400 Commonwealth Drive, Warrendale, PA 15096-0001 # AEROSPACE MATERIAL SPECIFICATION SAE. AMS 2431/1B Issued Revised APR 1988 DEC 1997 Superseding AMS 2431/1A Submitted for recognition as an American National Standard # PEENING MEDIA (ASR) Cast Steel Shot, Regular Hardness (45 to 52 HRC) ### 1. SCOPE: The complete requirements for procuring the product shall consist of this document and the latest issue of the basic specification, AMS 2431. 2. APPLICABLE DOCUMENTS: The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. 2.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001. AMS 2431 Peening Media, General Requirements - 3. TECHNICAL REQUIREMENTS: - 3.1 Cast steel shot, regular hardness, shall conform to AMS 2431 and the requirements specified herein. - 3.2 Composition: Shall conform to the percentages by weight shown in Table 1, determined in accordance with ASTM E 350. SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user." SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright 1997 Society of Automotive Engineers, Inc. All rights reserved. Printed in U.S.A. SAE AMS 2431/1B TABLE 1 - Composition | Element | min | max | |-------------------|------|------| | Carbon | 0.85 | 1.20 | | Manganese (3.2.1) | | 1.20 | | Silicon | 0.40 | 1.50 | | Phosphorous | | 0.05 | | Sulfur | | 0.05 | 3.2.1 Minimum manganese content shall vary according to shot size and the minimum percentage by weight shown in Table 2. TABLE 2 - Minimum Manganese Content | Shot Size | % | |---------------------|------| | ASR-70 to ASR-130 | 0.35 | | ASR-170 and ASR-190 | 0.50 | | ASR-230 and up | 0.60 | # 3.3 Hardness: Not less than 90% of the readings, using a microhardness tester with a minimum 500 gram load, shall fall within the range of 45 to 52 HRC, or equivalent, determined in accordance with ASTM E 384. # 3.4 Microstructure: Shall exhibit uniformly tempered martensite with fine, well-distributed carbides. # 3.5 Density: Shall be not less than 7.0 grams per milliliter, determined in accordance with 3.9.2. ## 3.6 Contamination: Shot shall be clean and free of dirt, grit, oil, or grease. 3.7 Quality Requirements: Shall conform to 3.7.1, 3.7.2, 3.7.3, and 3.7.4, determined in accordance with 3.9.3. - 3.7.1 Acceptable Shapes: Shapes in accordance with Figure 1 are acceptable. - 3.7.2 Marginal Shapes: Shapes conforming to Figure 2 are permissible to the extent specified in Table 3. - 3.7.3 Unacceptable Shapes: Shapes conforming to Figure 3 are permissible to the extent specified in Table 3. - 3.7.4 Internal Defects: No more than 15% of the particles, by count, may exhibit cracks, hollows, or shrinkage (See Figure 4). FIGURE 1 - Acceptable Shapes FIGURE 2 - Marginal Shapes TABLE 3 - Shape Requirements | Shot Size | Area per Field
Square Inch
(mm ²) | Number of
Fields
Viewed | Number of
Marginal Particles
max ⁽¹⁾ | Number of
Unacceptable
Particles
max ⁽²⁾ | |----------------|---|-------------------------------|---|--| | ASR 930 | 1 (645) | 1 | 8 | , v ² | | ASR 780 | 1 (645) | 1 | 12 | 2 | | ASR 660 | 1 (645) | 1 | 16
20
28
39 | 3 | | ASR 550 | 1 (645) | 1 | 20 | 4 | | ASR 460 | 1 (645) | 1 | 28 | 5 | | ASR 390 | 1 (645) | 1 | 39 | 7 | | ASR 330 | 0.25 (161) | 1 | 14 | 3 | | ASR 280 | 0.25 (161) | 1 | 20 | 4 | | ASR 230 | 0.25 (161) | 1 | 14 | 5 | | ASR 190 | 0.25 (161) | 1 | 20 | 7 | | ASR 170 | 0.25 (161) | 1 | 28 | 10 | | ASR 130 | 0.25 (161) | 1 110 | 14
20
28
10 | 4 | | ASR 110 | 0.0625 (40) | 1,0 | 14 | 5 | | ASR 70 | 0.0625 (40) | CHICA | 39 | 13 | Notes: (1) Maximum number of marginal shapes is approximately 3% of the total number of particles viewed for ASR 70 to ASR 230, 6% for ASR 280 to ASR 550, and 7% for ASR 660 to ASR 930. ⁽²⁾ Maximum number of unacceptable shapes is approximately 1% of the total number of particles viewed. FIGURE 3 - Unacceptable Shapes FIGURE 4 - Internal Defects ### 3.8 Size: Shall conform to the requirements of Table 4, determined in accordance with 3.9.1. TABLE 4 - Screening Requirements | | | 2% max on | 50% max
Cumulative on | 90% min
Cumulative on | 98% min
Cumulative on | |----------------|-----------------|-------------|--------------------------|--------------------------|--------------------------| | Shot Size | All Pass Screen | Screen | Screen | Screen | Screen | | ASR 930 | 5 (0.157) | 6 (0.132) | 7 (0.111) | 8 (0.0937) | 10 (0.0787) | | ASR 780 | 6 (0.132) | 7 (0.111) | 8 (0.0937) | 10 (0.0787) | 12 (0.0661) | | ASR 660 | 7 (0.111) | 8 (0.0937) | 10 (0.0787) | 12 (0,0661) | 14 (0.0555) | | ASR 550 | 8 (0.0937) | 10 (0.0787) | 12 (0.0661) | 14 (0.0555) | 16 (0.0469) | | ASR 460 | 10 (0.0787) | 12 (0.0661) | 14 (0.0555) | 16 (0.0469) | 18 (0.0394) | | ASR 390 | 12 (0.0661) | 14 (0.0555) | 16 (0.0469) | 18 (0.0394) | 20 (0.0331) | | ASR 330 | 14 (0.0555) | 16 (0.0469) | 18 (0.0394) | 20 (0.0331) | 25 (0.0278) | | ASR 280 | 16 (0.0469) | 18 (0.0394) | 20 (0.0331) | 25 (0.0278) | 30 (0.0234) | | ASR 230 | 18 (0.0394) | 20 (0.0331) | 25 (0.0278) | 30 (0.0234) | 35 (0.0197) | | ASR 190 | 20 (0.0331) | 25 (0.0278) | 30 (0.0234) | 35 (0.0197) | 40 (0.0165) | | ASR 170 | 25 (0.0278) | 30 (0.0234) | 35 (0.0197) | 40 (0.0165) | 45 (0.0139) | | ASR 130 | 30 (0.0234) | 35 (0.0197) | 40 (0.0165) | 45 (0.0139) | 50 (0.0117) | | ASR 110 | 35 (0.0197) | 40 (0.0165) | 45 (0.0139) | 50 (0.0117) | 80 (0.0070) | | ASR 70 | 40 (0.0165) | 45 (0.0139) | 50 (0.0117) | 80 (0.0070) | 120 (0.0049) | Notes: (1) Nominal Size = 90% Screen Opening (e.g.: Nominal size of ASR 230 shot is 0.0234 diameter. # 3.9 Test Methods and Procedures: 3.9.1 Size Screening Test: The size of shot, specified in 3.8, shall be determined by using a 100-gram sample and screening as follows: The required standard testing sieves in accordance with ASTM E 11 shall be nested in ascending order with a pan on the bottom. The 100-gram sample shall be poured onto the top sieve and the nested sieves shall be placed in a rotating and tapping type of shaking machine. The rotating speed shall be 275 to 295 rpm and the tapping speed shall be 145 to 160 taps per minute. Shaking and tapping shall be continued for 5 minutes ± 5 seconds for sieves 30 mesh and coarser and 10 minutes ± 5 seconds for sieves finer than 30 mesh. After shaking, the percentage of shot on each screen shall be determined by weighing the shot retained on each screen. AMS 2431/1B SAE AMS 2431/1B 3.9.2 Density: Sixty grams of shot, previously dried and weighed, shall be placed in a 100 mL graduated cylinder containing 50 mL of ethanol or methanol. The total volume minus 50 mL represents the volume of the shot. The density is determined using Equation 1. Density = $$\frac{60 \text{ grams}}{\text{Shot Volume}}$$ (Eq. 1) iok of air - 3.9.3 Shape: Visual evaluation, at a magnification of 10 to 30X shall be performed using the areas and number of fields specified in Table 3 for each respective shot size. - 3.9.4 Microstructure: The sample shall be mounted, polished, and etched with 2% Nital, or other suitable etchant, and examined using a microscope at approximately 500X magnification. - 4. QUALITY ASSURANCE PROVISIONS: See AMS 2431 and the following: 4.1 Sampling and Testing: Two samples of 800 grams each shall be selected from separate containers chosen at random from each lot. Each sample shall be split using a sample splitter to test quantities as follows: - 4.1.1 Composition: Not less than two samples from each lot shall be evaluated. - 4.1.2 Hardness: A minimum of 20 microhardness readings shall be made from each sample with no more than one impression on any one shot. The hardness test impression shall be located approximately midway between the surface and the center of the shot. - 4.1.2.1 Samples for microhardness testing shall be prepared by encapsulating a single layer of shot in a plastic mount and polishing down to nominal half spheres. - 4.1.3 Microstructure: The sample used for hardness testing may also be used for microstructure evaluation. - 4.1.4 Density: Two 60-gram samples shall be evaluated for density determination. - 4.1.5 Size: Two representative samples of not less than 100 grams each shall be used for size evaluation. - 4.1.5.1 Alternate methods for size evaluation may be utilized provided that they can be correlated to the sieve analysis method and are acceptable to purchaser. - 4.1.6 Shape: A representative sample shall consist of an amount of shot, in one layer, which completely fills the areas specified in Table 3. The number of areas, or fields of view, evaluated at 10 to 30X magnification (See 3.9.3) for each shot size shall be as indicated in Table 3.