 BiMStreamReference()
 }
 }
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
93

8-1
:20

02
/Amd 2

:20
06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

ISO/IEC 15938-1:2002/Amd.2:2006(E)

34 © ISO/IEC 2006 – All rights reserved

10.10.3 Semantics

Name Definition

ValueIndexKey The value of the ValueIndexKey of the referenced fragment. The size and
meaning of this field depends on the value of the value_encoding member
of the relevant PathIndex structure. The values of the ValueIndexKey must
be within the range given for this value index partition.

BiMStreamReference_end_offset When the multiple_BiMStreamReferences flag is set to ‘1’ in the
ValueSubIndex_header this field is used to indicate the inclusive
end offset within the BiMStreamReferences structure where the set
of valid references can be found. The format of these
BiMStreamReferences is defined by the
BiMStream_reference_format declared within the PathIndex
structure.

The BiMStreamReference_start_offset is implicit from the previous entry within the ValueSubIndex, as follows.

• If it’s the first entry within the ValueSubINdex_entries then BiMStreamReference_start_offset shall equal 0.
• If it’s not the first entry, the previous entries BiMStreamReference_end_offset + 1 shall be used as the

current entries inclusive BiMStreamReference_start_offset.

if (current index != 0) {
 BiMStreamReference_start_offset = value sub index_entries[current index-1].
BiMStreamReference_end_offset + 1;
 }else {
 BiMStreamReference_start_offset = 0;
}

It should be noted that for fixed size BiMStreamReference formats these references are based on
BiMStreamReference entries and not byte offsets. The actual byte offset within the BiMStreamReferences
structure is calculated as follows:

if(MostSignificantBit(BiMStreamReference_format) == ‘0’)

{

 byte_offset = BiMStreamReference_end_offset * sizeof(BiMStreamReference());

}

else

{

 byte_offset = BiMStreamReference_end_offset;

}
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 15

93
8-1

:20
02

/Amd 2
:20

06

https://standardsiso.com/api/?name=1bb1f488dc9821098d450f4e773054e2

